R T c w»‘.&}:n?'

R AL

CS 760: Machine Learning
Reinforcement Learning

Fred Sala

University of Wisconsin-Madison

Nov. 30, 2021

Announcements

*Logistics:
*Welcome back!
*HWS8 released Thursday (last HW).

*Class roadmap:
Tes,Nov3o R

Thurs., Dec. 2 RLII
Tues., Dec. 7 RL I
Thurs., Dec 9 Large Language Models

Tues., Dec 14 Fairness & Ethics

Outline

*Review & PAC Learning Framework
* Definition, intuition, sample complexity bounds

*Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Outline

*Review & PAC Learning Framework
* Definition, intuition, sample complexity bounds

PAC Learning Setup

PAC learning is a framework used for theoretical analysis. Basic setting:

instance space X

ceC

e Set of instances X

e Set of hypotheses (models) H
Set of possible target concepts C

* Unknown probability distribution D over instances

PAC Learning Setup

We get a set D of training instances (x, c¢(x)) for some target conceptcin C
e eachinstance x is drawn from distribution D
* class label c(x) is provided for each x
e |earner outputs hypothesis # modeling ¢
* Goal: the true error of hypothesis & refers to how often 7/ is wrong on future

instances drawn from D
instance space X

C h

PAC Learning: Two Error Types

We have two kinds of errors:

True error: (i.e., on any instance from distribution d):

errorp(h) = Pplc(x) # h(x)]

Empirical error: (l.e., on our dataset)

Errorp (h) = PxED [C(X) * h(x)] — ZXED S(C(x) a h(x))

D]

Goal: Can we bound error,(h) in terms of errory(h) ?

PAC Learning Definition

Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

* Cis PAC learnable by L using H if, for all c€ C, distributions D over X, ¢
such that 0 <e¢ <0.5, 0 suchthat0 <o <0.5,

*The learner L will, with probability at least (1-0), output a hypothesis
h € H such that error,(/) < ¢ in time that is polynomial in the
guantities:

l/e, 1/0, n, size(c)

“Probably Approximately Correct”

PAC Learning Applications

For finite hypothesis classes, the sample complexity (i.e., the m) so that we get a
learner that satisfies the above definition is

[|n|H|+|n(1D X

3 I B e

Error Size of Probably correct
tolerance hypothesis

class
Can apply to, for example, decision trees of depth 2 for binary feature vectors

* |H| is the number of splits (ie, n choose 2 times 16: # split choices times # leaf labelings)
* For probability > 0.99 with error £ 0.05, number of samples we need is:

* Example: for n=100, m > 318
m > i(ln(8n2 - 8n) + In(ijj
.05 01

PAC Learning Discussion

PAC formalizes learning task, allows for non-perfect learning (indicated
by ¢ and 0)

* Requires polynomial computational time

* PAC analysis has been extended to explore a wide range of cases
* the target concept not in our hypothesis class
* infinite hypothesis class (VC-dimension theory)
* noisy training data
* learner allowed to ask queries
e restricted distributions (e.g. uniform) over D

* Most analyses are worst case
* Sample complexity bounds are generally not tight

Break & Quiz

Outline

*Intro to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

A General Model

We have an agent interacting with the world

() >
Actions
< .
Observations
Agent

*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
 Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

Google DeepMind §§'§ AlphaGo Policy network Value network
Challenge Match

8- 15 March 2016
Posip (@ | s) Vo ()

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Lol Rewards

Input

Image convolutions

Hidden layers

—004 -002 000 002 004

Game controller action values Tneste

Output
i Qvalues :
— Al |
—_— ptunl |
RS — Rctiond |
Acton 3|
aamn —pctond |

e Bction 5 |
0865 |

0,860

Mnih et al, “Human-level control through deep reinforcement learning”

0.355

00 02 G4 06 08 10
Timestep

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions
3D = Minecraft
- ey ViZDoom
- 2 L DM Lab
A oraend Fay
ALE

Montezuma’s
Revenge

Single-agent

\'/ s
Quake 111 i‘/\,
Arena CTF - Lo
StarCraft
Dota2
Number of
agents

Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup: () R
*Set of states, S % o
*Set of actions A fy Observations

