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Announcements

*Logistics:
*HW 7 due today
*Happy Thanksgiving! Enjoy break.

*Class roadmap:

Tues., Nov. 30 RL I
Thurs., Dec. 2 RL I
Tues., Dec. 7 RL I

Thurs., Dec 9 Fairness & Ethics



Outline

*Review & PCA

*|ntuition, operation, interpretations, compression

*Intro to Learning Theory
*Error decomposition, bias-variance tradeoff

*PAC Learning Framework
* Definition, intuition, sample complexity bounds



Outline

*Review & PCA

*|ntuition, operation, interpretations, compression



PCA Intuition

*The dimension of the ambient space (ie, RY) might be much
higher than the intrinsic data dimension

R

* Question: Can we transform the features so that we only need to
preserve one latent feature?
*Or afew?




PCA Intuition

*Some more visualizations

D
1 d

2
1

*In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective
representation of the data.



PCA: Principal Components

*Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

* First PC — direction of greatest variability in data.

* Projection of data points along first PC discriminates data most
along any one direction




PCA: Principal Components and Projection

*How does dimensionality reduction work? From d
dimensions to r dimensions:

*Get ]Rd’
* Orthogonal! Ul’ UZ? T 7Ur -

* Maximizing variability
* Equivalent to minimizing reconstruction error

*Then project data onto PCs - d-dimensional

Victor Powell



PCA First Step

*First component,
n

v1 = arg max » (v,x;)°
Jofi=1 <=

*Same as getting

v1 = arg max || Xv||”
v]|=1



PCA Recursion

*Once we have k-1 components, next?

k—1

Xk = X — ZXU@'UZ-T \
1=1

Deflation

*Then do the same thing

v, = arg max || Xwl|?
lv]]=1



PCA Interpretations

*The v’s are eigenvectors of XX” (Gram matrix)
*We’'ll see why in a second

* XX (proportional to) sample covariance matrix
*When data is O mean!
|.e., PCA is eigendecomposition of sample covariance

*Nested subspaces span(vl), span(v1,v2),...,




PCA Interpretations: First Component

*Two specific ways to think about the first component

 Maximum variance direction

 What we saw so far
T

Z(VTXZ')Q = v XXy
i=1

* Minimum reconstruction error
* A direction so that projection yields minimum MSE in

reconstruction
T
> xi — (vixa)v?
1=1



PCA Interpretations: Equivalence

T
*Interpretation 1. § :(VTXZ.)Q — viIxXXTy
Maximum variance direction i—1

T

T 2

d xi — (vIxi)v|
*|nterpretation 2. i=1
Minimum reconstruction error Xj v

*Why are these equivalent?
* Use Pythagorean theorem.
* Maximizing blue segment is the same as minimizing the green



PCA Covariance Matrix Interpretation

e Recall our first PC, maximized variance:

méax viXXly st. I

*Constrained optimization

* Recall our usual approach: Lagrangian + KKT conditions

Lagrangian: maxy vi XX1v —

0/0v=0 (XX —A)v=0 =

Avlvy

(XXD)yv = v




PCA Covariance Matrix Interpretation

*So... =|(XXD)v=)v
*Means that v (the first PC) is an eigenvector of XX'

*|lts eigenvalue A denotes the amount of variability captured
along that dimension

*PCs are just the eigenvectors...
* How to find them? Eigendecomposition

*Don’t need to keep all eigenvectors X2 %

e Just the ones for largest eigenvalues /




PCA Dimensionality Reduction

*In high-dimensional problems, data sometimes lies near a
linear subspace, as noise introduces small variability

*Only keep data projections onto principal components with
large eigenvalues

*Can ignore the components of smaller significance.
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Application: Image Compression

*Start with image; divide into 12x12 patches
*|.E., 144-D vector

* Original image:




Application: Image Compression

*Project to 6D,

Compressed



Break & Quiz



Outline

*Intro to Learning Theory
*Error decomposition, bias-variance tradeoff



Learning Theory

*Goal: try to analyze error, and especially generalization
°i.e., on the whole distribution

*We will cover a few ideas:
* Error decomposition & generalization
* Bias-variance tradeoff
* PAC framework

*Deep subject overall.

= Capacity




Error Decomposition

*h": the optimal function (Bayes
classifier)

*hype: the optimal hypothesis on the
data distribution

N

* hype: the optimal hypothesis on the
training data

* h: the hypothesis found by the
learning algorithm

h*

Hypothesis class H



Error Decomposition
err(ﬁ) — err(h™)

= err(hype) —err(h”)

+ err(ﬁopt) —err(hope)

+ er'r(fz) — err(fzopt)

Hypothesis class H



Error Decomposition

BTT(h) — err(h*) Approximation error

/ due to problem modeling (the
choice of hypothesis class)
= err(hyy) — err(h’)

Estimation error

/ due to finite data
+ err(hopt) — err(hopt)

Optimization error due
/ to imperfect optimization
+ err(h) —err(Rope)



Bounding Estimation Error

err(fzopt) — err(hopt)
= er7(hope) — €7 (hope)

+ err (flopt) — err(hopt)
< err(flopt) — err (Eopt)

+ err (hope) — err(hope)

< 2sup |err(h) — err(h)|
heH



Another Decomposition

err(fz) = eﬁ"\r(ﬁ) + [err(ﬁ) — e’r\r(fz):
\
Generaliza'tion gap

< éfr(ﬁ) + sup |err(h) — err(h)|
heH

* The training error e/r\r(fl) is what we can compute

* Need to control the generalization gap.
e How?



Bounding the Generalization Gap

Have: err(h) < err(h) + sup |err(h) — err(h)]
heH

*How do we deal with the right-hand term?
*Have, for example,

lerr(h) — érr(h)| < R(H) + \/log (%) /2n

for all hin H and where n is the number of samples, R(H) is the
Rademacher complexity of the function class



Bounding the Generalization Gap

err(h) — e7r ()] < R(H) + log (5) /2n

for all h in H and where n is the number of samples, R(H) is the
Rademacher complexity of the function class

Rademacher complexity: a measure of how “large” the
hypothesis is.
* How much random data can it fit?
* Other versions: VC complexity, Gaussian complexity



Bias-Variance Tradeoffs

Consider the task of learning a regression model given a
training set D = {(x(l),y(l)), L, (x(m),y(m))}

* A natural measure of the error of f is
Ep[(y — f(x; D))?]

* Expectation is taken with respect to the real-world distribution of
instances (not the empirical one)



Bias-Variance: Derivation

Take a fixed x. Can rewrite:

Ep[(y — f(x D))*] =

Epl(y — E[y|xD?*] + (f (x; D) — E[ylx])?

\ ) \ J
| 1

Variance of y given x Error of f as a predictor
(unrelated to model)




Bias-Variance: Derivation

Let’s look at the 2" term, and take the expectation over
datasets:

Epl(f(x; D) — Elylx])?] =
(Eplf (x; D)] — Elyl ]) Ep[(f(x; D) — Eplf (x; D)]?]

* Bias: if on average f (x; D) differs from £ [y | x] then f (x; D) is a
biased estimator of £ [y | x]

* Variance: f(x; D) may be sensitive to D and vary a lot from its
expected value




Bias-Variance: Polynomial Interpolation

*Example:
* 1st order polynomial has high bias, low variance
* 50th order polynomial has low bias, high variance
* 4th order polynomial represents a good trade-off

true model
O observations
------ interpolation
polynomials models: 9 O
\




Bias-Variance: Idea

Predictive error has two controllable components
* expressive/flexible learners reduce bias, but increase variance

* For many models we can trade-off these two components (e.g. via our
selection of kin A~~-NN)

* The optimal point in this trade-off depends on the particular problem
domain and training set size

* Not necessarily a strict trade-off; e.g. with ensembles we can often
reduce bias and/or variance without increasing the other term



Break & Quiz



Outline

*PAC Learning Framework
* Definition, intuition, sample complexity bounds



PAC Learning Setup

PAC learning is a framework used for theoretical analysis. Basic setting:

instance space X

ceC

e Set of instances X

e Set of hypotheses (models) H
Set of possible target concepts C

* Unknown probability distribution D over instances



PAC Learning Setup

We get a set D of training instances (x, c¢(x)) for some target conceptcin C
e eachinstance x is drawn from distribution D
* class label c(x) is provided for each x
e |earner outputs hypothesis # modeling ¢
* Goal: the true error of hypothesis & refers to how often 7/ is wrong on future

instances drawn from D
instance space X

C h




PAC Learning: Two Error Types

We have two kinds of errors:

True error: (i.e., on any instance from distribution d):

errorp(h) = Pplc(x) # h(x)]

Empirical error: (l.e., on our dataset)

Errorp (h) = PxED [C(X) * h(x)] — ZXED S(C(x) a h(x))

D]

Goal: Can we bound error,(h) in terms of errory(h) ?



PAC Learning Definition

Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

* C'is PAC learnable by L using H if, for all c€ C, distributions D over X, ¢
such that 0 <e¢ <0.5, 0 suchthat 0 <o <0.5,

*The learner L will, with probability at least (1-0), output a hypothesis
h € H such that error,(/) < ¢ in time that is polynomial in the
guantities:

l/e, 1/0, n, size(c)

“Probably Approximately Correct”



PAC Learning Applications

For finite hypothesis classes, the sample complexity (i.e., the m) so that we get a
learner that satisfies the above definition is

[|n|H|+|n(1D X

3 I B e

Error Size of Probably correct
tolerance hypothesis

class
Can apply to, for example, decision trees of depth 2 for binary feature vectors

* |H| is the number of splits (ie, n choose 2 times 16: # split choices times # leaf labelings)
* For probability > 0.99 with error £0.05, number of samples we need is:

* Example: for n=100, m > 318
m > i(ln(8n2 - 8n) + In(ijj
.05 01



PAC Learning Discussion

PAC formalizes learning task, allows for non-perfect learning (indicated
by ¢ and 0)

* Requires polynomial computational time

* PAC analysis has been extended to explore a wide range of cases
* the target concept not in our hypothesis class
* infinite hypothesis class (VC-dimension theory)
* noisy training data
* learner allowed to ask queries
e restricted distributions (e.g. uniform) over D

* Most analyses are worst case
e Sample complexity bounds are generally not tight



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov



