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Announcements

•Logistics:
•Homework 1 deadline today!
•Presentation information out: 

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

•Class roadmap: Thursday Oct. 12 Training, Start RLHF

Tuesday Oct. 17 RLHF

Thursday Oct. 19 Data

Tuesday Oct. 24 Multimodal and Specialized 
Foundation Models

Thursday Oct. 26 Knowledge

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf
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•Fine-tuning, adapting, cross-modal alignment methods, 
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•Reinforcement Learning From Human Feedback
•Basic idea, goals, mechanisms
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Kumar et al ‘22

Last time: Full Fine-Tuning Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data…
•Fine-Tuning can Distort Pretrained Features and Underperform Out-

of-Distribution



Last time: PEFT: Adapters

Want two things in parameter-efficient fine-tuning
•Good performance (accuracy, etc.)
•Parameter efficiency

•Solution: Adapters
•Small modules, inserted 
in between model and trained

Another advantage: no change
to model, new modules for tasks

Houlsby et al ‘19



PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

•LoRA makes an assumption on adapter layer structure
•Specifically, should be low-rank
• Intuition: the weight matrices already live close to a low-rank 

manifold

•Transformers, apply only to attention

weight matrices

Hu et al ‘22



What About Other Modalities?

So far, mostly talked about language models.

•Suppose we want tasks that are not directly language-based

•Could just train a new model… but harder 

Can we adapt language models? Lots of challenges:

•Must change data types

•How do we know modalities are usable together?



Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al ‘21)

Basic idea:

•Change the input/output layers (here, linear)

•Layer norm parameters

•Everything else frozen

Lu et al, 21



Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al ‘23)

•Adds: distribution alignment step (align then refine)



ORCA: Stage 1

Let’s understand each stage of ORCA

•Stage 1: compatibility for inputs and 
outputs

•Custom input and output embedders 
that depend on the task

• Input example: convolutional layers for 
image settings
•Output example: average pooling+linear 

layer for classification



ORCA: Stage 2

Let’s understand each stage of ORCA

•Stage 2: distribution alignment

•Intuition:
•Change embeddings so target features 

resemble source features

•Learn the function ft that minimizes 
distance between

 (ft(xt),yt) and (fs(xs),ys) 



ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys) 

•How? Need a distance function on these distributions

•Let’s use the optimal transport dataset distance (OTDD)

Alvarez-Melis and Fusi, ‘20



In optimal transport, we solve

•Want to “move” distribution on x to one on y
•Output is a joint distribution with the original source and target

•But there’s a cost to moving x to y, given by c(x,y)  

Interlude: Optimal Transport

Cost or distance 
of moving x to y

The two marginals we care 
about, i.e., on x and y



In optimal transport, we solve

•Cost given by distance: Wasserstein distance

•Gives a distance on distributions, i.e., 

Interlude: Optimal Transport



What should this cost/distance c(x,y) be for us?

•For inputs x, pretty easy: feature vectors in spaces that have 
distances, e.g., ||x-x’||

•For outputs y, not so easy

•A clever idea:
•Replace y with P(X|y)

•Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’)) 
•Approximate this with a Gaussian: closed form too!

Interlude: Dataset Distance

-



ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys) 

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)

i.e., Euclidean 
distance

p-Wasserstein distance on 
P(x|y)



ORCA: Stage 3

Let’s understand each stage of ORCA

•Stage 3: fine-tune the input and 
output network weights 

•For particular tasks
•Or, could do any other variant of what 

we’ve talked about…



ORCA: Results

Extremely good, even against state-of-the-art results

•Compare to Neural Architecture Search (NAS)
•Produces custom architectures that hit sota for various tasks
•Same procedure on many types of tasks works well:



Model Editing

So far, adapting to new tasks

•But what if we just want to change the model?

Why?

•Models have outdated (or wrong!) information in them

•Need to update these facts… but fine-tuning on just one 
point can be hard
•Overfit to the point
•May change other aspects



Break & Questions
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Training Foundation Models: Scale

Llama family of models, 

•“we estimate that we used 2048 A100-80GB for a period of 
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),

•“training OPT-175B on 992 80GB A100 GPUs”

Touvron et al, 23



Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•Classic centralized distributed training
•Synchronize each local gradient update 
•Send synchronized vector back to each node (lots of 

communication!) 

Computation Nodes

Central Server



Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•This is by itself impossible (each node can’t handle full model 
for large models)

•Need further parallelism: 
•Data: each node sees a different slice of data
•Weights/tensors: chunks so no GPU sees whole model
•Pipeline: only a few layers per GPU

•Great resource: 
https://huggingface.co/blog/bloom-megatron-deepspeed



Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations

•A little bit of fast memory, lots of slower memory

•Avoid using slow memory when possible
•FlashAttention: Tiling + computing tricks

Dao et al ‘22



Break & Questions
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RLHF: Basic Motivation

Goal: produce language model outputs that users like better…

•Hard to specify exactly what this means,

•Easy to query users

Collect human feedback and use it to change the model

•Can do this by fine-tuning, especially with instructions

•Doesn’t quite capture what users want



RLHF: Setup

Goal: produce language model outputs that users like better…

Chip Huyen



RLHF: Feedback

First stage: get human feedback to train reward model

•Fix a set of prompts

•Take two language models and produce outputs for each 
prompt

•Ask human users which is better
•Binary output



RLHF: Reward/Preference Model

Second stage: train reward model

•Use the human feedback to train/fine-tune another model to 
reproduce the metric

•Preference model

https://huggingface.co/blog/rlhf



RLHF: Fine-Tuning with RL

Third stage: RL

•Use an RL algorithm

•Goal: produce outputs that have high reward

RL formulation:

•Action space: all the tokens possible to output

•State space: all the sequences of tokens

•Reward function: the trained model (some variations)

•Policy: the new version of the LM, taking in prompts and 
returning output
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Thank You!
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