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Announcements

•Announcements: 
•HW 2 released today
•Project info to be released Tuesday
•Class roadmap:

Thursday Sept. 23 Evaluation

Tuesday Sept. 28 Regression I

Thursday Sept. 30 Regression II

Tuesday, Oct. 5 Naive Bayes

Thursday, Oct. 7 Neural Networks I

Supervised Learning



Outline

•Continuing from last time: Decision trees
•Information gain, stopping criteria, overfitting, pruning, 
variations

•Evaluation: Generalization
• Train/test split, random sampling, cross validation
•Evaluation: Metrics
• Confusion matrices, ROC curves, precision/recall



Outline

•Continuing from last time: Decision trees
•Information gain, stopping criteria, overfitting, pruning, 
variations

•Evaluation: Generalization
• Train/test split, random sampling, cross validation
•Evaluation: Metrics
• Confusion matrices, ROC curves, precision/recall



DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•A feature that uniquely identifies each instance
•Splitting on it results in many branches, each of which is “pure” (has 

instances of only one class)
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy

GainRatio(D,S) = InfoGain(D,S)
HD(S) = HD(Y )�HD(Y |S)

HD(S)
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DT Learning: GainRatio

•Why?
•Suppose S is a binary split. InfoGain limited to 1 bit, no matter what.

•Now suppose S is different for each instance (i.e., student number).
• Uniquely determines Y for each point, but useless for generalization. 
• But, then HD(Y|S) = 0, so maximal information gain!

•Control this by normalizing by HD(S).
• Above: for n instances, HD(S) = log2(n)

InfoGain(D,S) = HD(Y )�HD(Y |S)
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Intuition: at most, S tells us Y is in one half of its 
classes or the other

GainRatio(D,S) = InfoGain(D,S)
HD(S) = HD(Y )�HD(Y |S)

HD(S)

<latexit sha1_base64="KlzAuK3QHhk510rVgvzq8oRqYh0=">AAACSXicbVBLSwMxGMzWd31VPXoJtkIFLbtF0YtQtKDefNUHbanZNKuh2eySfCuWtX/Pizdv/gcvHhTxZLYtUh8DIZOZ+Ugybii4Btt+tlJDwyOjY+MT6cmp6ZnZzNz8mQ4iRVmFBiJQFy7RTHDJKsBBsItQMeK7gp27rd3EP79lSvNAnkI7ZHWfXEvucUrASI3MVa4G7A7iPcLlcaJ18uXVkxW8jWueIjTuuQfSC5JEz+zE+41y3uzfqeR8uYLXcJfcD0RyjUzWLthd4L/E6ZMs6uOwkXmqNQMa+UwCFUTrqmOHUI+JAk4F66RrkWYhoS1yzaqGSuIzXY+7TXTwslGa2AuUWRJwVx2ciImvddt3TdIncKN/e4n4n1eNwNuqx1yGETBJexd5kcAQ4KRW3OSKURBtQwhV3LwV0xtiugFTftqU4Pz+8l9yViw464WNo2K2tNOvYxwtoiWURw7aRCW0jw5RBVH0gF7QG3q3Hq1X68P67EVTVn9mAf1AaugLX+6u6w==</latexit>



Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously 
unseen instance xi

• Two components
• hypothesis space bias: determines the models that can be represented
• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-parallel 
splits

small trees identified by greedy 
search

k-NN Voronoi decomposition determined 
by nearest neighbors

instances in neighborhood 
belong to same class



DT Learning: Stopping Criteria

Form a leaf when
• All of the given subset of instances are same class
• We’ve exhausted all of the candidate splits

• Stop earlier?



Evaluation: Accuracy

•Can we just calculate the fraction of training instances that 
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random 
with P(Y = 1) = 0.5
• How accurate would a learned decision tree be on previously unseen 

instances?
• How accurate would it be on its training set? 



Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a 
set of instances that are held-aside during learning
• This is called a test set

all instances

test

train



Wikipedia

Overfitting

Notation: error of model h over
• training data: errorD(h)
• entire distribution of data: errorD(h)

Model h overfits training data if it has 
•a low error on the training data (low errorD(h))
•high error on the entire distribution (high errorD(h))



Overfitting Example: Noisy Data

Target function is 
• There is noise in some feature values
• Training set:

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

Y = X1 ^X2
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Overfitting Example: Noisy Data

X1

X2

T F

X3t

f

f

f

X4

t

X1

X2

T F

t f

f

Correct tree Tree that fits noisy training data



Overfitting Example: Noise-Free Data

Target function is 
• P(X3 = t) = 0.5 for both classes
• P(Y = t) = 0.67
• Training set:

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

Y = X1 ^X2
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Overfitting Example: Noise-Free Data
• Training set is a limited sample. There might be (combinations of) features that 

are correlated with the target concept by chance

X3

T F

t f

t 66% 66%

Training set
accuracy

Test set
accuracy

100% 50%



Overfitting Example: Polynomial Regression
• Training set is a limited sample. There might be (combinations of) features that 

are correlated with the target concept by chance



Overfitting: Tree Size vs. Accuracy
• Tree size vs accuracy



General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville



DT Learning: Avoiding Overfitting

Two general strategies to avoid overfitting
1. early stopping: stop if further splitting not justified by a statistical test

2. post-pruning: grow a large tree, then prune back some nodes
• Ex: evaluate impact on tuning-set accuracy of pruning each node
• Greedily remove the one that most improves tuning-set accuracy



all instances

testtrain

tuning

Validation Sets

• A validation set (a.k.a. tuning set) is
• not used for primary training process (e.g. tree growing)
• but used to select among models (e.g. trees pruned to varying 

degrees)



Variations

• Probability estimation trees
• Leaves: estimate the probability of each class

• Regression trees
• Either numeric values on leaves, or functions (e.g., linear functions)

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1

X5 > 10

X3

P(Y=pos) = 0.5
P(Y=neg) = 0.5

P(Y=pos) = 0.1
P(Y=neg) = 0.9

P(Y=pos) = 0.8
P(Y=neg) = 0.2

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]



Decision Trees: Comments

•Widely used approach
•Many variations

•Provides humanly comprehensible models 
•When trees not too big

•Insensitive to monotone transformations of numeric features
•Standard methods not suited to on-line setting
•Usually not among most accurate learning methods



Break & Quiz
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Bias: Accuracy of a Model

•How can we get an unbiased estimate of the accuracy of a 
learned model?

•Unbiased estimate of 

labeled data set

training set test set

accuracy estimate

learned model

learning 
method

✓
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Bias: Using a Test Set

•How can we get an unbiased estimate of the accuracy of a 
learned model?
•When learning a model, you should pretend that you don’t have 

the test data yet (it is “in the mail”)
• If the test-set labels influence the learned model in any way, 

accuracy estimates will be biased

•Don’t train on the test set!



Figure from Perlich et al. Journal of Machine Learning Research, 2003

Bias: Learning Curves

•Accuracy of a method as a function of the train set size?
•Plot learning curves

Training/test set partition
• for each sample size s on learning curve

• (optionally) repeat n times
• randomly select s instances from training set
• learn model
• evaluate model on test set to determine 

accuracy a
• plot (s, a) or (s, avg. accuracy and error 

bars)



Single Train/Test Split: Limitations 

• May not have enough data for sufficiently large training/test sets
• A larger test set gives us more reliable estimate of accuracy (i.e. a lower 

variance estimate)
• But… a larger training set will be more representative of how much data we 

actually have for learning process

• A single training set does not tell us how sensitive 
accuracy is to a particular training sample



Strategy I: Random Resampling

•Address the second issue by repeatedly randomly 
partitioning the available data into training and test sets. 

labeled data set
+++++- - - - -

+++- - - ++- -

random
partitions

+++- - - ++- -

+++ - - - ++- -

training sets test sets



Strategy I: Stratified Sampling

•When randomly selecting training or validation sets, we may want to 
ensure that class proportions are maintained in each selected set

labeled data set
++++++++++++ - - - - - - - -

training set
++++++ - - - -

test set
++++++ - - - -

validation set
+++ - -

This can be done via stratified sampling: first 
stratify instances by class, then randomly 
select instances from each class proportionally.



Strategy II: Cross Validation

labeled data set

s1 s2 s3 s4 s5

iteration train on test on

1 s2   s3   s4     s5 s1

2 s1  s3   s4    s5 s2

3 s1   s2    s4     s5 s3

4 s1   s2    s3    s5 s4

5 s1   s2    s3    s4 s5 

Partition data
into n subsamples

Iteratively leave one 
subsample out for the 
test set, train on the 
rest



Strategy II: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate 
accuracy with cross validation

iteration train on test on correct
1 s2   s3   s4     s5 s1 11 / 20
2 s1  s3   s4    s5 s2 17 / 20
3 s1   s2    s4     s5 s3 16 / 20
4 s1   s2    s3    s5 s4 13 / 20
5 s1   s2    s3    s4 s5 16 / 20

accuracy = 73/100 = 73%



Strategy II: Cross Validation Tips
• 10-fold cross validation is common, but smaller values of n are often 

used when learning takes a lot of time

• in leave-one-out cross validation, n = # instances

• in stratified cross validation, stratified sampling is used when 
partitioning the data

• CV makes efficient use of the available data for testing

• note that whenever we use multiple training sets, as in CV and random 
resampling, we are evaluating a learning method as opposed to an 
individual learned hypothesis



Break & Quiz
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Beyond Accuracy: Confusion Matrices

•How can we understand what types of mistakes a learned 
model makes?

predicted class

actual class

task: activity recognition from video



Confusion Matrices: 2-Class Version

accuracy =     TP + TN
TP+FP+FN+TN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

error =1− accuracy =     FP + FN
TP+FP+FN+TN



Accuracy: Sufficient?

Accuracy may not be useful measure in cases where
• There is a large class skew
• Is 98% accuracy good when 97% of the instances are negative?

• There are differential misclassification costs – say, getting a positive wrong 
costs more than getting a negative wrong
• Consider a medical domain in which a false positive results in an extraneous test but a false 

negative results in a failure to treat a disease

•We are most interested in a subset of high-confidence predictions



Other Metrics

true positive rate (recall)  =   TP
actual  pos

  =   TP
TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

false positive rate  =   FP
actual  neg

  =   FP
TN + FP



Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an 
instance being positive is varied

ideal point

1.0

1.0False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Alg 1

Alg 2

expected curve for 
random guessing

Different methods can 
work better in 
different parts of ROC 
space.  



ROC Curves: Plotting

1.0

1.0

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Ex 9 .99 +
Ex 7 .98 +
Ex 1 .72 -
Ex 2 .70 +
Ex 6 .65 +
Ex 10 .51 -
Ex 3 .39 -
Ex 5 .24 +
Ex 4 .11 -
Ex 8 .01 -

TPR= 2/5, FPR= 0/5

TPR= 4/5, FPR= 1/5

TPR= 5/5, FPR= 3/5

TPR= 5/5, FPR= 5/5

instance
confidence
positive

correct
class



ROC Curves: Misclassification Cost

•The best operating point depends on relative cost of FN and 
FP misclassifications

best operating point when
FN costs 10× FP

best operating point when
cost of misclassifying positives and 
negatives is equal

best operating point when
FP costs 10× FN



Other Metrics: Precision

recall (TP rate)  =   TP
actual  pos

  =   TP
TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

precision (positive predictive value)  =   TP
predicted  pos

  =   TP
TP+FP



Other Metrics: Precision/Recall Curve

•A precision/recall curve (TP-rate): threshold on the 
confidence of an instance being positive is varied

default precision
determined by the
fraction of instances
that are positive

1.0

1.0recall (TPR)

pr
ec

isi
on

ideal point

figure from Kawaler et al., Proc. of AMIA Annual Symposium, 2012 

predicting patient risk for VTE



Both
• Allow predictive performance to be assessed at various levels of confidence
• Assume binary classification tasks
• Sometimes summarized by calculating area under the curve

ROC curves
• Insensitive to changes in class distribution (ROC curve does not change if the 

proportion of positive and negative instances in the test set are varied)
• Can identify optimal classification thresholds for tasks with differential 

misclassification costs

Precision/recall curves
• Show the fraction of predictions that are false positives
• Well suited for tasks with lots of negative instances

ROC vs. PR curves



Confidence Intervals 

•Back to looking at accuracy on new data.
•Scenario:
•For some model h, a test set S with n samples 
•We have h producing r errors out of n.
•Our estimate of the error rate: errorS(h) = r/n

•With C% probability, true error is in interval 

• zC depends on C. For 95% confidence, it is ~1.96

errorS (h)± zC
errorS (h)(1− errorS (h))

n



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov 


