
CS 760: Machine Learning
Reinforcement Learning III

Fred Sala

University of Wisconsin-Madison

Dec. 7, 2021

Announcements

•Logistics:
•Project deadline extended to 14th (1 week from now)
•HW8 (last HW) due Thursday.

•Class roadmap: Tues., Dec. 7 RL III

Thurs., Dec 9 Large Language Models

Tues., Dec 14 Fairness & Ethics

Monday, Dec 20 Final Exam

Outline

•Review: RL
•MDPs, policies, value function, Q-function, etc

•Function Approximation
•Value & Q-function approximations, linear, nonlinear

•Policy-based RL
•Policy gradient, policy gradient theorem, REINFORCE
algorithm

Outline

•Review: RL
•MDPs, policies, value function, Q-function, etc

•Function Approximation
•Value & Q-function approximations, linear, nonlinear

•Policy-based RL
•Policy gradient, policy gradient theorem, REINFORCE
algorithm

Review: The Theoretical Model

Basic setup:
•Set of states, S

•Set of actions A

•Information: at time t, observe state st∈ S. Get reward rt
•Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
•State set S. Initial state s0. Action set A

•State transition model:
•Markov assumption: transition probability only depends on st and at, and

not previous actions or states.

•Reward function: r(st)

•Policy: action to take at a particular state.

Defining the Optimal Policy

For policy , expected utility over all possible state
sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = ෍

sequences
starting from 𝑠0

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?

•Solution

•Discount factor  between 0 and 1
•Set according to how important present is VS future
•Note: has to be less than 1 for convergence

Bellman Equation

Let’s walk over one step for the value function:

•Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: how do we find V*(s)?
•Why do we want it? Can use it to get the best policy

•Know: reward r(s), transition probability P(s’|s,a)

•Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Policy Iteration: Algorithm

Policy iteration. Algorithm
•Start with random policy π
•Use it to compute value function Vπ : a set of linear equations

• Improve the policy: obtain π’

•Repeat

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
•Need a way to learn to act without it.

•Q-learning: get an action-utility function Q(s,a) that tells us the
value of doing a in state s

•Note: V*(s) = maxa Q(s,a)

•Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎
•But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
•Similar iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on Q!

Learning rate

Q-Learning: SARSA

An alternative:
•Just use the next action, no max over actions:

•Called state–action–reward–state–action (SARSA)

•Can use with epsilon-greedy policy

Learning rate

Break & Quiz

Outline

•Review: RL
•MDPs, policies, value function, Q-function, etc

•Function Approximation
•Value & Q-function approximations, linear, nonlinear

•Policy-based RL
•Policy gradient, policy gradient theorem, REINFORCE
algorithm

Beyond Tables

So far:

• Represent everything with a table
•Value function V: table size

•Q function: table size

•Too big to store in memory for many tasks
•Backgammon: 1020 states. Go: 3361 states
•Need some other approach

Beyond Tables: Function Approximation

Both V and Q are functions…

• Can approximate them with models, ie, neural
networks

• So we write

•New goal: find the weights

•Loss function:

State Representations & Models

How do we represent a state?

•As usual, feature vectors, i.e.,

•What kind of models could we use?
•First, let’s start with linear:

Linear VFA With an Oracle

•SGD update is

•And for our linear model, we get

Step Size Prediction Error Feature Value

What if We Don’t Have an Oracle?

Similar to what we’ve seen so far, use Monte-Carlo.
•We won’t know

•Estimate returns

•Can just run episodes and estimate, ie, get some noisy
estimates. Data:

Q-Function Approximation

Similar idea for Q-function

Representation: use both states and values

•Can still use linear models

•Note: quite popular to use deep models

Q-Function Approximation: Deep Models

•Note: quite popular to use deep models
•E.g., CNNs if the states are images (like in video games)

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

Outline

•Review: RL
•MDPs, policies, value function, Q-function, etc

•Function Approximation
•Value & Q-function approximations, linear, nonlinear

•Policy-based RL
•Policy gradient, policy gradient theorem, REINFORCE
algorithm

Policy-Based RL

So far, we either approximated V or Q
•Then use these to extract the optimal policy

Could do the same trick but with the policy
•Note: so far our policies were deterministic, now we’ll allow
a distribution over actions, ie,

•Want:

Policy Gradient

Use the same idea. We’ll define an objective

• And then can get gradients:

•Example: continuous action space. Use Gaussian policy

Score:

Score Function

Policy Gradient

Set our objective to be

•Compute the gradient via the policy gradient theorem

Stationary
distribution

REINFORCE Algorithm

So, to learn a policy, we can run SGD (actually ascent)

•Compute gradients via policy gradient theorem

•Just need estimates.
•How? Monte-Carlo again: Use Gt for our estimates.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, David Silver, Emma Brunskill

