

CS 760: Machine Learning Large Language Models

Fred Sala

University of Wisconsin-Madison

Dec. 9, 2021

Announcements

•Logistics:

- •HW 8 / Project Due Dec. 14
- Final: Dec. 20th
- •Surveys --- thank you!

•Class roadmap:

Thurs., Dec 9	Large Language Models
Tues., Dec 14	Fairness & Ethics
Monday, Dec 20	Final Exam

Training Human Intelligence Updates

•6 months of training

- •~100 billion neurons
- Compare to today's model parameter counts

Outline

Language Models & NLP

•k-gram models, RNN review, word embeddings, attention

Transformer Model

• Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Outline

Language Models & NLP

- •k-gram models, RNN review, word embeddings, attention
- Transformer Model
 - Properties, architecture breakdown
- Transformer-based Models
 - BERT, GPTs, Foundation Models

Language Models: History

- Pre-date neural networks
- Basic idea: use probabilistic models to assign a probability to a sentence

 $P(W) = P(w_1, w_2, \dots, w_n)$ or $P(w_{\text{next}} | w_1, w_2 \dots)$

Goes back to Shannon
Information theory: letters

Zero-order approximation	XFOML RXKHRJFFJUJ ALPWXFWJXYJ FFJEYVJCQSGHYD QPAAMKBZAACIBZLKJQD				
First-order approximation	OCRO HLO RGWR NMIELWIS EU LL NBNESEB YA TH EEI ALHENHTTPA OOBTTVA NAH BRL				
Second-order approximation	ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE				
Third-order approximation	IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE				
First-order word approximation	REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE				

Language Models: History

•Classic approach: make Markov-type assumptions:

$$P(w_i|w_{i-1}w_{i-2}\dots w_1) = P(w_i|w_{i-1}w_{i-2}\dots w_{i-k})$$

•Ex: k=1: Bigram model

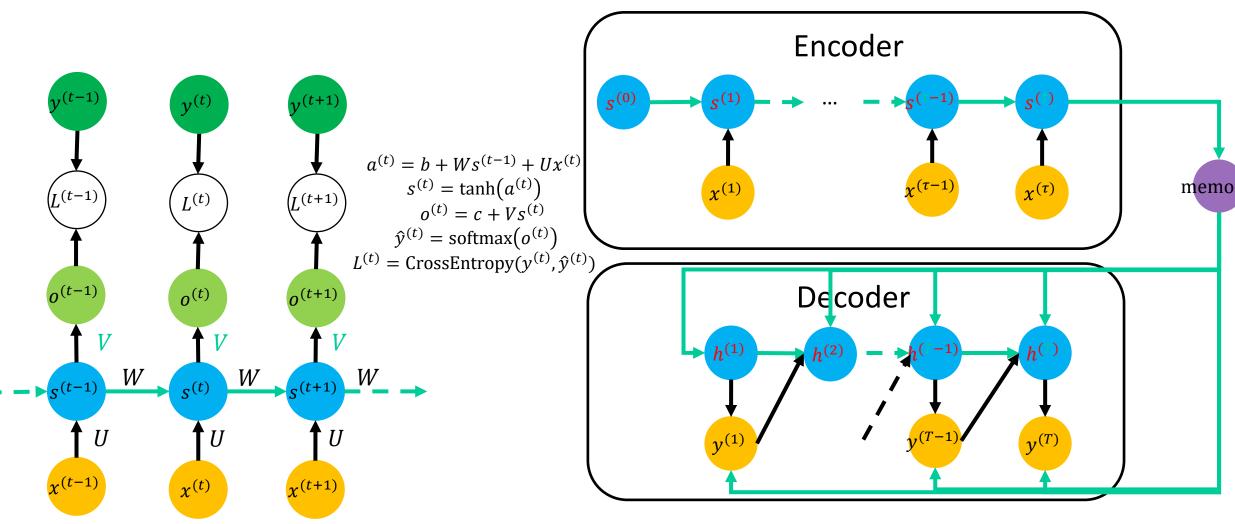
$$P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2|w_1)P(w_3|w_2)\dots P(w_n|w_{n-1})$$

•Example:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

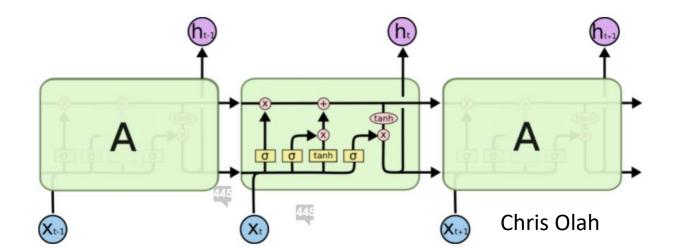
Language Models: RNN Review

• Classical RNN model / Encoder-Decoder variant:



Language Models: LSTM Review

- RNN: can write structure as:
- •Long Short-Term Memory: deals with problem. Cell:



Language Models: Word Embeddings

- •One way to encode words: one-hot vectors
 - Want something smarter...

Distributional semantics: account for relationships

•Representations should be close/similar to other words that appear in a similar context

Dense vectors:

dog =
$$\begin{bmatrix} 0.13 & 0.87 & -0.23 & 0.46 & 0.87 & -0.31 \end{bmatrix}^T$$

cat = $\begin{bmatrix} 0.07 & 1.03 & -0.43 & -0.21 & 1.11 & -0.34 \end{bmatrix}^T$

AKA word embeddings

Training Word Embeddings

Many approaches (super popular 2010-present)

- •Word2vec: a famous approach
- •What's our likelihood?

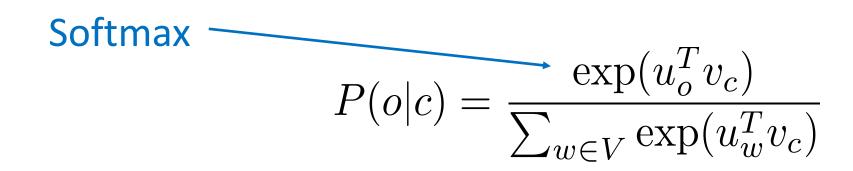
 $L(\theta) = \prod_{t=1}^{T} \prod_{-a \le j \le a} P(w_{t+j}|w_t, \theta)$ Our word vectors (weights) All positions

Training Word Embeddings

Word2vec likelihood $L(\theta) = \prod_{t=1}^{T} \prod_{-a \le j \le a} P(w_{t+j}|w_t, \theta)$

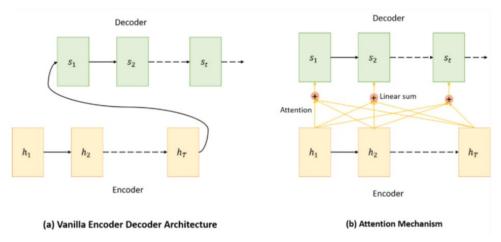
Maximize this; what's the probability?

•Two vectors per word. v_w, u_w for center/context (o is context word, c is center)



Language Models: Attention

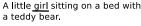
- •One challenge: dealing with the hidden state
 - Everything gets compressed there
 - Might lose information
- •Solution: attention mechanism
 - Tells us where to focus. Note: usable in other models too!



A woman is throwing a frisbee in a park.

A <u>dog</u> is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

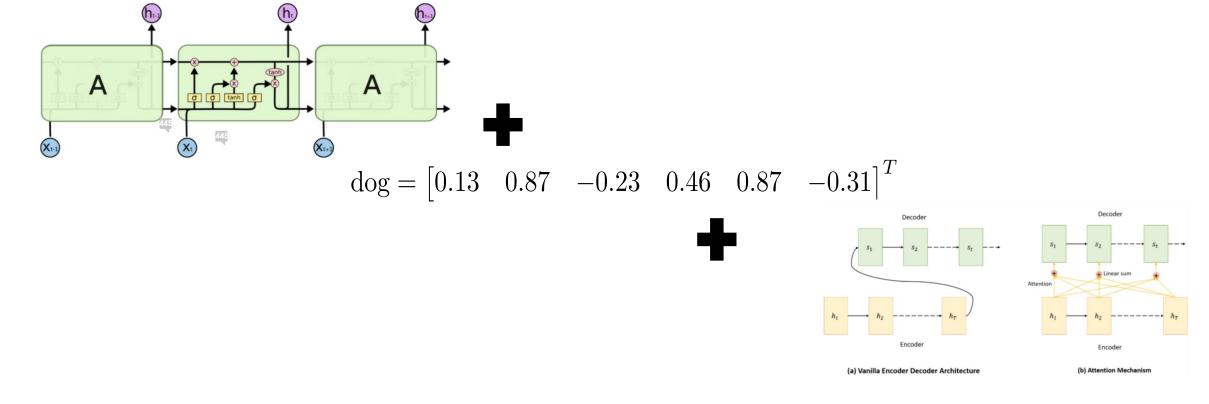


A giraffe standing in a forest with trees in the background.

