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Announcements

*Logistics:
*HW6 Due Thursday. HW7 out today
*Class roadmap:

Thursday, Nov. 18 Unsupervised Learning Il
Tuesday, Nov. 23 Learning Theory
Tuesday, Nov. 30 RL I

Thursday, Dec. 2 RL I



Outline

*Clustering Review
*k-means, hierarchical, spectral clustering

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm

*Principal Components Analysis
* Definition, Algorithm, Interpretations, Analysis



Outline

*Clustering Review
*k-means, hierarchical, spectral clustering



K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers
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K-Means Clustering: Algorithm

K-Means clustering
2. Find closest center for each point
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K-Means Clustering: Algorithm

K-Means clustering
3. Update cluster centers by computing centroids
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K-Means Clustering: Algorithm

K-Means clustering
Repeat Steps 2 & 3 until convergence
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HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Get pair of clusters that are closest and merge



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge
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HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
*Repeat: Get pair of clusters that are closest and merge



HC: Merging Criteria

Merge: use closest clusters. Define closest?

*Single-linkage d(A, B) = 1:r41in Bd<x17 z2)
T1E€EA,To€C
oCompIete-llnkage d(A’B) — IE&X Bd<aj]_)x2)
T1E€A,To€C
.Average—linkage 1
d(A,B) = T D d@na)
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Break & Quiz



Outline

*Gaussian Mixture Models
* Mixtures, Expectation-Maximization algorithm



Mixture Models

*Let’s get back to modeling densities in unsupervised learning.
*Have dataset:

T ORPOREON

*One type of model: mixtures
* A function of the latent variable z
* We did something similar with flows

* Model:
p(xV]2)p(zV)



Mixture Models: Gaussians

| ots of different kinds of mixtures, but let’s focus on
Gaussians.

*What does this mean? k
*Latent variable z has some multinomial distribution, > ¢ =1

2(1) ~ Multinomial(¢)
*Then, let’s make x be conditional Gaussian

e D[(2% = j) ~ N (y, %)

Mean Covariance Matrix



Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, u;, 2,

*Could try our usual way: maximum likelihood
* Log likelihood:

ENT> Zlog Z p(@D 27 1, )p(2; )

1=1 z()—

* Turns out to be hard to solve... inner sum leads to problems!



GMMs: Supervised Setting

*What if we knew the z’s?
e “Supervised” setting... very similar to Gaussian Naive Bayes

*First, empirically estimate the z parameters:
1 —
¢j = EZl{z() =J}
1=1

*Next the Gaussian components: Average of x’s

Z?:l 1{Z(i) — j}aj(i) /wherez=j
Hi =
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GMMs: Back to Latent Setting

*But, we don’t get to see the z’s
* Similar to the weak supervision setting from last time.

\WWhat could we do instead?

*Recall our k-means approach: we don’t know the centers,
but we pretend we do, perform a clustering, re-center, iterate
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GMMs: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*lterative, alternating between two steps:
* E-step (expectation): guess the latent variables
* M-step (maximization): update the parameters of the model
* Note similarity to k-means clustering.
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GMM EM: E-Step

*Let’s write down the formulas.
*E-step: fix parameters, compute posterior:

w'® = p(z0 = jl2®; ¢, 1, %)

*These w’s are “soft” assignments of the z terms...
probabilities over the values z could take. Concretely:

W = p(z® = jlzD: 6, 1. %) = p(z® ]2 = j; p, D)p(2') = j; ¢)
7 S (2@ ]20) = £ 5, D)p(20) = ¢; ¢)



GMM EM: M-Step

eLet’s write down the formulas.

. . .
M-step: fix w, update parameters: Soft version of our counting

1 0 / estimator for the supervised case.
(
bj == > w,

Soft version of our

2?21 wj(-i)ﬂf(i) empirical mean and
Mg = no ) / covariances.




