

CS 760: Machine Learning **Decision Trees & Evaluation**

Fred Sala

University of Wisconsin-Madison

Sept. 23, 2021

Announcements

•Announcements:

- •HW 2 released today
- Project info to be released Tuesday

•Class roadmap:

Thursday Sept. 23	Evaluation	
Tuesday Sept. 28	Regression I	
Thursday Sept. 30	Regression II	
Tuesday, Oct. 5	Naive Bayes	
Thursday, Oct. 7	Neural Networks I	

Supervised Learning

Outline

•Continuing from last time: Decision trees

 Information gain, stopping criteria, overfitting, pruning, variations

•Evaluation: Generalization

• Train/test split, random sampling, cross validation

•Evaluation: Metrics

• Confusion matrices, ROC curves, precision/recall

Outline

•Continuing from last time: Decision trees

- Information gain, stopping criteria, overfitting, pruning, variations
- •Evaluation: Generalization
 - Train/test split, random sampling, cross validation
- •Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

DT Learning: InfoGain Limitations

- InfoGain is biased towards tests with many outcomes
 - A feature that uniquely identifies each instance
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - Maximal information gain!
- •Use GainRatio: normalize information gain by entropy

$$\operatorname{GainRatio}(D,S) = \frac{\operatorname{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

DT Learning: GainRatio

•Why?

• Suppose S is a *binary split*. InfoGain limited to 1 bit, no matter what.

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

Intuition: at most, S tells us Y is in one half of its classes or the other

- Now suppose S is different for each instance (i.e., student number).
 - Uniquely determines Y for each point, but useless for generalization.
 - But, then H_D(Y|S) = 0, so maximal information gain!
- Control this by normalizing by $H_D(S)$.
 - Above: for *n* instances, $H_D(S) = \log_2(n)$

$$\operatorname{GainRatio}(D,S) = \frac{\operatorname{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

Inductive Bias

- Recall: *Inductive bias*: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components
 - *hypothesis space bias*: determines the models that can be represented
 - *preference bias*: specifies a preference ordering within the space of models

learner	hypothesis space bias	preference bias
ID3 decision tree	trees with single-feature, axis-parallel splits	small trees identified by greedy search
<i>k</i> -NN	Voronoi decomposition determined by nearest neighbors	instances in neighborhood belong to same class

DT Learning: Stopping Criteria

Form a leaf when

- All of the given subset of instances are same class
- We've exhausted all of the candidate splits
- Stop earlier?

Evaluation: Accuracy

- •Can we just calculate the fraction of training instances that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = 1) = 0.5
 - How accurate would a learned decision tree be on previously unseen instances?
 - How accurate would it be on its training set?

Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set of instances that are **held-aside** during learning

• This is called a test set

Overfitting

Notation: error of model h over

- training data: error_D(h)
- entire distribution of data: error_D(h)

Model *h* overfits training data if it has

- a low error on the training data (low error_D(h))
- high error on the entire distribution (high error_D(h))

Overfitting Example: Noisy Data

Target function is $Y = X_1 \wedge X_2$

- There is **noise** in some feature values
- Training set:

X1	X ₂	X3	X4	X_5	•••	Y
t	t	t	t	t	•••	t
t	t	f	f	t	•••	t
t	f	t	t	f	•••	t
t	f	f	t	f	•••	f
t	f	t	f	f	•••	f
f	t	t	f	t	•••	f

Overfitting Example: Noisy Data

Overfitting Example: Noise-Free Data

Target function is $Y = X_1 \wedge X_2$

- $P(X_3 = t) = 0.5$ for both classes
- P(Y = t) = 0.67
- Training set:

X ₁	X ₂	X3	X4	X5	•••	Y
t	t	t	t	t	•••	t
t	t	t	f	t	•••	t
t	t	t	t	f	•••	t
t	f	f	t	f	•••	f
f	t	f	f	t	•••	f

Overfitting Example: Noise-Free Data

• Training set is a **limited sample.** There might be (combinations of) features that are correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a **limited sample.** There might be (combinations of) features that are correlated with the target concept by chance

Overfitting: Tree Size vs. Accuracy

• Tree size vs accuracy

Size of tree (number of nodes)

General Phenomenon

DT Learning: Avoiding Overfitting

Two general strategies to avoid overfitting

- 1. early stopping: stop if further splitting not justified by a statistical test
- 2. post-pruning: grow a large tree, then prune back some nodes
 - Ex: evaluate impact on tuning-set accuracy of pruning each node
 - Greedily remove the one that most improves tuning-set accuracy

Validation Sets

- A validation set (a.k.a. tuning set) is
 - not used for primary training process (e.g. tree growing)
 - but used to select among models (e.g. trees pruned to varying degrees)

Variations

- Probability estimation trees
 - Leaves: estimate the probability of each class
- Regression trees
 - Either numeric values on leaves, or functions (e.g., linear functions)

Decision Trees: Comments

- •Widely used approach
 - Many variations
- Provides humanly comprehensible models
 - When trees not too big
- Insensitive to monotone transformations of numeric features
- Standard methods not suited to on-line setting
- •Usually not among most accurate learning methods

Break & Quiz

Outline

Continuing from last time: Decision trees
 Information gain, stopping criteria, overfitting, pruning, variations

•Evaluation: Generalization

• Train/test split, random sampling, cross validation

•Evaluation: Metrics

• Confusion matrices, ROC curves, precision/recall

Bias: Accuracy of a Model

•How can we get an **unbiased** estimate of the accuracy of a learned model?

Bias: Using a Test Set

- •How can we get an unbiased estimate of the accuracy of a learned model?
 - When learning a model, you should pretend that you don't have the test data yet (it is "in the mail")
 - If the test-set labels influence the learned model in any way, accuracy estimates will be **biased**

• Don't train on the test set!

Bias: Learning Curves

Accuracy of a method as a function of the train set size? Plot *learning curves*

Training/test set partition

- for each sample size *s* on learning curve
 - (optionally) repeat *n* times
 - randomly select *s* instances from training set
 - learn model
 - evaluate model on test set to determine accuracy *a*
 - plot (s, a) or (s, avg. accuracy and error bars)

Figure from Perlich et al. Journal of Machine Learning Research, 2003

Single Train/Test Split: Limitations

- May not have enough data for sufficiently large training/test sets
 - A larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - But... a larger training set will be more representative of how much data we actually have for learning process

• A single training set does not tell us how sensitive accuracy is to a particular training sample

Strategy I: Random Resampling

•Address the second issue by repeatedly randomly partitioning the available data into training and test sets.

++

Strategy I: Stratified Sampling

• When randomly selecting training or validation sets, we may want to ensure that **class proportions** are maintained in each selected set

This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally.

Strategy II: Cross Validation

Iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	S ₂ S ₃ S ₄ S ₅	S ₁
2	S ₁ S ₃ S ₄ S ₅	S ₂
3	S ₁ S ₂ S ₄ S ₅	S ₃
4	S ₁ S ₂ S ₃ S ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	S ₅

 S_4

S5

Strategy II: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	$\mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_4 \ \mathbf{S}_5$	S ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	S ₃	16 / 20
4	$S_1 S_2 S_3 S_5$	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

accuracy = 73/100 = 73%

Strategy II: Cross Validation Tips

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning method</u> as opposed to an <u>individual learned hypothesis</u>

Break & Quiz

Outline

•Continuing from last time: Decision trees

- Information gain, stopping criteria, overfitting, pruning, variations
- •Evaluation: Generalization
 - Train/test split, random sampling, cross validation

•Evaluation: Metrics

• Confusion matrices, ROC curves, precision/recall

Beyond Accuracy: Confusion Matrices

•How can we understand what types of mistakes a learned model makes? task: activity recognition from video

actual class

predicted class

Confusion Matrices: 2-Class Version

accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

error = 1 - accuracy = $\frac{FP + FN}{TP + FP + FN + TN}$

Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

- There is a large class skew
 - Is 98% accuracy good when 97% of the instances are negative?
- There are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- We are most interested in a subset of high-confidence predictions

Other Metrics

true positive rate (recall) =
$$\frac{TP}{actual pos}$$
 = $\frac{TP}{TP + FN}$
false positive rate = $\frac{FP}{actual neg}$ = $\frac{FP}{TN + FP}$

Other Metrics: ROC Curves

•A *Receiver Operating Characteristic* (*ROC*) curve plots the TPrate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

ROC Curves: Plotting

ROC Curves: Misclassification Cost

•The best operating point depends on relative cost of FN and FP misclassifications

Other Metrics: Precision

Other Metrics: Precision/Recall Curve

•A *precision/recall curve* (TP-rate): threshold on the confidence of an instance being positive is varied

predicting patient risk for VTE

figure from Kawaler et al., Proc. of AMIA Annual Symposium, 2012

ROC vs. PR curves

Both

- Allow predictive performance to be assessed at various levels of confidence
- Assume binary classification tasks
- Sometimes summarized by calculating *area under the curve*

ROC curves

- Insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- Can identify optimal classification thresholds for tasks with differential misclassification costs

Precision/recall curves

- Show the fraction of predictions that are false positives
- Well suited for tasks with lots of negative instances

Confidence Intervals

• Back to looking at accuracy on new data.

•Scenario:

- For some model *h*, a test set S with *n* samples
- We have *h* producing *r* errors out of *n*.
- Our estimate of the error rate: $error_s(h) = r/n$

•With C% probability, true error is in interval

$$error_{S}(h) \pm z_{C} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

• *z*_C depends on C. For 95% confidence, it is ~1.96

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov