
CS 839: Foundation Models
Training

Fred Sala

University of Wisconsin-Madison

Oct. 12, 2023

Announcements

•Logistics:
•Homework 1 deadline today!
•Presentation information out:

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

•Class roadmap: Thursday Oct. 12 Training, Start RLHF

Tuesday Oct. 17 RLHF

Thursday Oct. 19 Data

Tuesday Oct. 24 Multimodal and Specialized
Foundation Models

Thursday Oct. 26 Knowledge

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

Outline

•Finishing Up Last Time
•Fine-tuning, adapting, cross-modal alignment methods,
model editing

•Training
•Scale, parallelization, memory optimization,
heterogenous training

•Reinforcement Learning From Human Feedback
•Basic idea, goals, mechanisms

Outline

•Finishing Up Last Time
•Fine-tuning, adapting, cross-modal alignment methods,
model editing

•Training
•Scale, parallelization, memory optimization,
heterogenous training

•Reinforcement Learning From Human Feedback
•Basic idea, goals, mechanisms

Kumar et al ‘22

Last time: Full Fine-Tuning Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data…
•Fine-Tuning can Distort Pretrained Features and Underperform Out-

of-Distribution

Last time: PEFT: Adapters

Want two things in parameter-efficient fine-tuning
•Good performance (accuracy, etc.)
•Parameter efficiency

•Solution: Adapters
•Small modules, inserted
in between model and trained

Another advantage: no change
to model, new modules for tasks

Houlsby et al ‘19

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

•LoRA makes an assumption on adapter layer structure
•Specifically, should be low-rank
• Intuition: the weight matrices already live close to a low-rank

manifold

•Transformers, apply only to attention

weight matrices

Hu et al ‘22

What About Other Modalities?

So far, mostly talked about language models.

•Suppose we want tasks that are not directly language-based

•Could just train a new model… but harder

Can we adapt language models? Lots of challenges:

•Must change data types

•How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al ‘21)

Basic idea:

•Change the input/output layers (here, linear)

•Layer norm parameters

•Everything else frozen

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al ‘23)

•Adds: distribution alignment step (align then refine)

ORCA: Stage 1

Let’s understand each stage of ORCA

•Stage 1: compatibility for inputs and
outputs

•Custom input and output embedders
that depend on the task

• Input example: convolutional layers for
image settings
•Output example: average pooling+linear

layer for classification

ORCA: Stage 2

Let’s understand each stage of ORCA

•Stage 2: distribution alignment

•Intuition:
•Change embeddings so target features

resemble source features

•Learn the function ft that minimizes
distance between

 (ft(xt),yt) and (fs(xs),ys)

ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys)

•How? Need a distance function on these distributions

•Let’s use the optimal transport dataset distance (OTDD)

Alvarez-Melis and Fusi, ‘20

In optimal transport, we solve

•Want to “move” distribution on x to one on y
•Output is a joint distribution with the original source and target

•But there’s a cost to moving x to y, given by c(x,y)

Interlude: Optimal Transport

Cost or distance
of moving x to y

The two marginals we care
about, i.e., on x and y

In optimal transport, we solve

•Cost given by distance: Wasserstein distance

•Gives a distance on distributions, i.e.,

Interlude: Optimal Transport

What should this cost/distance c(x,y) be for us?

•For inputs x, pretty easy: feature vectors in spaces that have
distances, e.g., ||x-x’||

•For outputs y, not so easy

•A clever idea:
•Replace y with P(X|y)

•Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’))
•Approximate this with a Gaussian: closed form too!

Interlude: Dataset Distance

-

ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys)

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)

i.e., Euclidean
distance

p-Wasserstein distance on
P(x|y)

ORCA: Stage 3

Let’s understand each stage of ORCA

•Stage 3: fine-tune the input and
output network weights

•For particular tasks
•Or, could do any other variant of what

we’ve talked about…

ORCA: Results

Extremely good, even against state-of-the-art results

•Compare to Neural Architecture Search (NAS)
•Produces custom architectures that hit sota for various tasks
•Same procedure on many types of tasks works well:

Model Editing

So far, adapting to new tasks

•But what if we just want to change the model?

Why?

•Models have outdated (or wrong!) information in them

•Need to update these facts… but fine-tuning on just one
point can be hard
•Overfit to the point
•May change other aspects

Break & Questions

Outline

•Finishing Up Last Time
•Fine-tuning, adapting, cross-modal alignment methods,
model editing

•Training
•Scale, parallelization, memory optimization,
heterogenous training

•Reinforcement Learning From Human Feedback
•Basic idea, goals, mechanisms

Training Foundation Models: Scale

Llama family of models,

•“we estimate that we used 2048 A100-80GB for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),

•“training OPT-175B on 992 80GB A100 GPUs”

Touvron et al, 23

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•Classic centralized distributed training
•Synchronize each local gradient update
•Send synchronized vector back to each node (lots of

communication!)

Computation Nodes

Central Server

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•This is by itself impossible (each node can’t handle full model
for large models)

•Need further parallelism:
•Data: each node sees a different slice of data
•Weights/tensors: chunks so no GPU sees whole model
•Pipeline: only a few layers per GPU

•Great resource:
https://huggingface.co/blog/bloom-megatron-deepspeed

Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations

•A little bit of fast memory, lots of slower memory

•Avoid using slow memory when possible
•FlashAttention: Tiling + computing tricks

Dao et al ‘22

Break & Questions

Outline

•Finishing Up Last Time
•Fine-tuning, adapting, cross-modal alignment methods,
model editing

•Training
•Scale, parallelization, memory optimization,
heterogenous training

•Reinforcement Learning From Human Feedback
•Basic idea, goals, mechanisms

RLHF: Basic Motivation

Goal: produce language model outputs that users like better…

•Hard to specify exactly what this means,

•Easy to query users

Collect human feedback and use it to change the model

•Can do this by fine-tuning, especially with instructions

•Doesn’t quite capture what users want

RLHF: Setup

Goal: produce language model outputs that users like better…

Chip Huyen

RLHF: Feedback

First stage: get human feedback to train reward model

•Fix a set of prompts

•Take two language models and produce outputs for each
prompt

•Ask human users which is better
•Binary output

RLHF: Reward/Preference Model

Second stage: train reward model

•Use the human feedback to train/fine-tune another model to
reproduce the metric

•Preference model

https://huggingface.co/blog/rlhf

RLHF: Fine-Tuning with RL

Third stage: RL

•Use an RL algorithm

•Goal: produce outputs that have high reward

RL formulation:

•Action space: all the tokens possible to output

•State space: all the sequences of tokens

•Reward function: the trained model (some variations)

•Policy: the new version of the LM, taking in prompts and
returning output

Bibliography

• Kumar et al ’22: Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, “Fine-Tuning can Distort Pretrained Features and
Underperform Out-of-Distribution” (https://openreview.net/pdf?id=UYneFzXSJWh)

• Houlsby et al ’19: Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan,
Sylvain Gelly, “Parameter-Efficient Transfer Learning for NLP” (https://arxiv.org/abs/1902.00751)

• Hu et al ’22: Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, “LoRA: Low-Rank Adaptation
of Large Language Models” (https://arxiv.org/abs/2106.09685)

• Lu et al ’21: Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch , “Pretrained Transformers as Universal Computation Engines”
(https://arxiv.org/abs/2103.05247)

• Shen et al ’23: Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar, “Cross-Modal Fine-Tuning: Align
then Refine” (https://arxiv.org/abs/2302.05738)

• Alvarez-Melis and Fusi, ’20: David Alvarez-Melis, Nicolo Fusi, “Geometric Dataset Distances via Optimal Transport” (https://arxiv.org/abs/2002.02923)

• Touvron et al ‘23: Hugo Touvron and many others, “LLaMA: Open and Efficient Foundation Language Models” (https://arxiv.org/abs/2302.13971)

• Stas Bekman: https://huggingface.co/blog/bloom-megatron-deepspeed

• Dao et al ‘22: Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré, “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-
Awareness” (https://arxiv.org/abs/2205.14135)

• Chip Huyen: https://huyenchip.com/2023/05/02/rlhf.html

• Nathan Lambert et al: https://huggingface.co/blog/rlhf

https://openreview.net/pdf?id=UYneFzXSJWh
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2302.05738
https://arxiv.org/abs/2002.02923
https://arxiv.org/abs/2302.13971
https://huggingface.co/blog/bloom-megatron-deepspeed
https://arxiv.org/abs/2205.14135
https://huyenchip.com/2023/05/02/rlhf.html

Thank You!

	Slide 1: CS 839: Foundation Models Training
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Last time: Full Fine-Tuning Downsides
	Slide 6: Last time: PEFT: Adapters
	Slide 7: PEFT: Low-Rank Adapters (LoRA)
	Slide 8: What About Other Modalities?
	Slide 9: Cross-Modal: FPTs
	Slide 10: Cross-Modal: ORCA
	Slide 11: ORCA: Stage 1
	Slide 12: ORCA: Stage 2
	Slide 13: ORCA: Distributional Distances
	Slide 14: Interlude: Optimal Transport
	Slide 15: Interlude: Optimal Transport
	Slide 16: Interlude: Dataset Distance
	Slide 17: ORCA: Distributional Distances
	Slide 18: ORCA: Stage 3
	Slide 19: ORCA: Results
	Slide 20: Model Editing
	Slide 21: Break & Questions
	Slide 22: Outline
	Slide 23: Training Foundation Models: Scale
	Slide 24: Training Foundation Models: Parallelization
	Slide 25: Training Foundation Models: Parallelization
	Slide 26: Training Foundation Models: GPU Usage
	Slide 27: Break & Questions
	Slide 28: Outline
	Slide 29: RLHF: Basic Motivation
	Slide 30: RLHF: Setup
	Slide 31: RLHF: Feedback
	Slide 32: RLHF: Reward/Preference Model
	Slide 33: RLHF: Fine-Tuning with RL
	Slide 34: Bibliography
	Slide 35: Thank You!

