

CS 760: Machine Learning Reinforcement Learning II

Fred Sala

University of Wisconsin-Madison

Dec. 2, 2021

Announcements

•Logistics:

•HW8 released tonight (last HW).

•Class roadmap:

Thurs., Dec. 2	RL II
Tues., Dec. 7	RL III
Thurs., Dec 9	Large Language Models
Tues., Dec 14	Fairness & Ethics

Outline

•Review: Intro to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

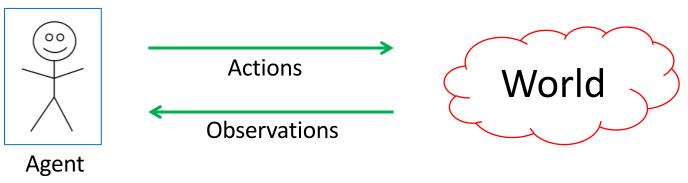
Outline

Review: Intro to Reinforcement Learning

- •Basic concepts, mathematical formulation, MDPs, policies
- •Valuing and Obtaining Policies
 - Value functions, Bellman equation, value iteration, policy iteration
- •Q Learning
 - •Q function, Q-learning, SARSA, approximation

Review: General Model

We have an **agent interacting** with the **world**

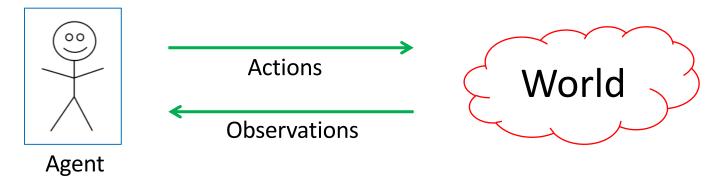


- •Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Building The Theoretical Model

Basic setup:

- •Set of states, S
- •Set of actions A



- •Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- •Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from states to actions maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

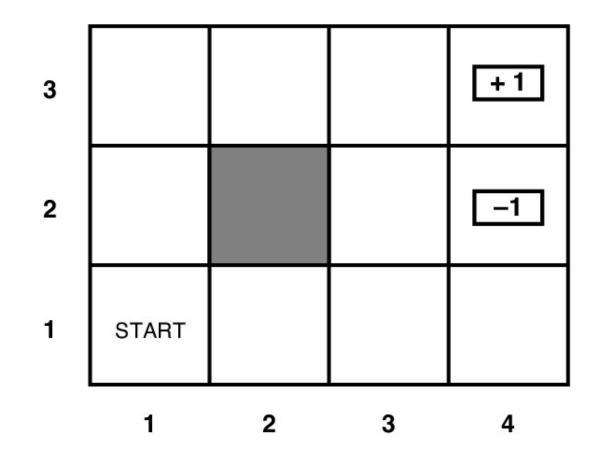
- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- Reward function: **r**(**s**_t)

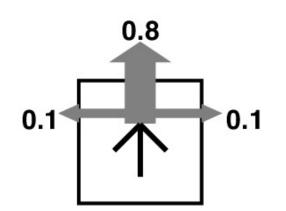
•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

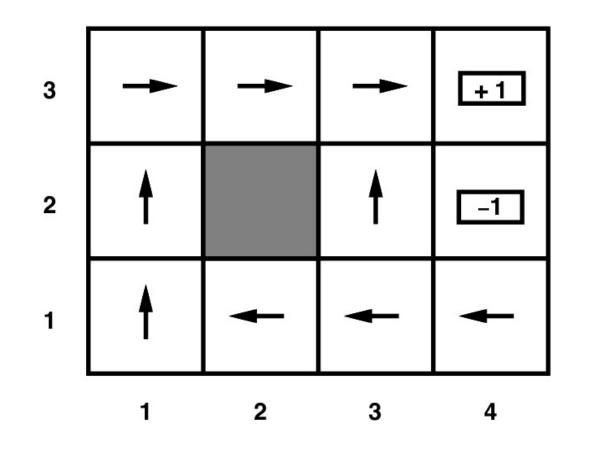


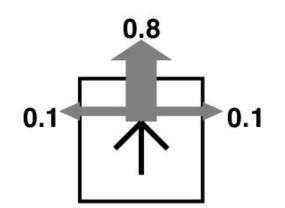


r(s) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast





r(s) = -0.04 for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- Reward function: **r**(s_t)

How do we find the best policy?

•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Break & Quiz

Outline

Review: Intro to Reinforcement Learning
Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

Defining the Optimal Policy

For policy π , expected utility over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(\mathbf{s}_0) =$$

P(sequence)*U*(sequence)

sequences starting from *s*₀

Called the value function (for π , s_0)

Discounting Rewards

One issue: these are infinite series. Convergence? •Solution

$$U(\mathbf{s}_0, \mathbf{s}_1 \dots) = \mathbf{r}(\mathbf{s}_0) + \gamma \mathbf{r}(\mathbf{s}_1) + \gamma^2 \mathbf{r}(\mathbf{s}_2) + \dots = \sum \gamma^t \mathbf{r}(\mathbf{s}_t)$$

 $t \ge 0$

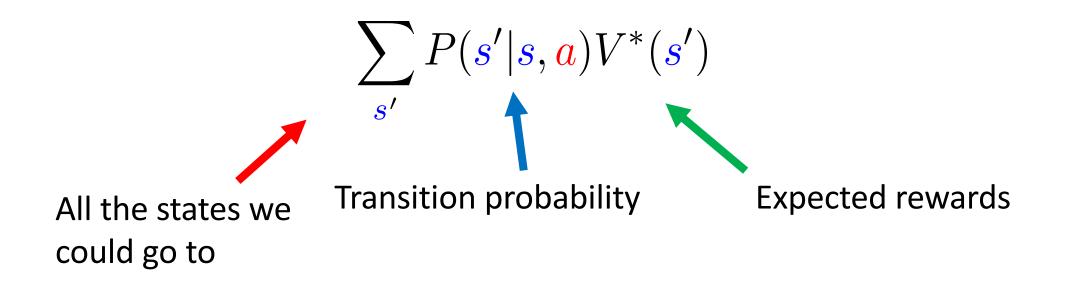
•Discount factor γ between 0 and 1

- •Set according to how important present is VS future
- •Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

- First, set V*(s) to be expected utility for **optimal** policy from s
- •What's the expected utility of an action?
 - •Specifically, action a in state s?

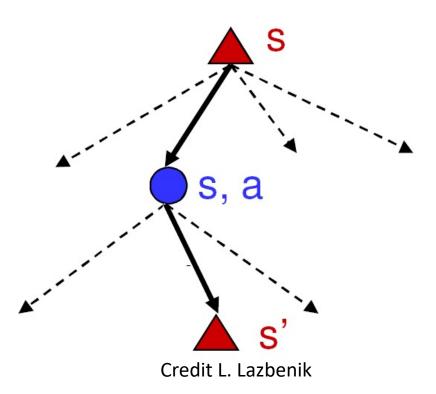


Obtaining the Optimal Policy

We know the expected utility of an action. •So, to get the optimal policy, compute

$$\pi^*(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) V^*(s')$$

All the states we Transition Expected
could go to probability rewards



Slight Problem...

