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Announcements

•Logistics: 
•HW6 Due Thursday. HW7 out today

•Class roadmap:

Tuesday, Nov. 16 Unsupervised Learning I

Thursday, Nov. 18 Unsupervised Learning II

Tuesday, Nov. 23 Learning Theory

Tuesday, Nov. 30 RL I

Thursday, Dec. 2 RL II



Outline

•Clustering Review
•k-means, hierarchical, spectral clustering

•Gaussian Mixture Models
• Mixtures, Expectation-Maximization algorithm

•Principal Components Analysis
•Definition, Algorithm, Interpretations, Analysis
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K-Means Clustering

k-means is a type of partitional centroid-based clustering

Algorithm:

1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

K-Means clustering

2. Find closest center for each point



K-Means Clustering: Algorithm

K-Means clustering

3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

K-Means clustering

Repeat Steps 2 & 3 until convergence



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Repeat: Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

•Single-linkage

•Complete-linkage

•Average-linkage



Break & Quiz
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Mixture Models

•Let’s get back to modeling densities in unsupervised learning.

•Have dataset: 

•One type of model: mixtures
•A function of the latent variable z
•We did something similar with flows
•Model:



Mixture Models: Gaussians

•Lots of different kinds of mixtures, but let’s focus on 
Gaussians. 

•What does this mean?

•Latent variable z has some multinomial distribution,

•Then, let’s make x be conditional Gaussian

Mean Covariance Matrix 



Gaussian Mixture Models: Likelihood

•How should we learn the parameters?

•Could try our usual way: maximum likelihood
• Log likelihood:

•Turns out to be hard to solve… inner sum leads to problems!



GMMs: Supervised Setting

•What if we knew the z’s?
• “Supervised” setting… very similar to Gaussian Naïve Bayes

•First, empirically estimate the z parameters:

•Next the Gaussian components: Average of x’s 
where z = j 



GMMs: Back to Latent Setting

•But, we don’t get to see the z’s
•Similar to the weak supervision setting from last time.

•What could we do instead?

•Recall our k-means approach: we don’t know the centers, 
but we pretend we do, perform a clustering, re-center, iterate



GMMs: Expectation Maximization

•EM :an algorithm for dealing with latent variable problems

•Iterative, alternating between two steps:
•E-step (expectation): guess the latent variables
•M-step (maximization): update the parameters of the model
•Note similarity to k-means clustering.

Jake VanderPlas



GMM EM: E-Step

•Let’s write down the formulas.

•E-step: fix parameters, compute posterior:

•These w’s are “soft” assignments of the z terms… 
probabilities over the values z could take. Concretely:



GMM EM: M-Step

•Let’s write down the formulas.

•M-step: fix w, update parameters:
Soft version of our counting 
estimator for the supervised case.

Soft version of our 
empirical mean and 
covariances.



Break & Quiz
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High-Dimensional Data

•High-dimensions = lots of features

•We’ve seen this repeatedly, but some examples:

•Document classification
•Features per document = thousands of words/unigrams millions of 

bigrams,  contextual information

•Example: Surveys - Netflix

480189 users x 17770 movies



Dealing with Dimensionality

•PCA, Kernel PCA, ICA: Powerful unsupervised learning 
techniques for extracting hidden (potentially lower 
dimensional) structure from high dimensional datasets.
•Some uses:
•Visualization 
•More efficient use of resources (e.g., time, memory, 

communication)
•Noise removal (improving data quality)
•Further processing by machine learning algorithms



Principal Components Analysis

•Unsupervised technique for extracting variance structure 
from high dimensional datasets
•And also reduces dimensionality

•PCA: orthogonal projection / transformation of the data 
• Into a (possibly lower dimensional) subspace 
•So that the variance of the projected data is maximized.



PCA Intuition

•The dimension of the ambient space (ie, Rd) might be much 
higher than the intrinsic data dimension

•Question: Can we transform the features so that we only need to 
preserve one latent feature?
•Or a few? 



PCA Intuition

•Some more visualizations

•In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective 
representation of the data.



PCA: Principal Components

•Principal Components (PCs) are orthogonal directions that 
capture most of the variance in the data.

•First PC – direction of greatest variability in data.
•Projection of data points along first PC discriminates data most 

along any one direction 



PCA: Principal Components and Projection

•How does dimensionality reduction work? From d
dimensions to r dimensions:
•Get
•Orthogonal!

•Maximizing variability
•Equivalent to minimizing reconstruction error

•Then project data onto PCs → d-dimensional

Victor Powell



PCA Approach Overview

•Want directions/components (unit vectors) so that
•Projecting data maximizes variance

•Specifically, for centered data

•Do this recursively
•Get orthogonal directions



PCA First Step

•First component,

•Same as getting



PCA Recursion

•Once we have k-1 components, next?

•Then do the same thing

Deflation



PCA Interpretations

•The v’s are eigenvectors of XXT (Gram matrix)
•We’ll see why in a second

•XXT (proportional to) sample covariance matrix
•When data is 0 mean!
•I.e., PCA is eigendecomposition of sample covariance

•Nested subspaces span(v1), span(v1,v2),…,



PCA Interpretations: First Component

•Two specific ways to think about the first component

•Maximum variance direction 
•What we saw so far

•Minimum reconstruction error
•A direction so that projection yields minimum MSE in 

reconstruction 



PCA Interpretations: Equivalence

•Interpretation 1. 

Maximum variance direction

•Interpretation 2. 

Minimum reconstruction error

•Why are these equivalent?
•Use Pythagorean theorem.
•Maximizing blue segment is the same as minimizing the green

xi v

v ⋅ xi



PCA Gram Matrix Interpretation

•Recall our first PC, maximized variance:

•Constrained optimization
•Recall our usual approach: Lagrangian + KKT conditions



•So…                               

•Means that v (the first PC) is an eigenvector of XXT

•Its eigenvalue 𝜆 denotes the amount of variability captured 
along that dimension

•PCs are just the eigenvectors…
•How to find them? Eigendecomposition

•Don’t need to keep all eigenvectors
• Just the ones for largest eigenvalues

x1

x2

PCA Covariance Matrix Interpretation



PCA Dimensionality Reduction

•In high-dimensional problems, data sometimes lies near a 
linear subspace, as noise introduces small variability

•Only keep data projections onto principal components with 
large eigenvalues 

•Can ignore the components of smaller significance. 
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Application: Image Compression

•Start with image; divide into 12x12 patches

• I.E., 144-D vector

•Original image:



Application: Image Compression

•Project to 6D, 

Compressed Original



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov 


