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Announcements

*Logistics:
*Homework 1 deadline today!

*Presentation information out:
https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation info.pdf

(Class0a0MaP: mayocss e

Tuesday Oct. 17 RLHF
Thursday Oct. 19 Data
Tuesday Oct. 24 Multimodal and Specialized

Foundation Models

Thursday Oct. 26 Knowledge


https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

Outline

*Finishing Up Last Time
*Fine-tuning, adapting, cross-modal alignment methods,
model editing

*Training
*Scale, parallelization, memory optimization,
heterogenous training

*Reinforcement Learning From Human Feedback
*Basic idea, goals, mechanisms



Outline

*Finishing Up Last Time
*Fine-tuning, adapting, cross-modal alignment methods,
model editing



Last time: Full Fine-Tuning Downsides

Fine-tuning all parameters is tough:
1. Expensive: just like training a full model

2. Known to cause issues on OOD data...

* Fine-Tuning can Distort Pretrained Features and Underperform Out-
of-Distribution

Pretraining (a) Fine-tuning (b) Linear probing (c) LP-FT
Feat Random! Backprop Randoml Backprop Initialize Backprop
i OOO oy O T e, O
head head
%} Fmglsegres OO
npits OO0 OO0 OO0
ID test 85.1% 82.9% 85.7%
OOD test 59.3% 66.2% 68.9%

Average accuracies (10 distribution shifts)

Kumar et al ‘22



Last time: PEFT: Adapters

Want two things in parameter-efficient fine-tuning

*Good performance (accuracy, etc.)
* Parameter efficiency

*Solution: Adapters
* Small modules, inserted
in between model and trained

Another advantage: no change
to model, new modules for tasks
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PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

*LoRA makes an assumption on adapter layer structure

* Specifically, should be low-rank
* Intuition: the weight matrices already live close to a low-rank
manifold

*Transformers, apply only to attention
. . Pretrained
weight matrices Weights

Hu et al 22



What About Other Modalities?

So far, mostly talked about language models.
*Suppose we want tasks that are not directly language-based
*Could just train a new model... but harder

Can we adapt language models? Lots of challenges:
* Must change data types
*How do we know modalities are usable together?



Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al 21)
Basic idea:

*Change the input/output layers (here, linear)

*Layer norm parameters

*Everything else frozen

Positional L frozen self-attention blocks
Embeddings x L
v v
Input Multi-Head Add & Feed Add & Output
Embedding Attention Layer Norm Forward Layer Norm Layer

Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

S

Lu et al, 21



Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al 23)
* Adds: distribution alignment step (align then refine)
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ORCA: Stage 1

Let’s understand each stage of ORCA

*Stage 1: compatibility for inputs and
outputs

e Custom input and output embedders
that depend on the task

* Input example: convolutional layers for
Image settings

* Qutput example: average pooling+linear
layer for classification

Stage 1: Dimensionality

Alignment
zt y’
v )
ft ht

Task-Specific Task-Specific
Embedder Predictor



ORCA: Stage 2

Let’s understand each stage of ORCA

*Stage 2: distribution alignment

*Intuition:

* Change embeddings so target features
resemble source features

*Learn the function ffthat minimizes
distance between

(f10x),y") and (F0¢),y°)
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ORCA: Distributional Distances

Want: learn the function fthat minimizes distance between

(F(x),y7) and (F(x),y°)

*How? Need a distance function on these distributions
*Let’s use the optimal transport dataset distance (OTDD)
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Interlude: Optimal Transport

In optimal transport, we solve

n{ [ cle,p)datan) v € D) |

| |

Cost or distance The two marginals we care
of moving xtoy about, i.e.,onxandy

*Want to “move” distribution on x to one on y
* Qutput is a joint distribution with the original source and target

*But there’s a cost to moving x to y, given by c(x,y)



Interlude: Optimal Transport

In optimal transport, we solve

n{ [ el datan) v € D) |

*Cost given by distance: Wasserstein distance
*Gives a distance on distributions, i.e.,

1/p
W, (u,v) = ( inf E(mjy)m,}.d(m,y)p)
el (p,v)



Interlude: Dataset Distance

What should this cost/distance c(x,y) be for us?

*For inputs x, pretty easy: feature vectors in spaces that have
distances, e.g., | |x-x"| |

*For outputs y, not so easy M
@ ®

*A clever idea: gy -

* Replace y with P(X]y) " 5
\ | ’

*Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’))
* Approximate this with a Gaussian: closed form too!




ORCA: Distributional Distances

Want: learn the function fthat minimizes distance between

(F(x),y7) and (F(x),y°)

*Need a distance function on these distributions
*Here, optimal transport dataset distance (OTDD)

dz ((,y), (@',3) 2 (dac(ar, ') + Wh(ay,0)) "

| 1

i.e., Euclidean p-Wasserstein distance on
distance P(x]|y)



ORCA: Stage 3

Let’s understand each stage of ORCA

Stage 3: Refine
Model Weights

*Stage 3: fine-tune the input and : ,

output network weights 3-1 Y
e For particular tasks ft
*Or, could do any other variant of what l
we’ve talked about... qg°

Y

:t Fine-Tune for
lask Loss




ORCA: Results

Extremely good, even against state-of-the-art results

Compare to Neural Architecture Search (NAS)
* Produces custom architectures that hit sota for various tasks
e Same procedure on many types of tasks works well:

wr

CIFAR-100 Spherical Darcy Flow PSICOV  Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) O-1 error (%) relative /s MAEgs 1-AUROC O0-1error (%) 1-mAP 1-Fl1score O0-1error(%) 1- AUROC
Hand-designed 19.39 67.41 8E-3 3.35 0.127 8.73 0.62 0.28 19.80 0.30
NAS-Bench-360 23.39 48.23 2.6E-2 2.94 0.229 7.34 0.60 0.34 12.51 0.32
DASH 24.37 71.28 7.9E-3 3.30 0.19 6.60 0.60 0.32 12.28 0.28
Perceiver 10 70.04 82.57 2.4E-2 8.06 0.485 22.22 0.72 0.66 15.93 0.38
FPT 10.11 76.38 2.1E-2 4.66 0.233 15.69 0.67 0.50 20.83 0.37

ORrcCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29




Model Editing

So far, adapting to new tasks

*But what if we just want to change the model?

Why?

*Models have outdated (or wrong!) information in them

*Need to update these facts... but fine-tuning on just one
point can be hard
* Overfit to the point
* May change other aspects
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Outline

*Training
*Scale, parallelization, memory optimization,
heterogenous training



Training Foundation Models: Scale

Llama family of models,

*“we estimate that we used 2048 A100-80G8B for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),
*“training OPT-175B on 992 80GB A100 GPUs”

GPU Power Total power  Carbon emutted

GPU Type consumption GPU-hours consumption (tCOzeq)
OPT-175B A100-80GB 400W 800,472 356 MWh 137
BLOOM-175B A100-80GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-80GB 400W 82,432 36 MWh 14
LLaMA-13B A100-80GB 400W 135,168 59 MWh 23
LLaMA-33B A100-830GB 400W 530,432 233 MWh 90
LLaMA-65B A100-80GB 400W 1,022,362 449 MWh 173

Touvron et al, 23



Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*Classic centralized distributed training
* Synchronize each local gradient update
* Send synchronized vector back to each node (lots of

communication!)
@ Central Server

R TN

Computation Nodes




Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*This is by itself impossible (each node can’t handle full model
for large models)

*Need further parallelism:
e Data: each node sees a different slice of data

*Pipeline: only a few layers per GPU ol 3 =

*Great resource: R o o Pt o o v o R

Device 1

B

B Baso

B B B
B Be: | B

https://huggingface.co/blog/bloom-megatron-deepspeed




Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations
*A little bit of fast memory, lots of slower memory

* Avoid using slow memory when possible
* FlashAttention: Tiling + computing tricks

Attention on GPT-2

:| Matmul

<
=
=
(=%

—

0

:19TB/s (20 MB) Dropout
HBM: 1.5TB/s (40GB) 2 S e | o| E10-
8 . > Block I = Softmax
g I | ~| E
:12.8GB/s = Lo N o | F 5. Fused
(>1TB) N e Mask  Kernel
o = rm
| |

j Matmul

_________

Memory Hierarchy with Output to HBM

Bandwidth & Memory Size

o
1

sm(QKT)V: Nxd PyTorch FlashAttention

Inner Loop

FlashAttention

Dao et al ‘22
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Outline

*Reinforcement Learning From Human Feedback
*Basic idea, goals, mechanisms



RLHF: Basic Motivation

Goal: produce language model outputs that users like better...
*Hard to specify exactly what this means,
*Easy to query users

Collect human feedback and use it to change the model
*Can do this by fine-tuning, especially with instructions
*Doesn’t quite capture what users want
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RLHF: Setup

Goal: produce language model outputs that users like better...

Low quality data High quality data E Human feedback RLHF i
i |
Text Demonstration : Comparison Prompts }
e.g. Internet data data l data g :
. . i Trained to give Optimized to generate i
ODtlmllfd for Fmetu.ned for E a scalar score for responses that maximize :
text completion dialogue ! (prompt, response) scores by reward model l
Langugge Syperw;ed Classification Relnforcgment |
modeling finetuning : Learning !
! ‘
Pretrained LLM — SFT model —— Reward model Final model
Scale >1 trillion 10K - 100K 100K - 1M comparisons 10K - 100K
May ‘23 tokens (prompt, response) (prompt, winning_response, losing_response) prompts
Examples GPT-x, Gopher, Falcon, Dolly-v2, Falcon-Instruct InstructGPT, ChatGPT,
Bolded: open  LLaMa, Pythia, Bloom, Claude, StableVicuna
sourced StableLM

Chip Huyen



RLHF: Feedback

First stage: get human feedback to train reward model

*Fix a set of prompts

*Take two language models and produce outputs for each
prompt

e Ask human users which is better
* Binary output




RLHF: Reward/Preference Model

Second stage: train reward model
*Use the human feedback to train/fine-tune another model to

reproduce the metric
*Preference model

Prompts Dataset
Reward (Preference)

Model

H'~T‘9

Sample many prompts

L

Initial Language Model Lorem ipsum dolor

@ 7 = i onec quam felis
‘(-'-':r A o ; vulputate eget, arc
4AUNY 7 | ¥ A JR—
[ SN 4 Nam guam nunc
Yy y

eros faucibus tinci{  Human scoring
i e

[
N
YA

https://huggingface.co/blog/rlhf



RLHF: Fine-Tuning with RL

Third stage: RL
*Use an RL algorithm
*Goal: produce outputs that have high reward

RL formulation:

* Action space: all the tokens possible to output

*State space: all the sequences of tokens

*Reward function: the trained model (some variations)

*Policy: the new version of the LM, taking in prompts and
returning output
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Thank You!
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