Now we can get the optimal policy by doing

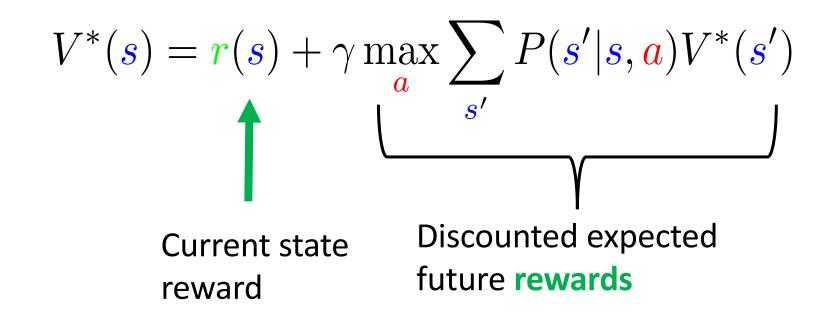
$$\pi^*(\mathbf{s}) = \operatorname{argmax}_{\mathbf{a}} \sum_{\mathbf{s}'} P(\mathbf{s}' | \mathbf{s}, \mathbf{a}) V^*(\mathbf{s}')$$

•So we need to know $V^*(s)$.

- •But it was defined in terms of the optimal policy!
- •So we need some other approach to get $V^*(s)$.
- •Need some other **property** of the value function!

Bellman Equation

Let's walk over one step for the value function:



•Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- •Why do we want it? Can use it to get the best policy
- •Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- •Also know V*(s) satisfies Bellman equation (recursion above)
- **A**: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration: Demo

	du/people/karpathy/rei phylogenetic-trees ·				n <mark>supervi</mark> sed	Learn	📴 Label Ve	erbalization	n 🔳 A	symptotic Normal		¢	☆ ● ■ Reading list
-	Grie	dWo	rld:	Dyna	amic	: Pro	ogran	nmir	ng D	emo			
		olicy Evaluation (one sweep)		Policy Update			Toggle Value Iteration			Reset			
	0.22	0.25	0.27 •	0.31	0.34	0.38	0.34 ••	0.31 🛠	0.34 ₽	0.38			
	0.25	0.27	0.31	0.34	0.38	0.42	0.38	0.34	0.38	0.42			
	0.2					0.46				0.46			
	0.20	0.22	0.25	-0.78 ••• R -1.0		0.52	0.57	0.64	0.57	0.52			
	0.22 F 0.25	0.25 F 0.27	0.27	0.25 ••• 0.27		0.08 R-1. 1.20	-0.36 R-1.0	0.71	0.64 ← -0.29	0.57 0.52			
	0.23	0.21	0.31	0.21		1.20 ▲ R 1.0 1.08	0.00 ← R-1.0 0.97	0.79	-0.29 ← R-1.0 -0.21	0.57			
	0.31	₽ 0.34	↓ 0.38	-0.58		-0.03	← -0. 1 3	← 0.7₽	← R-1.0 0.71	0.64			
	0.34	0.38	0.42	R-1.	0.52	R -1.0 0.57	R-1.0	0.7	0.64	0.57			
	0.3 <u>1</u>	0.34	0.38	0.42	0.46	0.52	0.57	0.6	0.57	0.52			
c	ell reward: (select a	l cell)	1	1	I		I	I	1				
	etup												

This is a toy environment called **Gridworld** that is often used as a toy model in the Reinforcement Learning literature. In this particular case:

Policy Iteration

With value iteration, we estimate V*

- •Then get policy (i.e., indirect estimate of policy)
- Could also try to get policies directly

•This is **policy iteration.** Basic idea:

- Start with random policy π
- Use it to compute value function V^{π} (for that policy)
- Improve the policy: obtain π'

Policy Iteration: Algorithm

Policy iteration. Algorithm

- Start with random policy π
- Use it to compute value function V^{π} : a set of linear equations

$$V^{\pi}(\boldsymbol{s}) = r(\boldsymbol{s}) + \gamma \sum_{\boldsymbol{s}'} P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) V^{\pi}(\boldsymbol{s}')$$

• Improve the policy: obtain π'

$$\pi'({\color{black}{s}}) = rg\max_{{\color{black}{a}}} r({\color{black}{s}}) + \gamma \sum_{{\color{black}{s'}}} P({\color{black}{s'}}|{\color{black}{s}}, {\color{black}{a}}) V^{\pi}({\color{black}{s'}})$$

• Repeat

Break & Quiz

Outline

Review: Intro to Reinforcement Learning
Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

• Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

Q-Learning

What if we don't know transition probability P(s'|s,a)?

- •Need a way to learn to act without it.
- •**Q-learning**: get an action-utility function Q(*s*,*a*) that tells us the value of doing *a* in state *s*
- •Note: $V^*(s) = \max_a Q(s,a)$
- •Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$
 - But need to estimate Q!

Q-Learning Iteration

How do we get Q(*s*,*a*)?

•Similar iterative procedure

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$
Learning rate
Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on Q!

Exploration Vs. Exploitation

General question!

• Exploration: take an action with unknown consequences

• Pros:

- Get a more accurate model of the environment
- Discover higher-reward states than the ones found so far

• Cons:

- When exploring, not maximizing your utility
- Something bad might happen
- Exploitation: go with the best strategy found so far

• Pros:

- Maximize reward as reflected in the current utility estimates
- Avoid bad stuff

• Cons:

• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

•With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(*s*,*a*) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

Q-Learning: SARSA

An alternative:

• Just use the next action, no max over actions:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[r(\mathbf{s}_t) + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

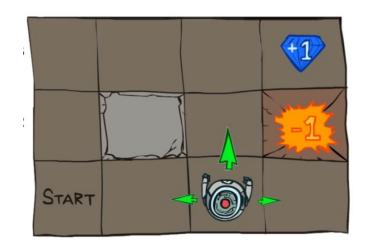
Learning rate

- •Called state-action-reward-state-action (SARSA)
- •Can use with epsilon-greedy policy

Q-Learning Details

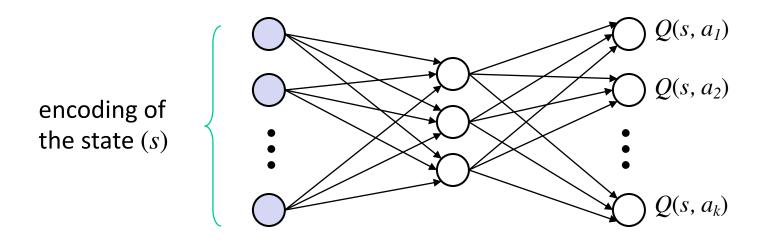
Note: if we have a **terminal** state, the process ends

- •An episode: a sequence of states ending at a terminal state
- Want to run on many episodes
- •Slightly different Q-update for terminal states



Q-Learning – Compact Representations

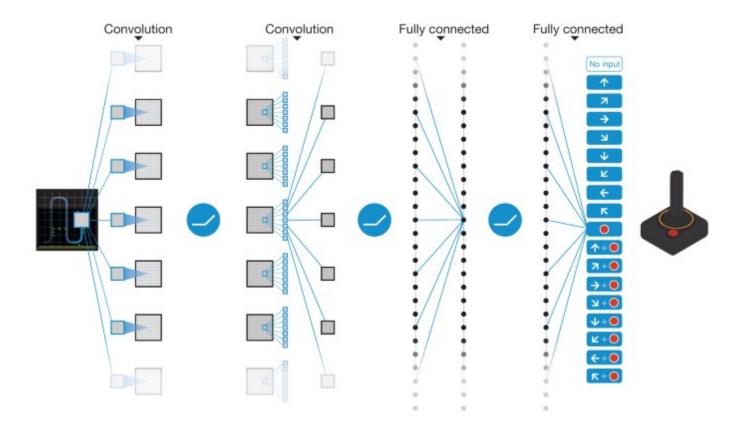
Q-table can be quite large... might not even fit memorySolution: use some other representation for a more compact version. Ex: neural networks.



each input unit encodes a property of the state (e.g., a sensor value) or could have <u>one net</u> for <u>each</u> possible action

Deep Q-Learning

How do we get Q(*s*,*a*)?



Mnih et al, "Human-level control through deep reinforcement learning"

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov