

CS 839: Foundation Models Training

Fred Sala

University of Wisconsin-Madison

Oct. 12, 2023

Announcements

•Logistics:

- •Homework 1 deadline **today**!
- Presentation information out:

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

•Class roadmap:

Thursday Oct. 12	Training, Start RLHF
Tuesday Oct. 17	RLHF
Thursday Oct. 19	Data
Tuesday Oct. 24	Multimodal and Specialized Foundation Models
Thursday Oct. 26	Knowledge

Outline

•Finishing Up Last Time

• Fine-tuning, adapting, cross-modal alignment methods, model editing

Training

•Scale, parallelization, memory optimization, heterogenous training

Reinforcement Learning From Human Feedback

•Basic idea, goals, mechanisms

Outline

•Finishing Up Last Time

•Fine-tuning, adapting, cross-modal alignment methods, model editing

•Training

•Scale, parallelization, memory optimization, heterogenous training

Reinforcement Learning From Human Feedback
Basic idea, goals, mechanisms

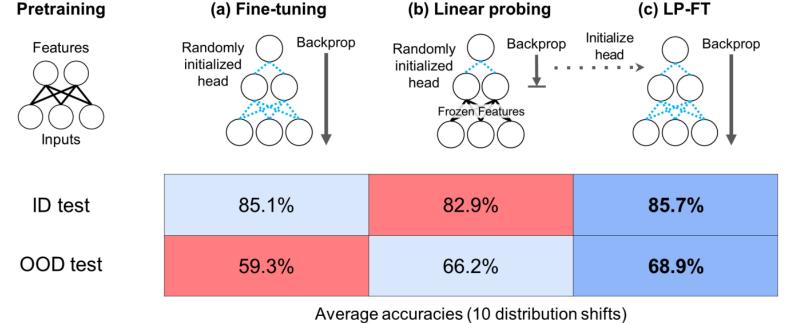
Last time: Full Fine-Tuning Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data...

• Fine-Tuning can Distort Pretrained Features and Underperform Outof-Distribution



Kumar et al '22

Last time: PEFT: Adapters

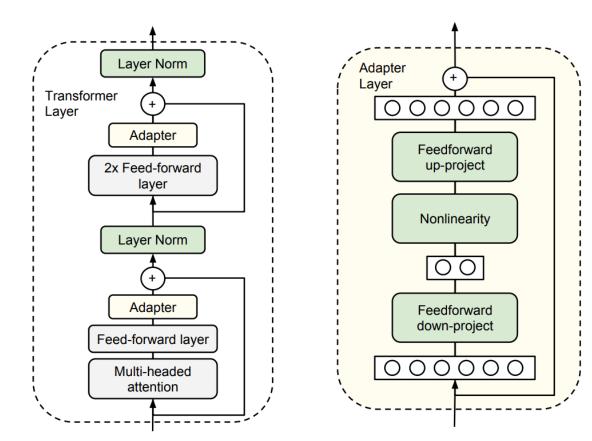
Want two things in parameter-efficient fine-tuning

- •Good performance (accuracy, etc.)
- Parameter efficiency

•Solution: Adapters

• Small modules, inserted in between model and trained

Another **advantage:** no change to model, new modules for tasks

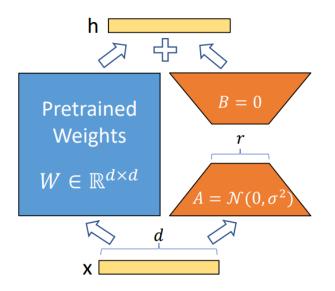


Houlsby et al '19

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

- •LoRA makes an assumption on adapter layer structure
 - Specifically, should be low-rank
 - Intuition: the weight matrices already live close to a low-rank manifold
- Transformers, apply only to attention weight matrices



What About Other Modalities?

So far, mostly talked about language models.

- Suppose we want tasks that are not directly language-based
- •Could just train a new model... but harder

Can we adapt language models? Lots of challenges:

- Must change data types
- How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al '21) Basic idea:

- Change the **input/output layers** (here, linear)
- •Layer norm parameters
- Everything else frozen