Break & Quiz



Outline

*Principal Components Analysis
* Definition, Algorithm, Interpretations, Analysis



High-Dimensional Data

*High-dimensions = lots of features
*We've seen this repeatedly, but some examples:

e Document classification

* Features per document = thousands of words/unigrams millions of
bigrams, contextual information

*Example: Surveys - Netflix
480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? 7 1 3 ?
George ? 7 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 7 2 4 2




Dealing with Dimensionality

*PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

*Some uses:
e Visualization

* More efficient use of resources (e.g., time, memory,
communication)

* Noise removal (improving data quality)
* Further processing by machine learning algorithms

PCA



Principal Components Analysis

*Unsupervised technique for extracting variance structure
from high dimensional datasets
* And also reduces dimensionality

*PCA: orthogonal projection / transformation of the data
*Into a (possibly lower dimensional) subspace
* So that the variance of the projected data is maximized.

Ny



PCA Intuition

*The dimension of the ambient space (ie, RY) might be much
higher than the intrinsic data dimension

R

* Question: Can we transform the features so that we only need to
preserve one latent feature?
*Or afew?




PCA Intuition

*Some more visualizations

D
1 d

2
1

*In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective
representation of the data.



PCA: Principal Components

*Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

* First PC — direction of greatest variability in data.

* Projection of data points along first PC discriminates data most
along any one direction




PCA: Principal Components and Projection

*How does dimensionality reduction work? From d
dimensions to r dimensions:

*Get ]Rd’
* Orthogonal! Ul’ UZ? T 7Ur -

* Maximizing variability
* Equivalent to minimizing reconstruction error

*Then project data onto PCs - d-dimensional

Victor Powell



PCA Approach Overview

*\Want directions/components (unit vectors) so that
* Projecting data maximizes variance

*Specifically, for centered data L

D {wi,v) = [ Xl

1=1

*Do this recursively g
* Get orthogonal directions V1,V2,...,U, € R



PCA First Step

*First component,
n

v1 = arg max » (v,x;)°
Jofi=1 <=

*Same as getting

v1 = arg max || Xv||”
v]|=1



PCA Recursion

*Once we have k-1 components, next?

k—1

Xk = X — ZXU@'UZ-T \
1=1

Deflation

*Then do the same thing

v, = arg max || Xwl|?
lv]]=1



PCA Interpretations

*The v’s are eigenvectors of XX” (Gram matrix)
*We’'ll see why in a second

* XX (proportional to) sample covariance matrix
*When data is O mean!
|.e., PCA is eigendecomposition of sample covariance

*Nested subspaces span(vl), span(v1,v2),...,




PCA Interpretations: First Component

*Two specific ways to think about the first component

 Maximum variance direction

 What we saw so far
T

Z(VTXZ')Q = v XXy
i=1

* Minimum reconstruction error
* A direction so that projection yields minimum MSE in

reconstruction
T
> xi — (vixa)v?
1=1



PCA Interpretations: Equivalence

T
*Interpretation 1. § :(VTXZ.)Q — viIxXXTy
Maximum variance direction i—1

T

T 2

d xi — (vIxi)v|
*|nterpretation 2. i=1
Minimum reconstruction error Xj v

*Why are these equivalent?
* Use Pythagorean theorem.
* Maximizing blue segment is the same as minimizing the green



PCA Gram Matrix Interpretation

e Recall our first PC, maximized variance:

méax viXXly st. viv=1

*Constrained optimization
* Recall our usual approach: Lagrangian + KKT conditions

Lagrangian: maxy vIXXTv — axvlv

0/0v=0 (XXT -ADv=0 =>(XX')v=)\v




PCA Covariance Matrix Interpretation

*So... =|(XXD)v=)v
*Means that v (the first PC) is an eigenvector of XX'

*|lts eigenvalue A denotes the amount of variability captured
along that dimension

*PCs are just the eigenvectors...
* How to find them? Eigendecompositiol

*Don’t need to keep all eigenvectors x| 4 =

e Just the ones for largest eigenvalues /




PCA Dimensionality Reduction

*In high-dimensional problems, data sometimes lies near a
linear subspace, as noise introduces small variability

*Only keep data projections onto principal components with
large eigenvalues

*Can ignore the components of smaller significance.
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Application: Image Compression

*Start with image; divide into 12x12 patches
*|.E., 144-D vector

* Original image:




Application: Image Compression

*Project to 6D,

Compressed



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov



