

CS 760: Machine Learning Reinforcement Learning

Fred Sala

University of Wisconsin-Madison

Nov. 30, 2021

Announcements

•Logistics:

- Welcome back!
- •HW8 released Thursday (last HW).

•Class roadmap:

Tues., Nov. 30	RLI
Thurs., Dec. 2	RL II
Tues., Dec. 7	RL III
Thurs., Dec 9	Large Language Models
Tues., Dec 14	Fairness & Ethics

Outline

•Review & PAC Learning Framework

• Definition, intuition, sample complexity bounds

Intro to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

•Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

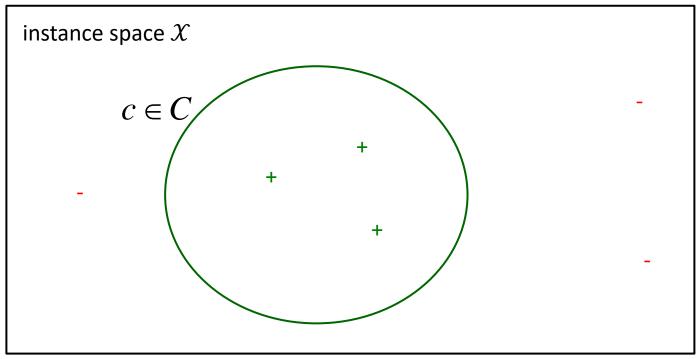
Outline

•Review & PAC Learning Framework

- Definition, intuition, sample complexity bounds
- Intro to Reinforcement Learning
 - Basic concepts, mathematical formulation, MDPs, policies
- Valuing and Obtaining Policies
 - Value functions, Bellman equation, value iteration, policy iteration

PAC Learning Setup

PAC learning is a framework used for theoretical analysis. Basic setting:

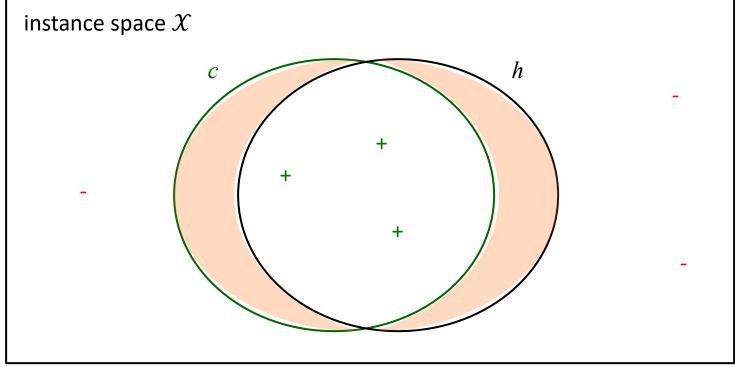


- Set of instances $\mathcal X$
- Set of hypotheses (models) H
- Set of possible target concepts C
- Unknown probability distribution ${\mathcal D}$ over instances

PAC Learning Setup

We get a set D of training instances (x, c(x)) for some target concept c in C

- each instance x is drawn from distribution $\mathcal D$
- class label c(x) is provided for each x
- learner outputs hypothesis *h* modeling *c*
- *Goal:* the *true error* of hypothesis *h* refers to how often *h* is wrong on future instances drawn from \mathcal{D}



PAC Learning: Two Error Types

We have **two** kinds of errors:

True error: (i.e., on any instance from distribution d):

 $error_{\mathcal{D}}(h) \equiv P_{\mathcal{D}}[c(x) \neq h(x)]$

Empirical error: (I.e., on our dataset) $\frac{error_D(h) \equiv P_{x \in D}[c(x) \neq h(x)]}{|D|} = \frac{\sum_{x \in D} \delta(c(x) \neq h(x))}{|D|}$

Goal: Can we bound $error_{\mathcal{D}}(h)$ in terms of $error_{\mathcal{D}}(h)$?