*Information: at time t, observe state s, € S. Get reward r,
*Agent makes choice g, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

f

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

*State set S. Initial state s, Action set A

*State transition model: P(s;|s;, a;)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

*Reward function: r(s,)
*Policy: 7'('(3) - § — A action to take at a particular state.

ao ai a9
Sop —>S1 —> SS9 — ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source : P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

/,
@

r(s) = —0.04 for every
®) non-terminal state

-
2L
=
24

Grid World Abstraction

Note: (i) Robot is unreliable

1 START

(ii)) Reach target fast

0.8
0.1%’0.1
r(s) = —0.04 for every

non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = —0.04 for every
1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:

*State set S. Initial state s, Action set A

-State transition model: P(s;11|s¢, at)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states. How do we find

*Reward function: r(s,) / tho best poficy?

*Policy: 7(s): S — Aaction to take at a particular state.

ao ai a9
Sop —>S1 —> SS9 — ...

Break & Quiz

Outline

*Valuing and Obtaining Policies

*Value functions, Bellman equation, value iteration, policy
iteration

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = z P(sequence)U(sequence)

sequences
starting from s

9

Called the value function (for &, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
*Solution

U(so,81---) = r(s0) +7yr(s1) + 777 (=) 4'r(se)

t>0
*Discount factor y between 0 and 1

*Set according to how important present is VS future
*Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

First, set V(s) to be expected utility for optimal policy from s

*What's the expected utility of an action?
*Specifically, action a in state s?

ZP(S’\S, a)V*(s")

/ 1T N

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

T (s) = argmax,, ZP "|s,a)V*(s

o/ /

All the states we Transition Expected :“*
- A s
could go to probability rewards

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing

m*(s) = argmax, ¥ P(s'|s,a)V*(s)

So we need to know V(s).
*But it was defined in terms of the optimal policy!
So we need some other approach to get V(s).
*Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1(s)+ 7m3XZP(3’\S, a)V*(s")

1 L Y)

Current state Discounted expected
reward future rewards

*Bellman: inventor of dynamic programming

Value lteration

Q: how do we find V*(s)?

*Why do we want it? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Visr(5) = 1(5) + ymax S P(s]s, a)Vi(s)

Value lteration: Demo

E REINFORCEjs: Gridworld with Dy X +

< - C @ csstanford.edu/people/karpathy/reinforcejs/gridworld dp.html

=i: Apps @ CS760 Fall 2021 O phylogenetic-trees -... ¢ Projection of point... @ Unsupervised Learn... g Label Verbalization.. M Asymptotic Normal...

GridWorld: Dynamic Programming Demo

Palicy Evaluation (one sweep) Policy Update Toggle Value lteration ‘ Reset

022 0256 |027 031 |034 1038 |0.34 |0.31]034 |[0.38

. 0 5f
ra— Pa—
r’ r. l R-1.0 l R-1.0
027 [031 [0.34 097 [087 [-021 |057
R-10
031 [034 o038 -01:-\ 0.7P 0.71 |0.64
e B i R-ﬂ.l %%%%1 R-10 R-1.0 o

034 1038 |042 046 |0.52 0.57 |0.64 O.TF 0.46_? O.;r)]

—_— = @ — @ —s] e

O‘SL 0.3& 0,3& 0.4%> 0.4& 0.5& O.SL O,SP 0.<5] 0.45}

Cell reward: (select a cell)

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning

literature. In this particular case:

»

8
@

|.£| Reading list

Source: Karpathy

Policy Iteration

With value iteration, we estimate V*
*Then get policy (i.e., indirect estimate of policy)

*Could also try to get policies directly

*This is policy iteration. Basic idea:
* Start with random policy it
* Use it to compute value function V” (for that policy)
* Improve the policy: obtain i’

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V7™(s) =r(s) +v) P(s'|s,a)V7(s")
* Improve the policy: obtain i’

7'(s) = arg max r(s) + ')/Z: P(s'|s,a)V7™(s")

* Repeat

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov