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Language Models: Putting it All Together

- •Before mid-2017: best language models
 - Use encoder/decoder architectures based on RNNs
 - Use word embeddings for word representations
 - Use attention mechanisms





Break & Quiz

Outline

Language Models & NLP k-gram models, RNN review, word embeddings, attention

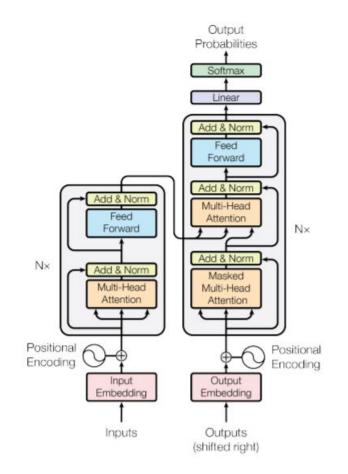
Transformer Model

- Properties, architecture breakdown
- Transformer-based Models
 - BERT, GPTs, Foundation Models

Transformers: Idea

Initial goal for an architecture: encoder-decoder

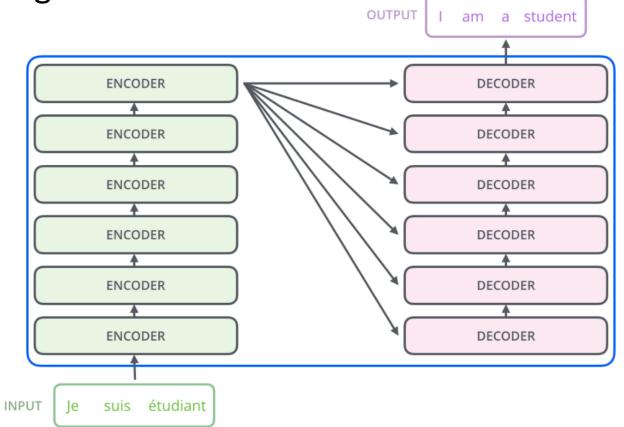
- Get rid of recurrence
- Replace with self-attention
- Architecture
 - We'll cover this step-by-step
- •Results:
 - Best results on translation tasks.



Vaswani et al. '17

Transformers: Architecture

- •Sequence-sequence model with **stacked** encoders/decoders:
 - For example, for French-English translation:



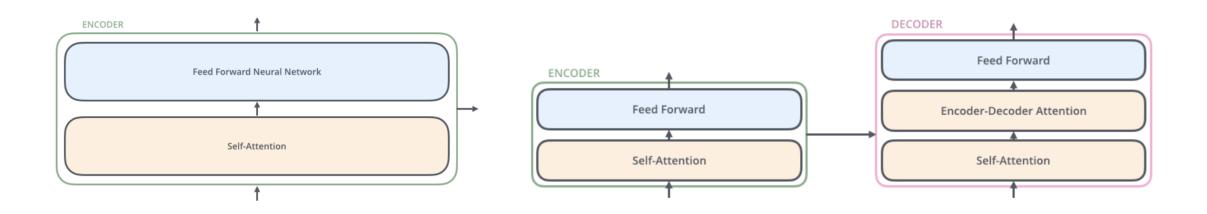
Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

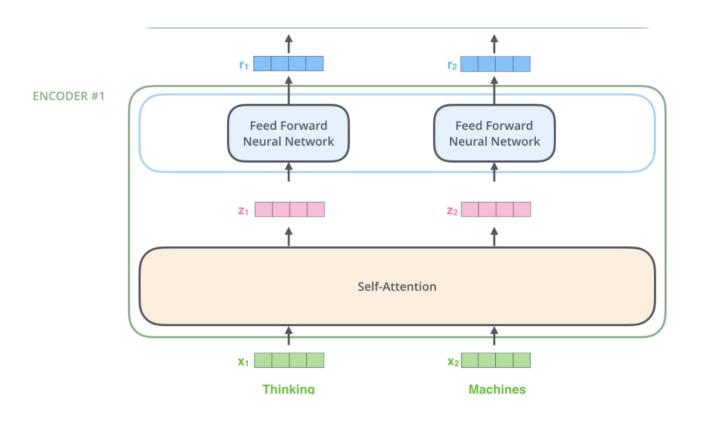
•Sequence-sequence model with **stacked** encoders/decoders:

• What's inside each encoder/decoder unit?



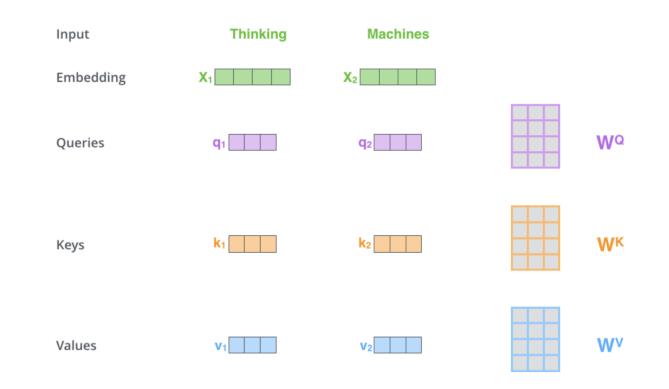
Transformers: Insider an Encoder

- •Let's take a look at the encoder. Two components:
 - 1. Self-attention layer
 - •2. "Independent" feedforward nets



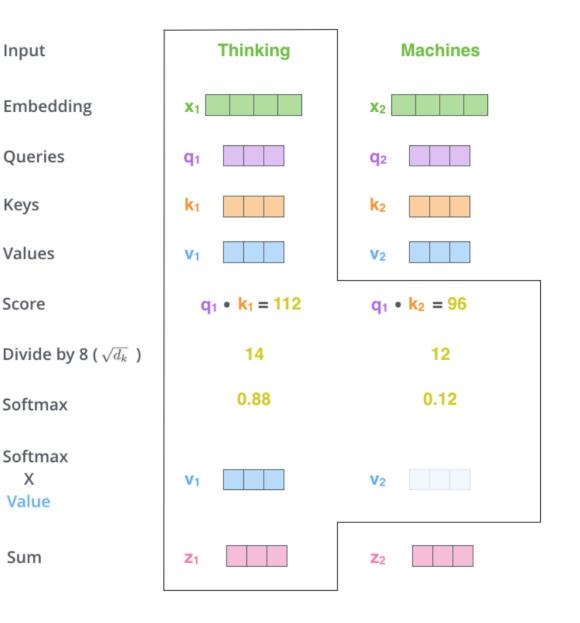
Transformers: Self-Attention

- •Self-attention is the key layer in a transformer stack
 - Get 3 vectors for each embedding: Query, Key, Value
 - We'll combine query at i with each key j (j=1,...), and run softmax
 - Compute values vectors by adding weights (from softmax)



Transformers: Self-Attention

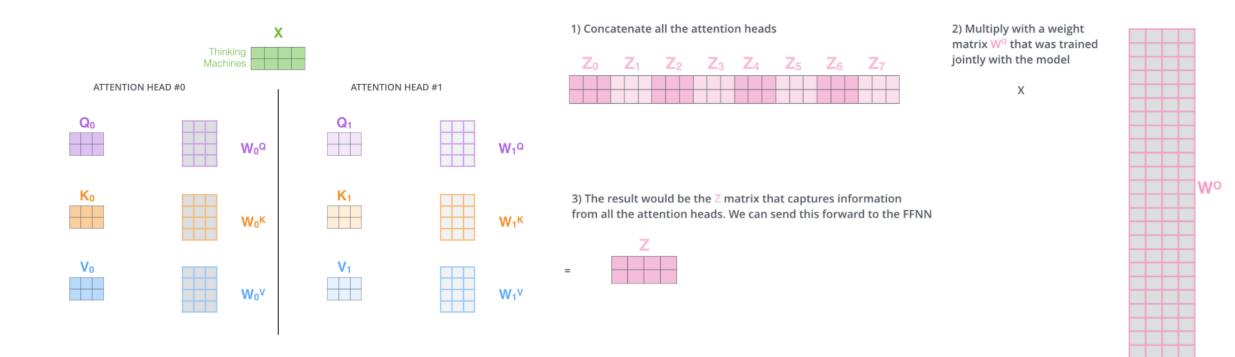
- •Self-attention is the key layer in a transformer stack
 - Illustration. Recall the three vectors for each embedding: Query, Key, Value
 - The sum values are the outputs for this layer
 - Send these to feedforward NNs
 - Note: matrix versions in practice



Transformers: Multi-Headed Attention

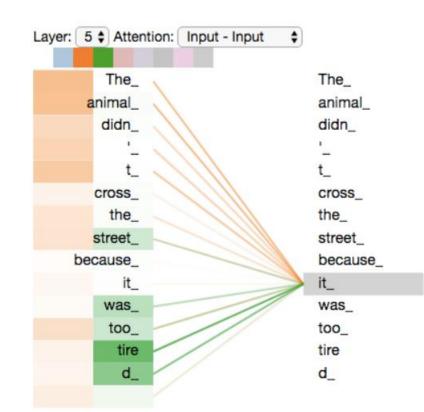
•We can do this multiple times in parallel

- Called multiple heads
- Need to combine the resulting output sums



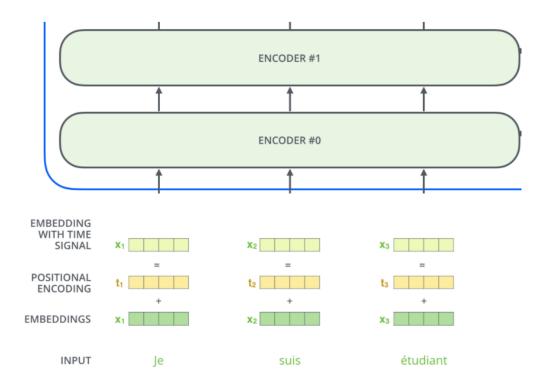
Transformers: Attention Visualization

- Attention tells us where to focus the information
 - Illustration for a sentence:



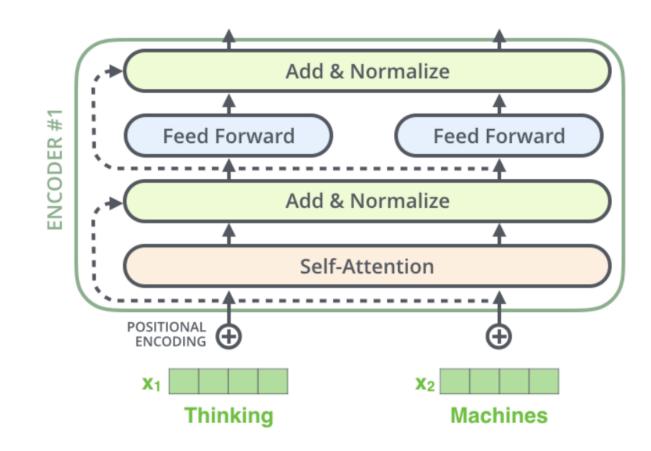
Transformers: Positional Encodings

- •One thing we haven't discussed: the order of the symbols/elements in the sequence
 - Clearly important. **Q**: How to include?
 - A: add a vector containing a special positional formula's embedding



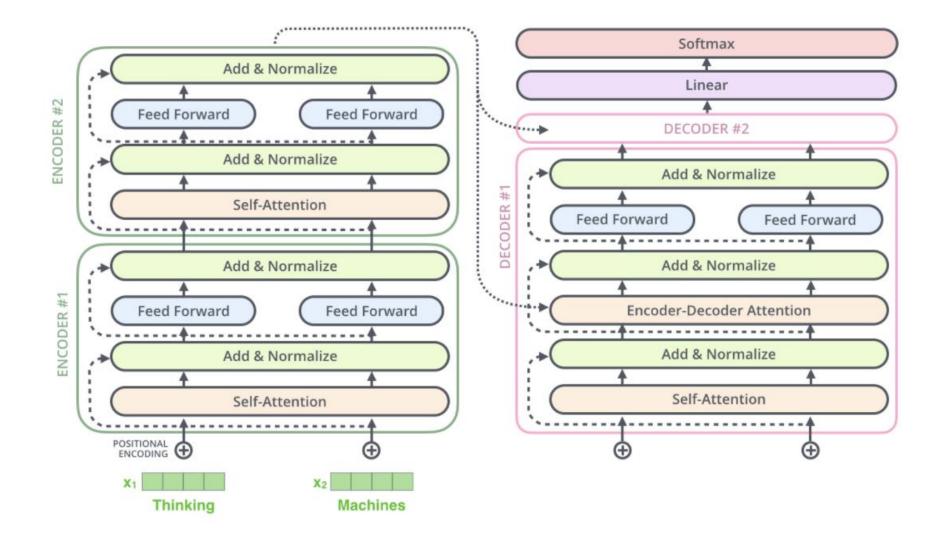
Transformers: More Tricks

- Recall a big innovation for ResNets: residual connections
 - And also layer normalizations
 - Apply to our encoder layers



Transformers: Putting it All Together

•What does the full architecture look like?





Break & Quiz

Outline

Language Models & NLP

 k-gram models, RNN review, word embeddings, attention

 Transformer Model

 Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Transformer-Based Models: **BERT**

•The transformer model works very well...

- Why not apply it to **everything** in NLP?
- BERT does this. Two-step process to use for a particular task

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process,

2 - Supervised training on a specific task with a labeled dataset. Supervised Learning Step

75%

Spam

25% Not Spar

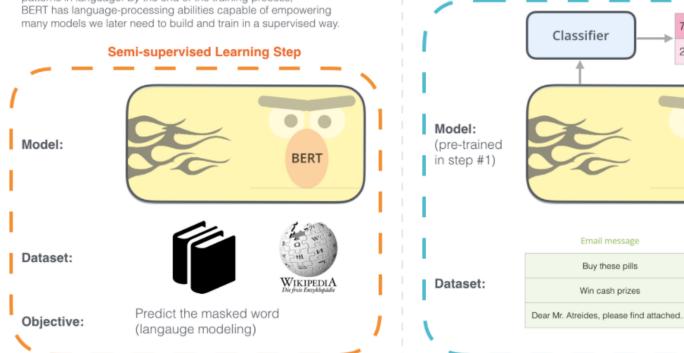
BERT

Class

Spam

Spam

Not Spam



BERT: Concepts

- •What makes BERT work? A bunch of ideas:
 - 1. Use the Transformer architecture
 - Encoder stacks in particular (not doing sequence-sequence)
 - 2. Pre-training on corpora
 - Then fine-tune for a particular task
 - 3. Scale: BERT-Large has 340 million parameters

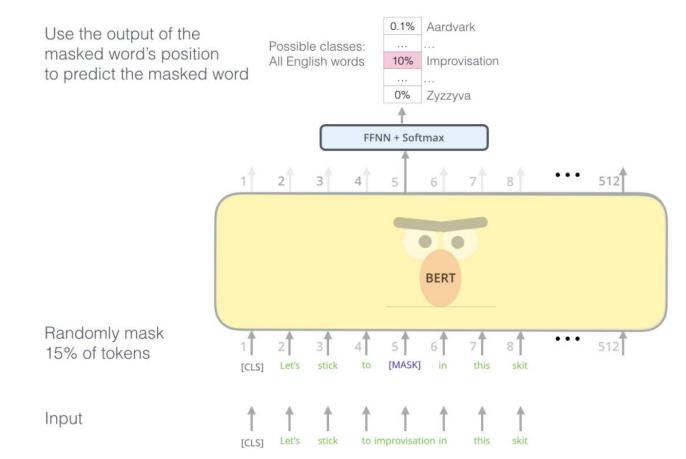
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT: Training

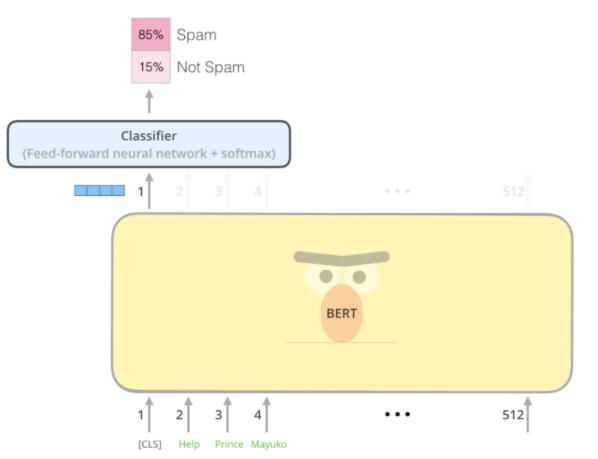
•BERT is trained on a simple tasks on a huge amount of data:

- Recall our pretext tasks in self-supervised learning
- Masked word prediction:



BERT: Classification

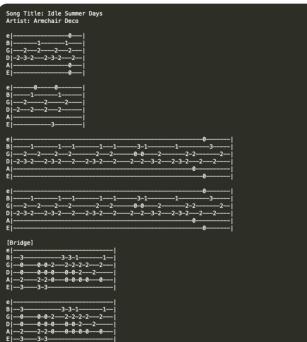
- •Then, fine-tune on a particular task
 - Example: binary classification, spam VS not spam
 - Also use for word embeddings. Note: contextual, unlike word2Vec



GPT Series of Models

•GPT: Generative Pre-trained Transformer

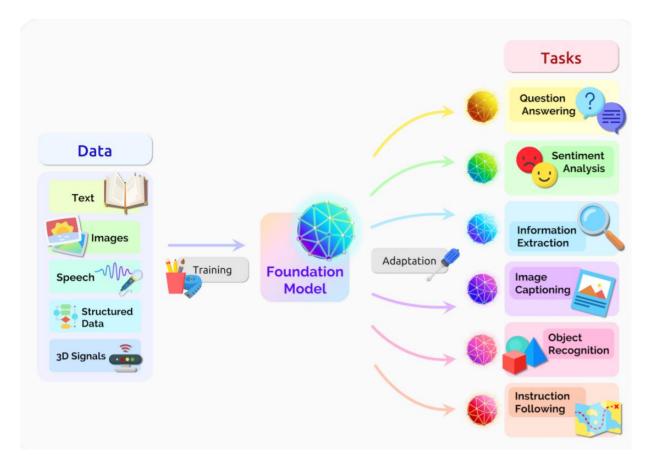
- Also built on top of transformer model architecture
- Essentially the decoder part only
- •Goal: generate text (possibly from a prompt)
 - Not fine-tuning for a particular task.
- •Scale: huge!
 - GPT-3: 175 billion parameters



Amanda Askell

Foundation Models

- Many more large scale models
 - Not just focused on text



Bommasani et al, "On the Opportunities and Risks of Foundation Models"

Codex

Codex: a variant of GPT-3 based on source code Outputs code. Ex: show primes

Test	generated_code.js
Count: 42 Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,	
Graph: 4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82,	/* Test me */
and an indication of a stand and a stand and a stand	<pre>var test = document.createElement('div'); test.innerHTML = 'Test'; document.body.appendChild(test);</pre>
	/* Count to 42 and then test for primes and graph
	primes * 2 */
	<pre>var count = 0; var countDiv = document.createElement('div');</pre>
	countDiv.innerHTML = 'Count: ' + count;
	<pre>document.body.appendChild(countDiv);</pre>
	<pre>var interval = setInterval(function() {</pre>
	<pre>count++; countDiv.innerHTML = 'Count: ' + count;</pre>
	if (count == 42) {
	<pre>clearInterval(interval);</pre>
	<pre>var primeDiv = document.createElement('div');</pre>
	<pre>primeDiv.innerHTML = 'Primes: '; document.body.appendChild(primeDiv);</pre>
	var primes = [];
	<pre>for (var i = 2; i < count; i++) {</pre>
	if (isPrime(i)) {
	<pre>primes.push(i); primeDiv.innerHTML += i + ', ';</pre>
	}
	}
	<pre>primeDiv.innerHTML += ' ';</pre>
	<pre>primeDiv.innerHTML += 'Graph: '; document.body.appendChild(primeDiv);</pre>
	<pre>for (var i = 0; i < primes.length; i++) {</pre>
Provide instructions	<pre>primeDiv.innerHTML += primes[i] * 2 + ', ';</pre>
	}
	} }, 1008);
	<pre>function isPrime(n) {</pre>
	for (var i = 2; i < n; i++) {
	if (n % i == 0) { return false;
	return false;

DALL-E

•Create images from text

• Prompt: "an armchair in the shape of an avocado. . . ."

https://openai.com/blog/dall-e/

• Note: several online demos. Try it yourself!

Conclusion

- "Foundation" models based on transformers and beyond
 - Huge, expensive to train, challenging in various ways... but
 - Remarkably powerful for a vast number of tasks.
 - The future of AI??

Bommasani et al, "On the Opportunities and Risks of Foundation Models"



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Jay Alammar