PAC Learning Definition

Consider a class C of possible target concepts defined over a set of instances \mathcal{X} of length n, and a learner L using hypothesis space H

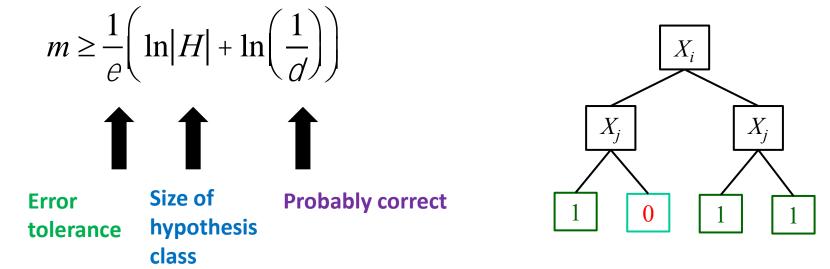
- *C* is **PAC learnable** by *L* using *H* if, for all $c \in C$, distributions \mathcal{D} over \mathcal{X} , ε such that $0 < \varepsilon < 0.5$, δ such that $0 < \delta < 0.5$,
- The learner L will, with probability at least $(1-\delta)$, output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \varepsilon$ in time that is polynomial in the quantities:

 $1/\varepsilon$, $1/\delta$, *n*, size(*c*)

"Probably Approximately Correct"

PAC Learning Applications

For finite hypothesis classes, the sample complexity (i.e., the m) so that we get a learner that satisfies the above definition is



Can apply to, for example, decision trees of depth 2 for binary feature vectors

- |H| is the number of splits (ie, n choose 2 times 16: # split choices times # leaf labelings)
- For probability \geq 0.99 with error \leq 0.05, number of samples we need is:
- Example: for $n=100, m \ge 318$

$$m \ge \frac{1}{.05} \left(\ln \left(8n^2 - 8n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

PAC Learning Discussion

PAC formalizes learning task, allows for non-perfect learning (indicated by ε and δ)

• Requires polynomial computational time

• PAC analysis has been extended to explore a wide range of cases

- the target concept not in our hypothesis class
- infinite hypothesis class (VC-dimension theory)
- noisy training data
- learner allowed to ask queries
- \bullet restricted distributions (e.g. uniform) over ${\cal D}$
- Most analyses are worst case
- Sample complexity bounds are generally not tight

Break & Quiz

Outline

Review & PAC Learning Framework Definition, intuition, sample complexity bounds

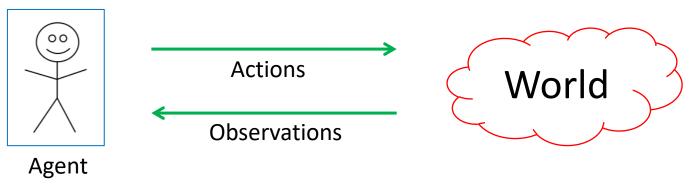
Intro to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies
 Value functions, Bellman equation, value iteration, policy iteration

A General Model

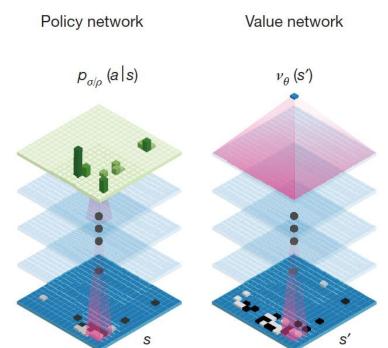
We have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

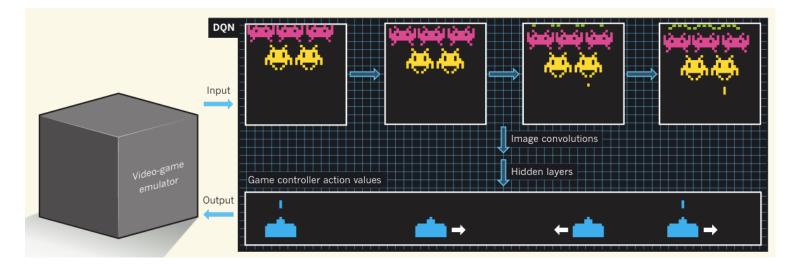
AlphaZero:



