

CS 839: Foundation Models Fine-Tuning, Specialization, Adaptation

Fred Sala

University of Wisconsin-Madison

Oct. 10, 2023

Announcements

•Logistics:

•Homework 1 deadline pushed to Thursday.

•Class roadmap:

Tuesday Oct. 10	Fine-Tuning, Specialization, Adaptation
Thursday Oct. 12	Training
Tuesday Oct. 17	RLHF
Thursday Oct. 19	Data
Tuesday Oct. 24	Multimodal and Specialized Foundation Models

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

Model Editing

•Idea, MEND

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

- Frozen transformers, ORCA, aligning via optimal transport dataset distance
- Model Editing
 - Idea, MEND

Before: Prompting

With prompting, we didn't change the model

- •To improve performance, we used few-shot/ICL
- •But, this might be worse than changing our model weights

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

Liu et al '22

Before: Frozen Models/Linear Probing

We previously discussed freezing our model, and using just some trainable heads

- •E.g., a linear model on top (called linear probing)
- •Our self-supervised learning example

Full Fine-Tuning

Performance might still be bottlenecked,

- Frozen representations might not be suitable for task
- Might need lots of capacity on top to adapt
- •Change all the weights!

>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

>>> trainer.<mark>train()</mark>

https://huggingface.co/docs/transformers/training

Full Fine-Tuning: **Downsides**

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data...

• Fine-Tuning can Distort Pretrained Features and Underperform Outof-Distribution

Average accuracies (10 distribution shifts)

Kumar et al '22

Partial Fine-Tuning

Full fine-tuning might be expensive

- Partial fine-tuning might be a good choice
- •Only some layers change

Prefix-Tuning

Recall this *soft prompting* method.

- Prefixes are trainable parameters
- •Train one for each goal task, only store these new parameters
- •Enables cheap adaptation of frozen language model

Li and Liang '21

Parameter-Efficient Fine-Tuning (PEFT)

None of these methods were full satisfying

- Have to figure out what layers to train, have to interpolate with prompts, etc.
 - Lots of choices!
- •If we fine-tune too many parameters, that gets expensive...
 - But top only, performance isn't great

• Houlsby et al '19:

PEFT: Adapters

Want two things in PEFT

- •Good performance (accuracy, etc.)
- Parameter efficiency

•Solution: Adapters

• Small modules, inserted in between model and trained

Another **advantage:** no change to model, new modules for tasks

Houlsby et al '19

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

- •LoRA makes an assumption on adapter layer structure
 - Specifically, should be low-rank
 - Intuition: the weight matrices already live close to a low-rank manifold
- Transformers, apply only to attention weight matrices

Break & Questions

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

•Model Editing •Idea, MEND

What About Other Modalities?

So far, mostly talked about language models.

- Suppose we want tasks that are not directly language-based
- •Could just train a new model... but harder

Can we adapt language models? Lots of challenges:

- Must change data types
- How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al '21) Basic idea:

- Change the **input/output layers** (here, linear)
- •Layer norm parameters
- Everything else frozen

Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al '23) •Adds: distribution alignment step (align then refine)

ORCA: Stage 1

Let's understand each stage of ORCA

- •Stage 1: compatibility for inputs and outputs
- •Custom input and output embedders that depend on the task
 - Input example: convolutional layers for image settings
 - Output example: average pooling+linear layer for classification

ORCA: Stage 2

Let's understand each stage of ORCA

- Stage 2: distribution alignment
- Intuition:
 - Change embeddings so target features **resemble** source features
- Learn the function *f^t* that minimizes
 distance between

 $(f^{t}(x^{t}), y^{t})$ and $(f^{s}(x^{s}), y^{s})$

ORCA: Distributional Distances

Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- •How?
- Need a distance function on these distributions
- •Here, optimal transport dataset distance (OTDD)

Interlude: **Optimal Transport**

In optimal transport, we solve

$$\inf \left\{ \int_{X \times Y} c(x, y) \, \mathrm{d}\gamma(x, y) \, \middle| \, \gamma \in \Gamma(\mu, \nu) \right\},$$

$$f = \sum_{x \in Y} c(x, y) \, \mathrm{d}\gamma(x, y) \, \middle| \, \gamma \in \Gamma(\mu, \nu) \right\},$$
Cost or distance The two marginals

of moving x to y

s we care about, i.e., on x and y

•Want to "move" distribution on x to one on y

- Output is a joint distribution with the original marginals
- But there's a cost to moving x to y, given by c(x,y)

ORCA: Distributional Distances

Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- •Need a distance function on these distributions
- •Here, optimal transport dataset distance (OTDD)

ORCA: Stage 3

Let's understand each stage of ORCA

- Stage 3: fine-tune the input and output network weights
 - For particular tasks
 - Or, could do any other variant of what we've talked about...

ORCA: Results

Extremely good, even against state-of-the-art results

- Compare to Neural Architecture Search (NAS)
 - Produces custom architectures that hit sota for various tasks
 - Same procedure on many types of tasks works well:

					J	•				
	CIFAR-100	Spherical	Darcy Flow	PSICOV	Cosmic	NinaPro	FSD50K	ECG	Satellite	DeepSEA
	0-1 error (%)	0-1 error (%)	relative ℓ_2	MAE_8	1-AUROC	0-1 error (%)	1- mAP	1 - F1 score	0-1 error (%)	1- AUROC
Hand-designed	19.39	67.41	8E-3	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360	23.39	48.23	2.6E-2	2.94	0.229	7.34	0.60	0.34	12.51	0.32
DASH	24.37	71.28	7.9E-3	3.30	0.19	6.60	0.60	0.32	12.28	0.28
Perceiver IO	70.04	82.57	2.4E-2	8.06	0.485	22.22	0.72	0.66	15.93	0.38
FPT	10.11	76.38	2.1E-2	4.66	0.233	15.69	0.67	0.50	20.83	0.37
ORCA	6.53	29.85	7.28E-3	1.91	0.152	7.54	0.56	0.28	11.59	0.29

Break & Questions

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

Model Editing

•Idea, MEND

Model Editing

So far, adapting to new tasks

- •But what if we just want to change the model? Why?
- •Models have outdated (or wrong!) information in them
- Need to update these facts... but fine-tuning on just one point can be hard
 - Overfit to the point
 - May change other aspects

Model Editing: MEND

Fast editing with Model Editor Networks with Gradient Decomposition (MEND)

• Mitchell et al '22

Editing a Pre-Trained Model with MEND

Bibliography

- Liu et al '22, Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel, "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning". (<u>https://openreview.net/forum?id=rBCvMG-JsPd</u>)
- Kumar et al '22, Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, "Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution" (<u>https://openreview.net/pdf?id=UYneFzXSJWh</u>)
- Shen et al '21, Zhiqiang Shen1, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng, "Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot Learning". (<u>https://arxiv.org/pdf/2102.03983.pdf</u>)
- Li and Liang '21, Lisa Li and Percy Liang, "Prefix-Tuning: Optimizing Continuous Prompts for Generation" (https://arxiv.org/abs/2101.00190)
- Houlsby et al '19, Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly, "Parameter-Efficient Transfer Learning for NLP" (https://arxiv.org/abs/1902.00751)

Thank You!