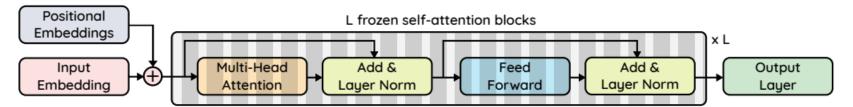


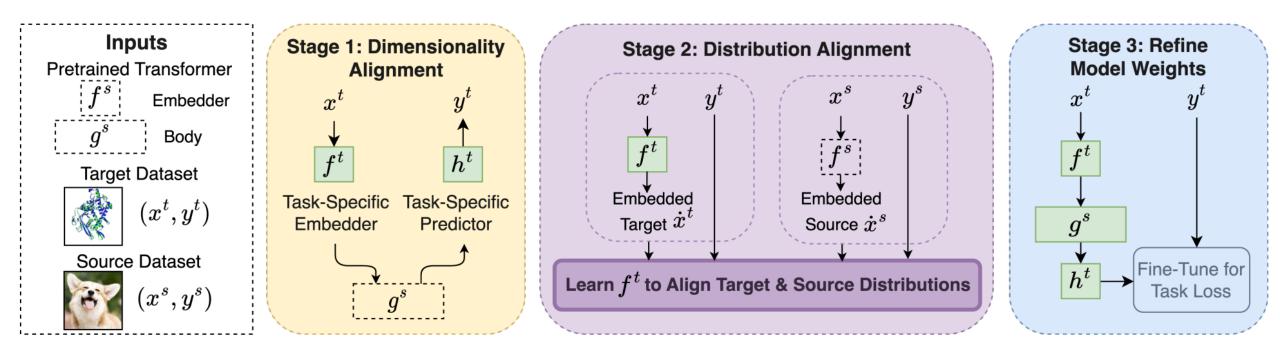
Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

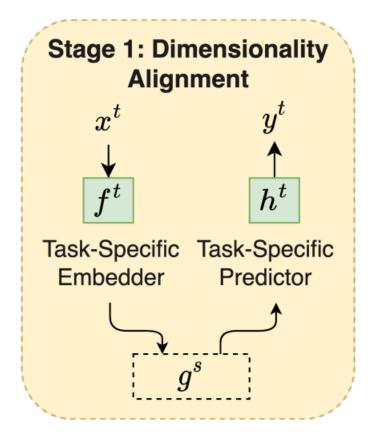
A more powerful approach: ORCA (Shen et al '23) •Adds: distribution alignment step (align then refine)



ORCA: Stage 1

Let's understand each stage of ORCA

- •Stage 1: compatibility for inputs and outputs
- •Custom input and output embedders that depend on the task
 - Input example: convolutional layers for image settings
 - Output example: average pooling+linear layer for classification

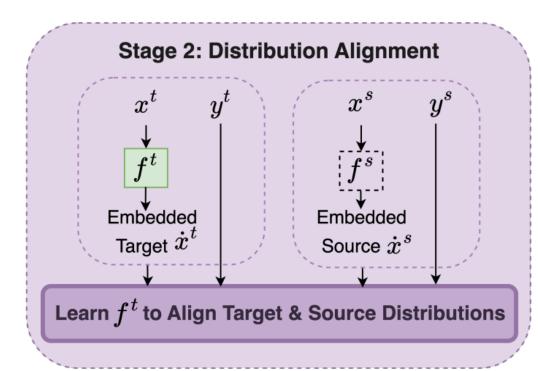


ORCA: Stage 2

Let's understand each stage of ORCA

- Stage 2: distribution alignment
- Intuition:
 - Change embeddings so target features **resemble** source features
- •Learn the function *f*^t that minimizes distance between

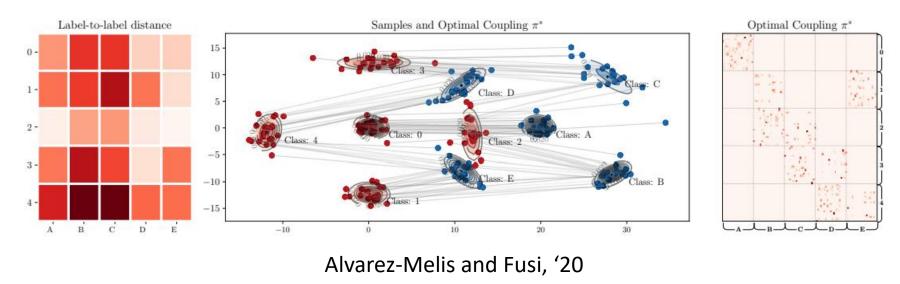
 $(f^{t}(x^{t}), y^{t})$ and $(f^{s}(x^{s}), y^{s})$



ORCA: Distributional Distances

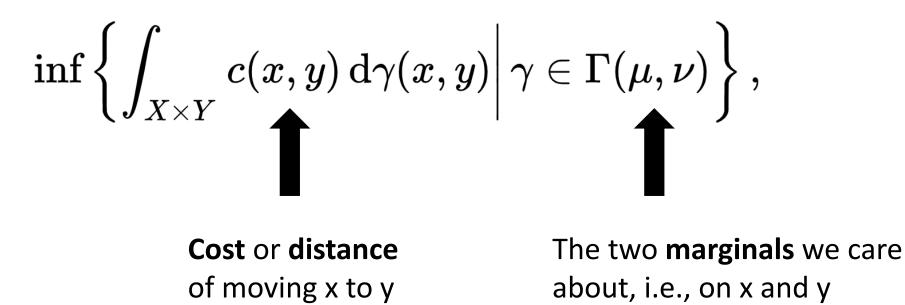
Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- •How? Need a distance function on these distributions
- •Let's use the optimal transport dataset distance (OTDD)



Interlude: Optimal Transport

In optimal transport, we solve



•Want to "move" distribution on x to one on y

- Output is a joint distribution with the original source and target
- •But there's a cost to moving x to y, given by c(x,y)

Interlude: Optimal Transport

In optimal transport, we solve

$$\inf\left\{\int_{X imes Y} c(x,y) \,\mathrm{d}\gamma(x,y) \,\middle|\, \gamma\in\Gamma(\mu,
u)
ight\},$$

Cost given by distance: Wasserstein distance
Gives a distance on distributions, i.e.,

$$W_p(\mu,
u) = \left(\inf_{\gamma\in\Gamma(\mu,
u)} {f E}_{(x,y)\sim\gamma} d(x,y)^p
ight)^{1/p}$$

Interlude: Dataset Distance

What should this cost/distance c(x,y) be for us?

- •For inputs x, pretty easy: feature vectors in spaces that have distances, e.g., ||x-x'||
- •For outputs y, not so easy
- •A clever idea:
 - Replace y with P(X|y)

Even harder? No, just use Wasserstein: W(P(X|y),P(X|y'))
Approximate this with a Gaussian: closed form too!

ORCA: Distributional Distances

Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- Need a distance function on these distributions
- •Here, optimal transport dataset distance (OTDD)

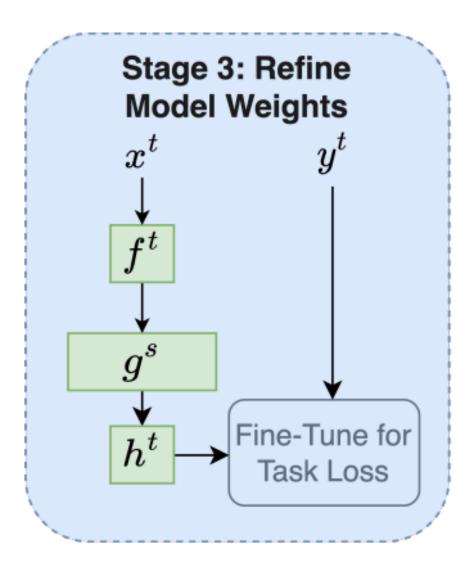
$$d_{\mathcal{Z}}((x,y),(x',y')) \triangleq \left(d_{\mathcal{X}}(x,x')^{p} + \mathbf{W}_{p}^{p}(\alpha_{y},\alpha_{y'})\right)^{1/p}$$

$$i.e., \text{Euclidean} \qquad p-\text{Wasserstein distance or } p(x|y)$$

ORCA: Stage 3

Let's understand each stage of ORCA

- Stage 3: fine-tune the input and output network weights
 - For particular tasks
 - Or, could do any other variant of what we've talked about...



ORCA: Results

Extremely good, even against state-of-the-art results

- Compare to Neural Architecture Search (NAS)
 - Produces custom architectures that hit sota for various tasks
 - Same procedure on many types of tasks works well:

	A /			U	•					
	CIFAR-100 0-1 error (%)	Spherical 0-1 error (%)	Darcy Flow relative ℓ_2	PSICOV MAE ₈	Cosmic 1-AUROC	NinaPro 0-1 error (%)	FSD50K 1- mAP	ECG 1 - F1 score	Satellite 0-1 error (%)	DeepSEA 1- AUROC
Hand-designed	19.39	67.41	8E-3	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360 DASH	23.39 24.37	48.23 71.28	2.6E-2 7.9E-3	2.94 3.30	0.229 0.19	7.34 6.60	0.60 0.60	0.34 0.32	12.51 12.28	0.32 0.28
Perceiver IO FPT	70.04 10.11	82.57 76.38	2.4E-2 2.1E-2	8.06 4.66	0.485 0.233	22.22 15.69	0.72 0.67	0.66 0.50	15.93 20.83	0.38 0.37
ORCA	6.53	29.85	7.28E-3	1.91	0.152	7.54	0.56	0.28	11.59	0.29

Model Editing

So far, adapting to new tasks

- •But what if we just want to change the model? Why?
- •Models have outdated (or wrong!) information in them
- Need to update these facts... but fine-tuning on just one point can be hard
 - Overfit to the point
 - May change other aspects

Break & Questions

Outline

•Finishing Up Last Time

• Fine-tuning, adapting, cross-modal alignment methods, model editing

Training

•Scale, parallelization, memory optimization, heterogenous training

Reinforcement Learning From Human Feedback
Basic idea, goals, mechanisms

Training Foundation Models: Scale

Llama family of models,

• "we estimate that we used 2048 A100-80GB for a period of approximately 5 months to develop our models"

OPT (Open Pre-trained Transformers),

• "training OPT-175B on 992 80GB A100 GPUs"

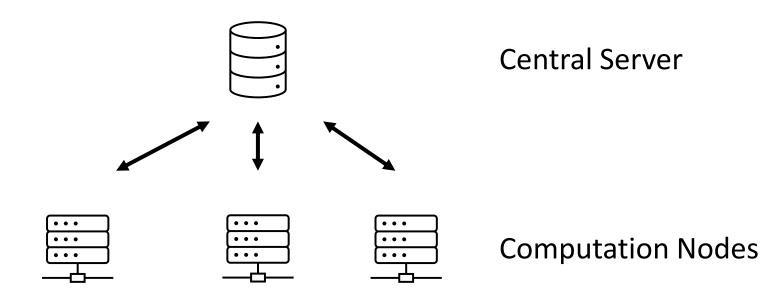
	GPU Type	GPU Power consumption	GPU-hours	Total power consumption	Carbon emitted (tCO ₂ eq)	
OPT-175B	A100-80GB	400W	809,472	356 MWh	137	
BLOOM-175B	A100-80GB	400W	1,082,880	475 MWh	183	
LLaMA-7B	A100-80GB	400W	82,432	36 MWh	14	
LLaMA-13B	A100-80GB	400W	135,168	59 MWh	23	
LLaMA-33B	A100-80GB	400W	530,432	233 MWh	90	
LLaMA-65B	A100-80GB	400W	1,022,362	449 MWh	173	

Touvron et al, 23

Training Foundation Models: Parallelization

Traditional approach is to **distribute** training loads

- Classic centralized distributed training
 - Synchronize each local gradient update
 - Send synchronized vector back to each node (lots of communication!)



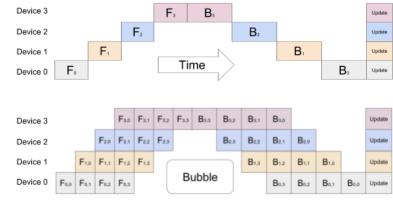
Training Foundation Models: Parallelization

Traditional approach is to **distribute** training loads

- •This is by itself impossible (each node *can't* handle full model for large models)
- •Need further parallelism:
 - Data: each node sees a different slice of data
 - Weights/tensors: chunks so no GPU sees whole model
 - Pipeline: only a few layers per GPU

•Great resource:

https://huggingface.co/blog/bloom-megatron-deepspeed

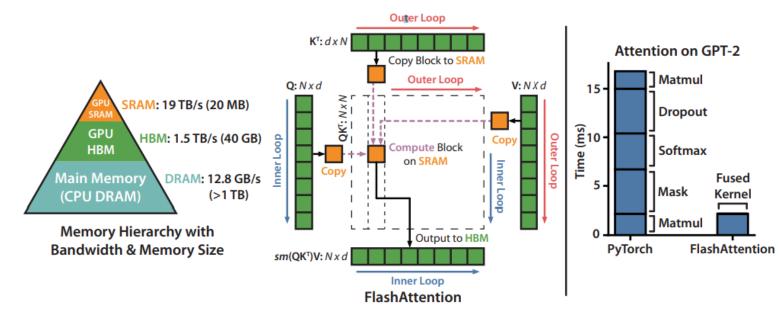


Top: The naive model parallelism strategy leads to severe underutilization due to the sequential nature of the network. Only one accelerator is active at a time. **Bottom:** GPipe divides the input mini-batch into smaller micro-batches, enabling different accelerators to work on separate micro-batches at the same time.

Training Foundation Models: GPU Usage

Even for each GPU, there's additional considerations

- •A little bit of fast memory, lots of slower memory
- Avoid using slow memory when possible
 - FlashAttention: Tiling + computing tricks



Dao et al '22

Break & Questions

Outline

•Finishing Up Last Time

- •Fine-tuning, adapting, cross-modal alignment methods, model editing
- •Training
 - •Scale, parallelization, memory optimization, heterogenous training

Reinforcement Learning From Human Feedback

•Basic idea, goals, mechanisms

RLHF: Basic Motivation

Goal: produce language model outputs that users like better...

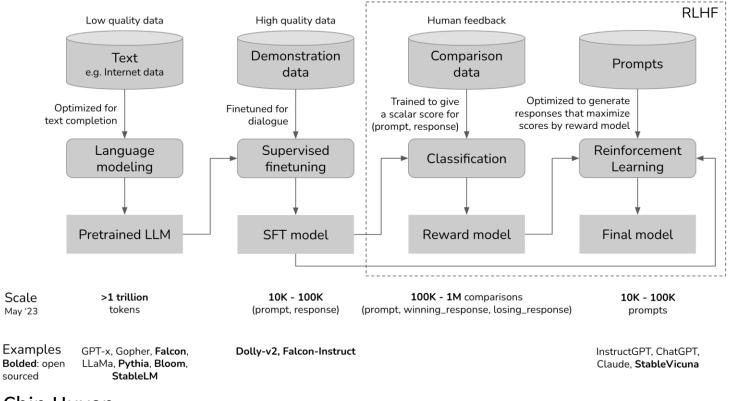
- •Hard to specify exactly what this means,
- Easy to query users

Collect human feedback and use it to change the model

- •Can do this by fine-tuning, especially with instructions
- Doesn't quite capture what users want

RLHF: Setup

Goal: produce language model outputs that users like better...



Chip Huyen

RLHF: Feedback

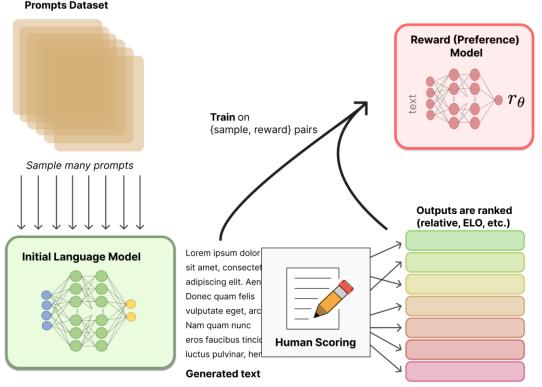
First stage: get human feedback to train reward model

- Fix a set of prompts
- Take two language models and produce outputs for each prompt
- •Ask human users **which is better**
 - Binary output

RLHF: Reward/Preference Model

Second stage: train reward model

- •Use the human feedback to train/fine-tune another model to reproduce the metric
- Preference model



https://huggingface.co/blog/rlhf

RLHF: Fine-Tuning with RL

Third stage: RL

- •Use an RL algorithm
- •Goal: produce outputs that have high reward

RL formulation:

- •Action space: all the tokens possible to output
- State space: all the sequences of tokens
- Reward function: the trained model (some variations)
- **Policy**: the new version of the LM, taking in prompts and returning output

Bibliography

- Kumar et al '22: Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, "Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution" (<u>https://openreview.net/pdf?id=UYneFzXSJWh</u>)
- Houlsby et al '19: Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly, "Parameter-Efficient Transfer Learning for NLP" (https://arxiv.org/abs/1902.00751)
- Hu et al '22: Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, "LoRA: Low-Rank Adaptation of Large Language Models" (<u>https://arxiv.org/abs/2106.09685</u>)
- Lu et al '21: Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch, "Pretrained Transformers as Universal Computation Engines" (https://arxiv.org/abs/2103.05247)
- Shen et al '23: Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar, "Cross-Modal Fine-Tuning: Align then Refine" (<u>https://arxiv.org/abs/2302.05738</u>)
- Alvarez-Melis and Fusi, '20: David Alvarez-Melis, Nicolo Fusi, "Geometric Dataset Distances via Optimal Transport" (https://arxiv.org/abs/2002.02923)
- Touvron et al '23: Hugo Touvron and many others, "LLaMA: Open and Efficient Foundation Language Models" (https://arxiv.org/abs/2302.13971)
- Stas Bekman: https://huggingface.co/blog/bloom-megatron-deepspeed
- Dao et al '22: Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré, "FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness" (<u>https://arxiv.org/abs/2205.14135</u>)
- Chip Huyen: https://huyenchip.com/2023/05/02/rlhf.html
- Nathan Lambert et al: https://huggingface.co/blog/rlhf

Thank You!