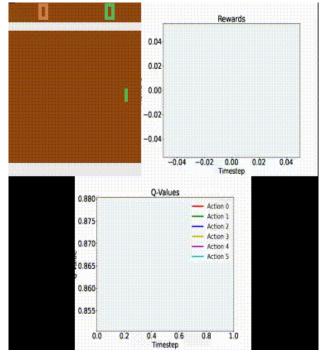
https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari



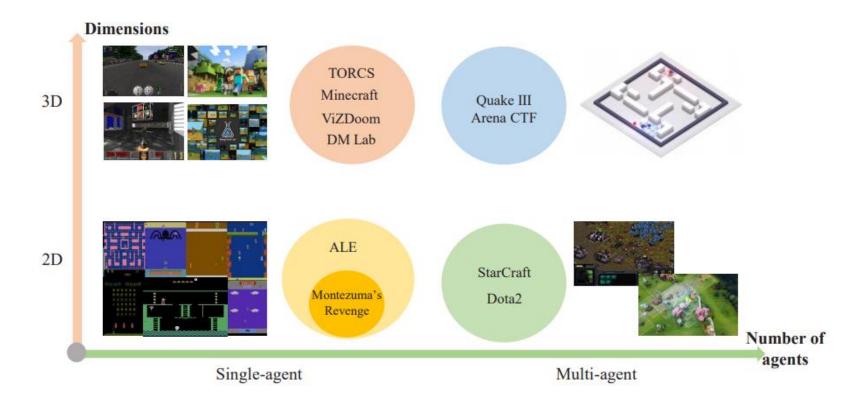
Mnih et al, "Human-level control through deep reinforcement learning"



A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!



Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

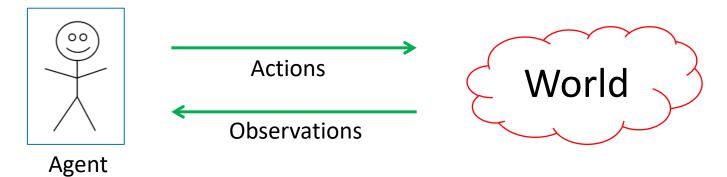
Training robots to perform tasks (e.g., grasp!)

Ibarz et al, "How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building The Theoretical Model

Basic setup:

- •Set of states, S
- •Set of actions A



- •Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- •Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

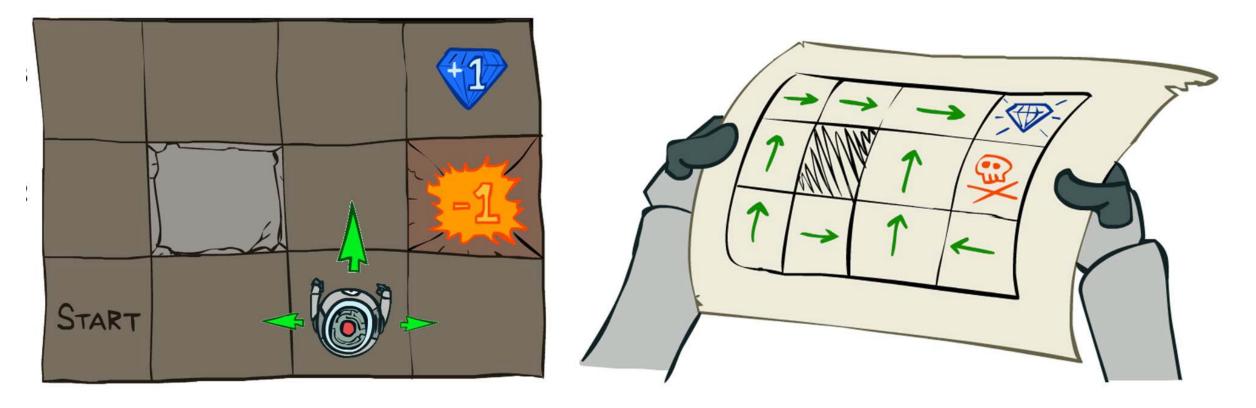
- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: **r**(**s**_t)

•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Example of MDP: Grid World

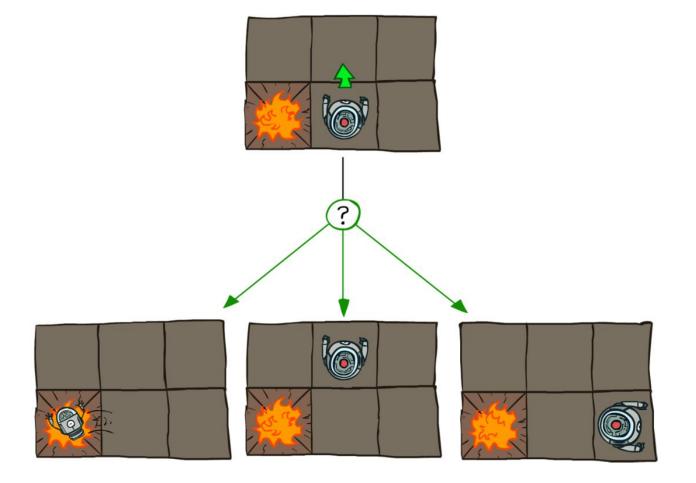
Robot on a grid; goal: find the best policy

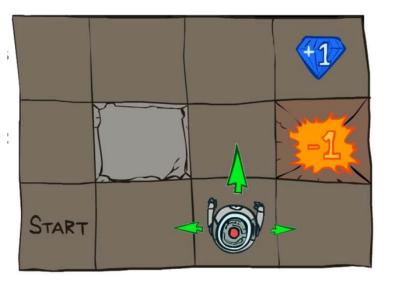


Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

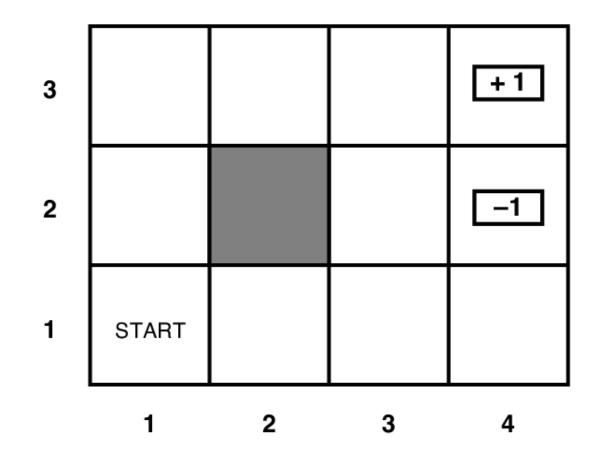


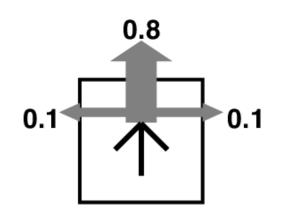


r(s) = -0.04 for every non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

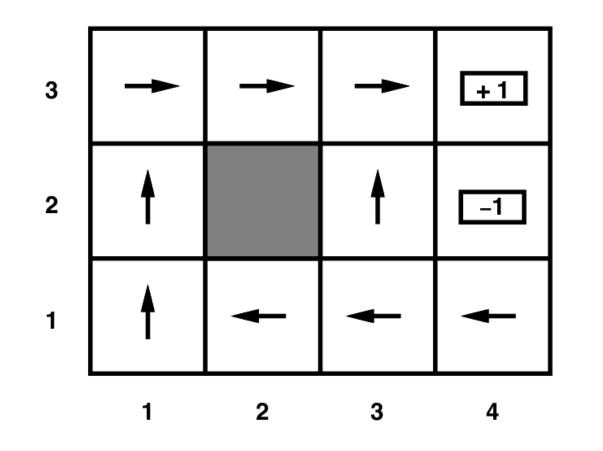


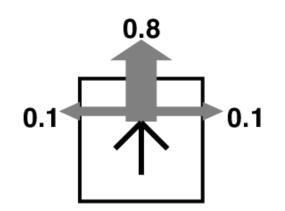


r(s) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast





r(s) = -0.04 for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- Reward function: **r**(**s**_t)

the best policy?

•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Break & Quiz

Outline

Review & PAC Learning Framework
 Definition, intuition, sample complexity bounds
 Intro to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

Defining the Optimal Policy

For policy π , expected utility over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

sequences starting from *s*₀

Called the value function (for π , s_0)

Discounting Rewards

One issue: these are infinite series. Convergence? •Solution

$$U(\mathbf{s}_0, \mathbf{s}_1 \dots) = \mathbf{r}(\mathbf{s}_0) + \gamma \mathbf{r}(\mathbf{s}_1) + \gamma^2 \mathbf{r}(\mathbf{s}_2) + \dots = \sum \gamma^t \mathbf{r}(\mathbf{s}_t)$$

 $t \ge 0$

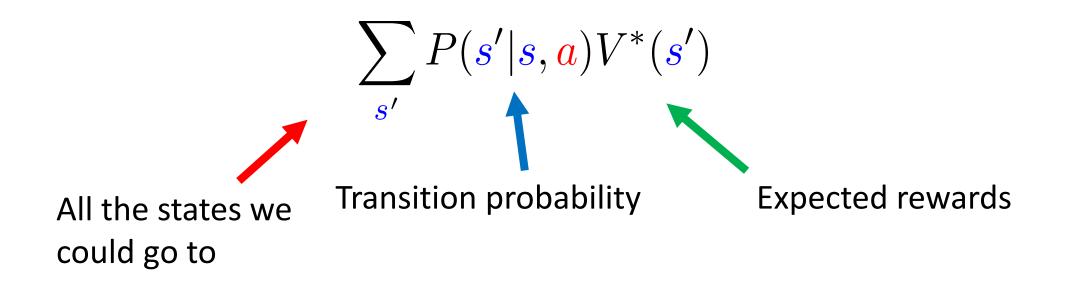
•Discount factor γ between 0 and 1

- •Set according to how important present is VS future
- •Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

- First, set V*(s) to be expected utility for **optimal** policy from s
- •What's the expected utility of an action?
 - •Specifically, action a in state s?

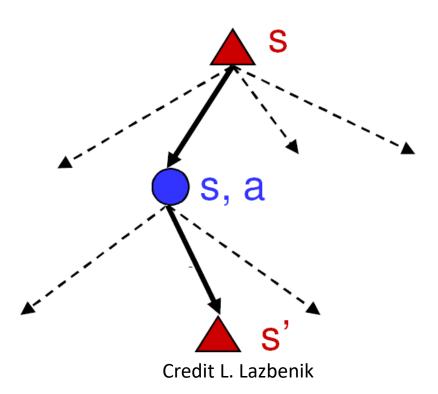


Obtaining the Optimal Policy

We know the expected utility of an action. •So, to get the optimal policy, compute

$$\pi^{*}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$

All the states we could go to Transition Expected rewards



Slight Problem...

Now we can get the optimal policy by doing

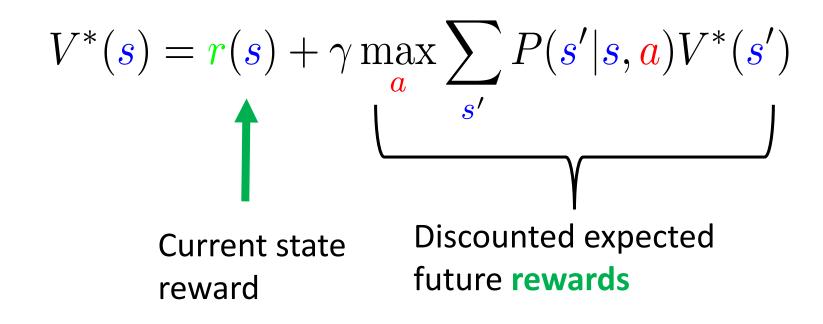
$$\pi^*(\mathbf{s}) = \operatorname{argmax}_{\mathbf{a}} \sum_{\mathbf{s}'} P(\mathbf{s}' | \mathbf{s}, \mathbf{a}) V^*(\mathbf{s}')$$

•So we need to know $V^*(s)$.

- •But it was defined in terms of the optimal policy!
- •So we need some other approach to get $V^*(s)$.
- •Need some other **property** of the value function!

Bellman Equation

Let's walk over one step for the value function:



•Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- •Why do we want it? Can use it to get the best policy
- •Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- •Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration: Demo

S REINFORCE is: Gridworld with $\leftarrow \rightarrow C$ a cs.stanfor	Dyn × + d.edu/people/karpathy/re	inforcejs/g	gridworld_	_dp.html							●
🚻 Apps 🔞 CS760 Fall 2021	🕽 phylogenetic-trees 🔹 Projection of point 📀 Unsupervised Learn 📓 Label Verbalization 🔳 Asymptotic Normal									. » 🗎 Reading list	
	GridWorld: Dynamic Programming Demo										
	Policy Evaluation	Policy Evaluation (one sweep)		Policy Update		-	Toggle Value Iteration		Reset		
	0.22	0.25	0.27	0.31	0.34	0.38	0.34	0.31 ★	0.34 ₽	0.38	
	0.25	0.27	0.31	0.34	0.38	0.42	0.38	0.34	0.38	0.42	
	0.2					0.46				0.46	
	0.20 P	0.22 ₽	0.25 ↓	-0.78		0.52	0.57	0.64	0.57 •	0.52	
	0.22 F	0.25 ₽	0.27	0.25 ••		0.08 R -1.	-0.36	0.71	0.64	0.57	
	0.25	0.27 F	0.31	0.27		1.20 + R 1.0	0.08	0.79 ↓	-0.29 -0.29 	0.52 ↓	
	0.27	0.31	0.34	0.31		1.0 B	0.97	0.87	-0.21 -0.21 R-1.0	0.57	
	0.31	0.34	0.38	-0.58 R-1.	0.52	-0. 0 3	-0.13 R-1.0	0.7	0.71	0.64	
	0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.64	0.57	
	0.31	0.34	0.38	0.42	0.46	0.52 L	0.57	0.6	0.57	0.52	
	Cell reward: (select	a cell)									

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning literature. In this particular case:

Policy Iteration

With value iteration, we estimate V*

- •Then get policy (i.e., indirect estimate of policy)
- Could also try to get policies directly

•This is **policy iteration.** Basic idea:

- Start with random policy π
- Use it to compute value function V^{π} (for that policy)
- Improve the policy: obtain π'

Policy Iteration: Algorithm

Policy iteration. Algorithm

- Start with random policy π
- Use it to compute value function V^{π} : a set of linear equations

$$V^{\pi}(\boldsymbol{s}) = r(\boldsymbol{s}) + \gamma \sum_{\boldsymbol{s}'} P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) V^{\pi}(\boldsymbol{s}')$$

• Improve the policy: obtain π'

$$\pi'({\color{black}{s}}) = rg\max_{{\color{black}{a}}} r({\color{black}{s}}) + \gamma \sum_{{\color{black}{s'}}} P({\color{black}{s'}}|{\color{black}{s}}, {\color{black}{a}}) V^{\pi}({\color{black}{s'}})$$

• Repeat

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov