

CS 839: Foundation Models Course Overview

Fred Sala

University of Wisconsin-Madison

Sept. 7, 2023

Logistics: Lecture Location

- •In-person in **CS 1221**
 - Will have slides / blackboard usage
 - Blackboard for theory; slides for model diagrams etc.

Planning to record---final decision TBD.

Logistics: Enrollment

- Currently at capacity, approx. 90 students
 - Some folks on waitlist may not make it in
 - Decent chance many of the waitlist folks will
 - Sorry 🕾 ... will be offered again

Logistics: Teaching Team

Instructor: Fred Sala

Location: CS 5385

• Office Hours: Th. 2:30-4:00 pm / by appointment

TA: Changho Shin

Location: CS 3294

• Office Hours: Fri. 2:00-3:00 pm / by appointment

Note: times possibly subject to change

Logistics: Teaching Team

Two more assistants:

Felix + Arthur

Note: if I'm late replying to anything, they're the cause ©

Logistics: Content

Three locations:

• 1. Course website:

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/

- •2. Piazza. https://piazza.com/class/llfbrbkv5bu15e
 - access code: introtofm
 - Preferred for questions!

•3. Canvas

Course Content / Schedule

Tentative Schedule

Date	Lecture	Readings	Homework Released	Homework Due
Thursday Sept. 7	Introduction and Course Overview			
Tuesday Sept. 12	Machine Learning Mini-Review	Patterns, Predictions, and Actions		
Thursday Sept. 14	Transformers & Attention	Attention Is All You NeedThe Illustrated Transformer		
Tuesday Sept. 19	Models (Encoder-Only, Encoder-Decoder, Decoder-Only) I	BERT PaperRoBERTa PaperT5 Paper	HW 1 Released	
Thursday Sept. 21	Models (Encoder-Only, Encoder-Decoder, Decoder-Only) II	 GPT-3 Paper PALM Paper		
Tuesday Sept. 26	Prompting I	 Pre-train, Prompt, and Predict Survey Finetuned Language Models Are Zero-Shot Learners 		
Thursday Sept. 28	Prompting II	 Prefix-Tuning Parameter-Efficient Prompt Tuning 		
Tuesday Oct. 3	Reasoning & Chain-of-Thought	 CoT Paper Large Language Models are Zero-Shot Reasoners Tree of Thoughts 	Homework 2 Released	Homework 1 Due

Logistics: Lecture Formats

Two types of class sessions:

Type 1: Lectures

- Mostly slides, some whiteboard
- Will take some breaks, 1-2 during the lecture
- Can ask questions---during lecture and breaks

Type 2: Paper Presentations

- More info on later slides.
- •Start with Type 1, conclude semester with Type 2

Logistics: Assignments & Grades

Homeworks:

- 3 or so, worth 30% total
- Posted after class; due when class starts on due date. About 2-3 weeks given for each one

Class Presentation:

- Total of 30%. Present a paper
- Split up into groups of 3-6 students. Proposal midway, check-ins.

Final Project:

40% total, groups of 3-6; proposal midway. More info soon!

Class Setup: Reading

No textbooks

- I will post useful notes, primers, papers
- Expect **new papers** (submitted during the timeframe of the class)
- For presentations: we will have a list of papers to pick from, but new/unlisted papers are options as well

Class Setup: Background

More on this at the end of class, but

- Basic ML (at the level of 760 or so)
 - Short review next lecture
- Technical components:
 - Linear Algebra
 - Calculus
 - Probability

Note: this class is partially conceptual and partially technical

Class Setup: Goals

Two goals:

- Become acquainted with how to use large pretrained/language/foundation models
- Understanding the technical underpinnings of these models and why they work

Note: if you are only interested in a very broad overview of ML, then CS 540 or 760 might be a better choice.

Class Setup: Goals II

Mini-goals:

Understanding research

Big picture/ML ecosystem

Intuition around modernML paradigms

Break & Questions

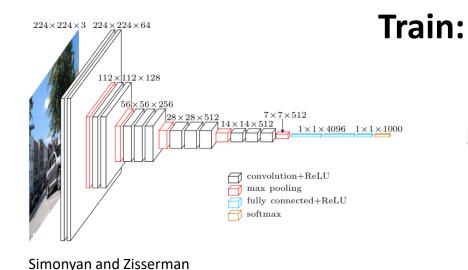
What We'll Cover

The past: supervised learning

• Dataset:

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe



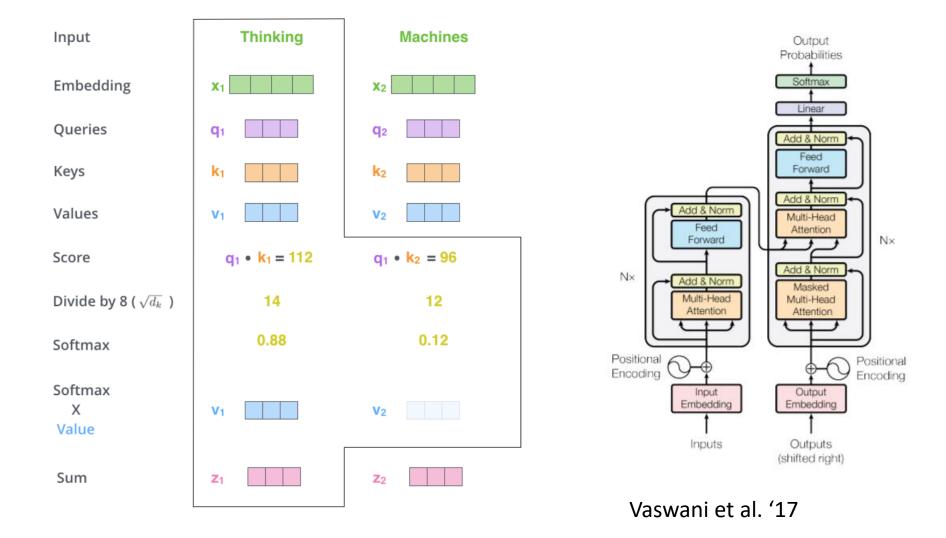
poisonous

safe

Model:

New Paradigms: Pretraining

Y. LeCun


How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
- The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - **10** → **10**,000 bits per sample
- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- ▶ Millions of bits per sample

New Architectures: Transformers

Lots of architectures (RNNs, LSTMs, CNNs) → Transformers

New Models

A bunch you've seen already,

And more all the time:

New Interfaces: Prompting

FR

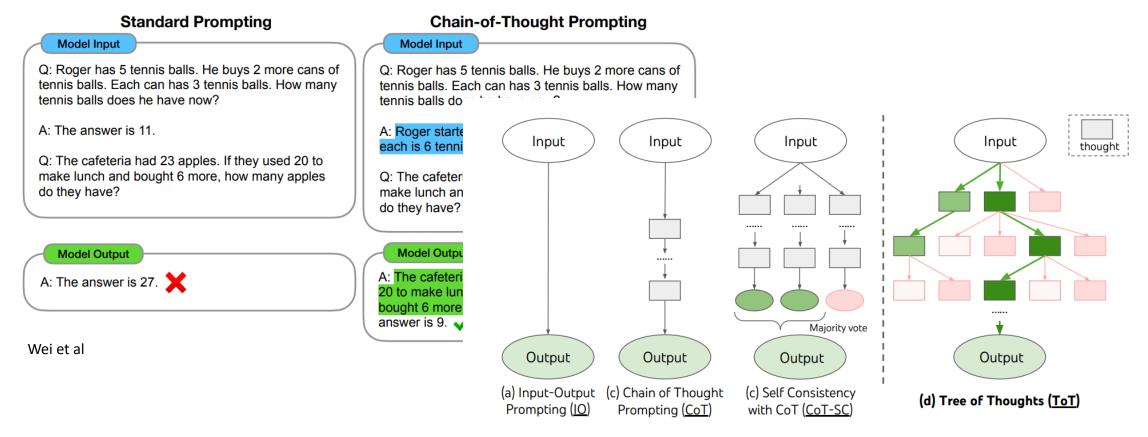
Explain how transformers work

Transformers are a type of deep learning model that has gained significant popularity and success in various natural language processing (NLP) and machine learning tasks. They are the foundation for many state-of-the-art models, including BERT, GPT, and more. Here's a high-level explanation of how transformers work:

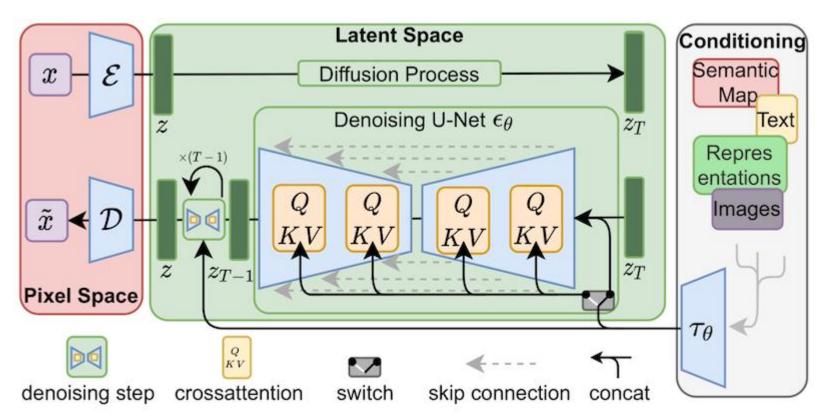
1. Self-Attention Mechanism:

At the core of the transformer architecture is the self-attention mechanism. This mechanism allows the model to weigh the importance of different parts of the input data, giving it the ability to consider context from all positions simultaneously. The self-attention mechanism works as follows:

- Query, Key, and Value Vectors: For each input token or word, three vectors are computed: Query, Key, and Value. These vectors are learned during the training process and are used to capture relationships between words.
- * Attention Scores: The model computes a compatibility score (dot


Prompt

University professor clearly explaining machine learning to a class


Reasoning

Chain-of-thought and friends:

Adapting & Improving Models

- Prompt Engineering
- Fine-tuning
- Adaptation

Cuenca and Paul

Training & Data

Backend url:

https://knn5.laior

Index:

laion_5B

french cat

Clip retrieval works by converting the text query to a CLIP embedding, then using that embedding to query a knn index of clip image embedddings

Display captions

Display full
captions

Display similarities

Safe mode ✓ Hide duplicate urls

✓ Hide (near) duplicate images ✓

Search over

Search with multilingual clip

french cat

french cat

How to tell if your feline is french. He wears a b...

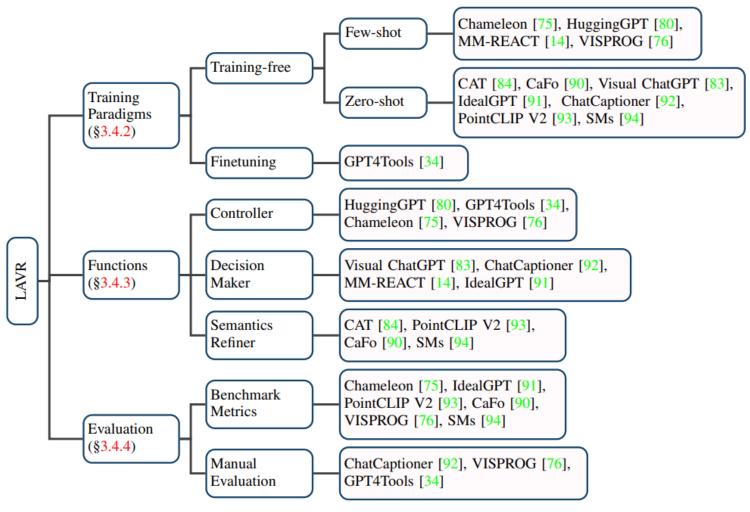
イケメン猫モデル 「トキ・ナンタケッ ト」がかっこいい -

 $Q \odot \bot$

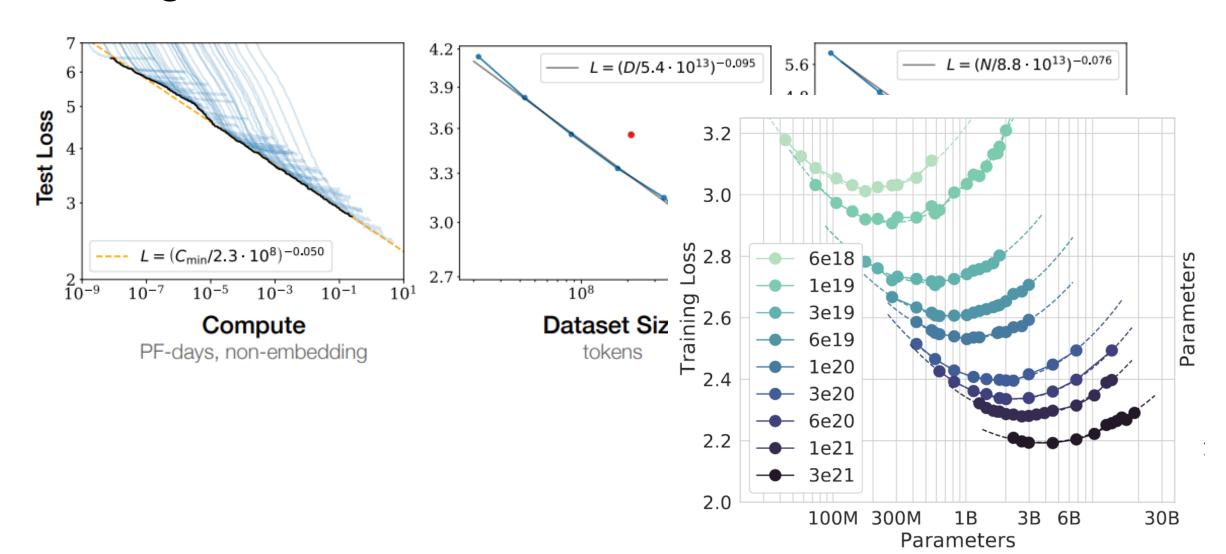
cats! funnycatsgif.com

Hipster cat

網友挑戰「加幾筆畫 出最創意貓咪圖片」, 笑到岔氣之後我也手


cat in a suit Georgian sells tomatoes

French Bread Cat Loaf Metal Print


Multimodal Models

Yin et al

Scaling

Scaling laws:

Security, Privacy, Bias

Some of the issues we'll encounter...

RESEARCH

03 24 2023

CYBERSECURITY

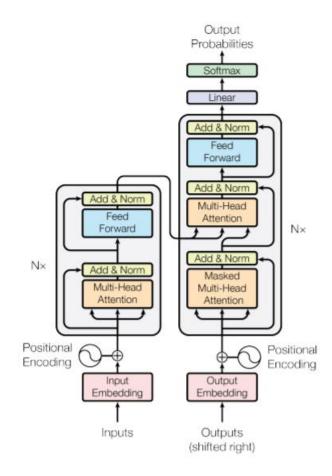
THE DARK SIDE OF LARGE LANGUAGE MODELS

Part 2: "Who's a good chatbot?"

By: Eoin Wickens, Marta Janus

Next two weeks

1. Review of ML


• Very short!

2. Architectures: Transformers

Intro to attention.

3. Language Models

 Encoder-decoder, Encoder-only, Decoder-only, etc

Vaswani et al. '17