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Announcements

*Announcements:
*HW 2 released today
*Project info to be released Tuesday

*Class roadmap:
ThusdaySept.23 Bvaluation

Tuesday Sept. 28 Regression |
Thursday Sept. 30 Regression Il
Tuesday, Oct. 5 Naive Bayes
Thursday, Oct. 7 Neural Networks |

|
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Outline

*Continuing from last time: Decision trees

*Information gain, stopping criteria, overfitting, pruning,
variations

*Evaluation: Generalization
* Train/test split, random sampling, cross validation

*Evaluation: Metrics
* Confusion matrices, ROC curves, precision/recall



Outline

*Continuing from last time: Decision trees

*Information gain, stopping criteria, overfitting, pruning,
variations



DT Learning: InfoGain Limitations

*InfoGain is biased towards tests with many outcomes
A feature that uniquely identifies each instance

* Splitting on it results in many branches, each of which is “pure” (has
instances of only one class)

* Maximal information gain!

* Use GainRatio: normalize information gain by entropy

GainRatio(D, S) = Infogzi?é?& _ HD<Y£1€I£(Y|S>



DT Learning: GainRatio

*Why?

e Suppose S is a binary split. InfoGain limited to 1 bit, no matter what.
InfoGain(D, S) = Hp(Y) — Hp(Y|S)
]

Intuition: at most, S tells us Y is in one half of its
classes or the other

* Now suppose S is different for each instance (i.e., student number).
* Uniquely determines Y for each point, but useless for generalization.
* But, then Hy(Y|S) = 0, so maximal information gain!

* Control this by normalizing by Hy(S).

* Above: for n instances, Hy(S) = log,(n)

GainRatio(D, S) = Infogzi?é?»s) _ HD(YIE;7£(YIS)



Inductive Bias

* Recall: Inductive bias: assumptions a learner uses to predict y; for a previously
unseen instance x;
* Two components
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-parallel small trees identified by greedy
splits search
k-NN Voronoi decomposition determined instances in neighborhood

by nearest neighbors belong to same class




DT Learning: Stopping Criteria

Form a leaf when
e All of the given subset of instances are same class
e We've exhausted all of the candidate splits

e Stop earlier?




Evaluation: Accuracy

*Can we just calculate the fraction of training instances that

are correctly classified?

e Consider a problem domain in which instances are assigned labels at random
with P(Y=1)=0.5

e How accurate would a learned decision tree be on previously unseen
instances?

e How accurate would it be on its training set?




Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a
set of instances that are held-aside during learning

e This is called a test set




Overfitting

Notation: error of model h over
e training data: errory(h)
e entire distribution of data: error,(h)

Model h overfits training data if it has
*a low error on the training data (low errory(h))

Wikipedia



Overfitting Example: Noisy Data

Target functionis Y = X; A X5

e There is noise in some feature values
e Training set:

X; X X; Xy X5
t t t t t
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Overfitting Example: Noisy Data

Correct tree Tree that fits noisy training data
X; X;

f
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Overfitting Example: Noise-Free Data

Target functionis Y = X; A X5
e P(X;=1)=0.5for both classes

e P(Y=t)=0.67

e Training set:




Overfitting Example: Noise-Free Data

e Training set is a limited sample. There might be (combinations of) features that
are correlated with the target concept by chance

Training set Test set
accuracy accuracy
%€
N
f 100% 50%

66% 66%




Overfitting Example: Polynomial Regression

e Training set is a limited sample. There might be (combinations of) features that
are correlated with the target concept by chance

0 - 1
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Overfitting: Tree Size vs. Accuracy

e Tree size vs accuracy
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General Phenomenon

_ - — - Training error
Underfitting zone | Overfitting zone \ . .
— Genera.hza.t.lon SIm g0y

Error

% I Generalization gap

—

0 Optimal Capacity

Capacity

Figure from Deep Learning, Goodfellow, Bengio and Courville



DT Learning: Avoiding Overfitting

Two general strategies to avoid overfitting
1. early stopping: stop if further splitting not justified by a statistical test

2. post-pruning: grow a large tree, then prune back some nodes
 Ex: evaluate impact on tuning-set accuracy of pruning each node
 Greedily remove the one that most improves tuning-set accuracy




Validation Sets

e Avalidation set (a.k.a. tuning set) is
e not used for primary training process (e.g. tree growing)

e but used to select among models (e.g. trees pruned to varying
degrees)




Variations

e Probability estimation trees

e Leaves: estimate the probability of each class

e Regression trees

e Either numeric values on leaves, or functions (e.g., linear functions)

D: [3+, 3] /\D: (0+, 8-]

%€

P(Y=pos) =0.5
P(Y=neg) =0.5
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Decision Trees: Comments

*Widely used approach

* Many variations

*Provides humanly comprehensible models
* When trees not too big

*Insensitive to monotone transformations of numeric features
*Standard methods not suited to on-line setting
*Usually not among most accurate learning methods
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Break & Quiz



Outline

*Evaluation: Generalization
* Train/test split, random sampling, cross validation



Bias: Accuracy of a Model

*How can we get an unbiased estimate of the accuracy of a
learned model?

labeled data set

!

training set test set
*Unbiased estimate of 6 1 4
A learned model
4”[6)] — (9 learning ) Z
method | =
\_ y,

‘ accuracy estimate ‘



Bias: Using a Test Set

*How can we get an unbiased estimate of the accuracy of a
learned model?

* When learning a model, you should pretend that you don’t have
the test data yet (it is “in the mail”)

* If the test-set labels influence the learned model in any way,
accuracy estimates will be biased

Don’t train on the test set!



Bias: Learning Curves

* Accuracy of a method as a function of the train set size?

*Plot learning curves

Training/test set partition
e for each sample size s on learning curve
* (optionally) repeat n times
 randomly select s instances from training set

 |earn model

e evaluate model on test set to determine
accuracy a

« plot(s, a)
bars)

or (s, avg. accuracy and error

Accuracy

Learning Curve of Californian Housing Data
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Figure from Perlich et al. Journal of Machine Learning Research, 2003



Single Train/Test Split: Limitations

* May not have enough data for sufficiently large training/test sets

* Alarger test set gives us more reliable estimate of accuracy (i.e. a lower
variance estimate)

e But... a larger training set will be more representative of how much data we
actually have for learning process

* Asingle training set does not tell us how sensitive
accuracy is to a particular training sample




Strategy I: Random Resampling

* Address the second issue by repeatedly randomly
partitioning the available data into training and test sets.

labeled data set
+++++-- - - -

l

+++ - - - ++4- -

random

training sets partitions
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+4+- - - ++- -




Strategy I: Stratified Sampling

* When randomly selecting training or validation sets, we may want to
ensure that class proportions are maintained in each selected set

labeled data set

I o o = N T I S
‘l, This can be done via stratified sampling: first
stratify instances by class, then randomly
training set select instances from each class proportionally.
e+ttt - - - - +Ht++++ - - - -

validation set
+++ - -




Strategy Il: Cross Validation

labeled data set

Partition data
into n subsamples ‘

S1 Sy S3 Sy Sg

iteration train on test on
lteratively leave one 1 5253 54 Ss 1
subsample out for the |2 S1 53 54 Ss S2
test set, train on the 3 S S, Su S 55
rest

4 S1 S2 S3 Ss S4

5 S1 Sy S3 S4 Sg




Strategy Il: Cross Validation Example

*Suppose we have 100 instances, and we want to estimate
accuracy with cross validation

iteration train on test on correct
1 S, S3 S; St S, 11 /20
2 S; S3 S5 St S, 17 / 20
3 S; S, S, St S3 16 /20
4 S; S, S3 Sc Sy 13 /20
5 S, S, S3 S4 Sc 16 /20

accuracy = 73/100 = 73%



Strategy Il: Cross Validation Tips

 10-fold cross validation is common, but smaller values of n are often
used when learning takes a lot of time

* in leave-one-out cross validation, n = # instances

* in stratified cross validation, stratified sampling is used when
partitioning the data

* CV makes efficient use of the available data for testing

* note that whenever we use multiple training sets, as in CV and random
resampling, we are evaluating a learning method as opposed to an
individual learned hypothesis
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Outline

*Evaluation: Metrics
* Confusion matrices, ROC curves, precision/recall



Beyond Accuracy: Confusion Matrices

*How can we understand what types of mistakes a learned

model makes?
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Confusion Matrices: 2-Class Version

actual class

A

r \

positive negative
(

positive true positives false positives
(TP) (FP)

predicted <
class

negative false negatives true negatives
(FN) (TN)

\

TP + TN
TP + FP + FN+TN

FP + FN
TP + FP + FN+TN

accuracy =

error =1-accuracy =



Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

* There is a large class skew
* |1s 98% accuracy good when 97% of the instances are negative?

* There are differential misclassification costs — say, getting a positive wrong
costs more than getting a negative wrong

* Consider a medical domain in which a false positive results in an extraneous test but a false
negative results in a failure to treat a disease

* We are most interested in a subset of high-confidence predictions




Other Metrics

actual class
A
-~ =~
positive negative
r o, .
positive true positives false positives
(TP) (FP)
predicted <
class negati false negatives true negatives
egative (EN) (TN)
\.
TP TP

true positive rate (recall) = =
actual pos TP + FN

. FP FP
false positive rate = =

actual neg TN + FP




Other Metrics: ROC Curves

*A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point Different methods can
/ work better in

1o Alg 1 : different parts of ROC
o
& L space.
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False positive rate



ROC Curves: Plotting

confidence correct
instance  positive class

Ex 9 .99

Ex 7 .98 TPR=2/5, FPR=0/5

Ex 1 2 -
Ex 2 .70 +
Ex 6 .65 TPR=4/5, FPR=1/5 +
Ex 10 S5l -
Ex 3 .39 -
Ex 5 .24 TPR=5/5, FPR=3/5 +
Ex 4 A1 -
Ex 8 01 TPR=5/5, FPR=5/5 -

1.0 4

True positive rate

=
Ovw

False positive rate



ROC Curves: Misclassification Cost

*The best operating point depends on relative cost of FN and
FP misclassifications

Thyroid anomaly detection

N best operating point when
FN costs 10x FP

~ best operating point when
cost of misclassifying positives and

True Positive rate
i)
o
T
1

9.4 7 negatives is equal
B- 3 B ,,J/J -1
o

y

0.2 ¢ i .
J 18 Positives
8.1 -?f best operating point when
5 S FP costs 10x FN

B .10.20.30.4060.50.60.70.806.9 1
False Positive rate



Other Metrics: Precision

actual class
A
~ —~
positive negative
f
i true positives false positives
ositive
P (TP) (FP)
predicted <
class ti false negatives true negatives
negative (FN) (TN)
\
TP TP
recall (TP rate) = =

actual pos TP + FN

TP TP

precision (positive predictive value) = : =
predicted pos TP + FP



precision

1.0

Other Metrics: Precision/Recall Curve

*A precision/recall curve (TP-rate): threshold on the
confidence of an instance being positive is varied

idea

/

/

recall (TPR)

| point

default precision
determined by the
fraction of instances
that are positive

predicting patient risk for VTE

1.0

0.8

Precision
0.6

0.4

Naive Bayes L L
SVM

--------- Filtered k-NN
----- - C4.5

-| === = Random Forest

0.2

0.0

0.0 0.2 04 0.6 0.8 1.0

Recall

figure from Kawaler et al., Proc. of AMIA Annual Symposium, 2012



ROC vs. PR curves

Both

* Allow predictive performance to be assessed at various levels of confidence
* Assume binary classification tasks

* Sometimes summarized by calculating area under the curve

ROC curves

* Insensitive to changes in class distribution (ROC curve does not change if the
proportion of positive and negative instances in the test set are varied)

* Can identify optimal classification thresholds for tasks with differential
misclassification costs

Precision/recall curves
* Show the fraction of predictions that are false positives

* Well suited for tasks with lots of negative instances



Confidence Intervals

*Back to looking at accuracy on new data.

*Scenario:
* For some model h, a test set S with n samples
* We have h producing r errors out of n.
* Our estimate of the error rate: error¢(h) = r/n

*With C% probability, true error is in interval

errory(h)(1-error,(h))
n

errory(h) =z, \/

*z- depends on C. For 95% confidence, it is ~1.96




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov



