CS 839: Foundation Models
Training

Fred Sala

University of Wisconsin-Madison

Oct. 12, 2023

Announcements

*Logistics:
*Homework 1 deadline today!

*Presentation information out:
https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation info.pdf

(Class0a0MaP: mayocss e

Tuesday Oct. 17 RLHF
Thursday Oct. 19 Data
Tuesday Oct. 24 Multimodal and Specialized

Foundation Models

Thursday Oct. 26 Knowledge

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/presentation_info.pdf

Outline

*Finishing Up Last Time
*Fine-tuning, adapting, cross-modal alignment methods,
model editing

*Training
*Scale, parallelization, memory optimization,
heterogenous training

*Reinforcement Learning From Human Feedback
*Basic idea, goals, mechanisms

Outline

*Finishing Up Last Time
*Fine-tuning, adapting, cross-modal alignment methods,
model editing

Last time: Full Fine-Tuning Downsides

Fine-tuning all parameters is tough:
1. Expensive: just like training a full model

2. Known to cause issues on OOD data...

* Fine-Tuning can Distort Pretrained Features and Underperform Out-
of-Distribution

Pretraining (a) Fine-tuning (b) Linear probing (c) LP-FT
Feat Random! Backprop Randoml Backprop Initialize Backprop
i OOO oy O T e, O
head head
%} Fmglsegres OO
npits OO0 OO0 OO0
ID test 85.1% 82.9% 85.7%
OOD test 59.3% 66.2% 68.9%

Average accuracies (10 distribution shifts)

Kumar et al ‘22

Last time: PEFT: Adapters

Want two things in parameter-efficient fine-tuning

*Good performance (accuracy, etc.)
* Parameter efficiency

*Solution: Adapters
* Small modules, inserted
in between model and trained

Another advantage: no change
to model, new modules for tasks

]
1 Transformer °
]

| Layer

[Layer Norm]

2x Feed-forward
layer
A

[Layer Norm]

©

[Feed-forv:rard layer]

Multi-headed
attention

e o e -

Houlsby et al ‘19

, P ~.
,/ Adapter N
! Layer II
1 I
1 I
1 I

OOOIOOO

Feedforward
up-project

Nonlinearity
J/

|
OO
|
Feedforward
down-project

[
OCO0OO0OO0O
A

L .

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

*LoRA makes an assumption on adapter layer structure

* Specifically, should be low-rank
* Intuition: the weight matrices already live close to a low-rank
manifold

*Transformers, apply only to attention
. . Pretrained
weight matrices Weights

Hu et al 22

What About Other Modalities?

So far, mostly talked about language models.
*Suppose we want tasks that are not directly language-based
*Could just train a new model... but harder

Can we adapt language models? Lots of challenges:
* Must change data types
*How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al 21)
Basic idea:

*Change the input/output layers (here, linear)

*Layer norm parameters

*Everything else frozen

Positional L frozen self-attention blocks
Embeddings x L
v v
Input Multi-Head Add & Feed Add & Output
Embedding Attention Layer Norm Forward Layer Norm Layer

Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

S

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al 23)
* Adds: distribution alignment step (align then refine)

Inputs . . Stage 1: Dimensionality Stage 2: Distribution Alignment "/ Stage 3: Refine
Pretrained Transformer ! Alignment : - Model Weights
f y ' Embedder 2t yt ! yt z® ys " yt
¢ ey Ly L - i I
--------- : ft ht : f Ef ; = f
Target Dataset ! : Y =
ﬁ%. (ef,yt) | SR i Embedded Finzzeaie B !
N Y Embedder Predictor | Target & Source 7* g°
S \4
v

_Source Dataset L‘ ,—j § v v ¥ 5 ¢ Fine-Tune for
(z°, yS) YT 5 ’.‘ Learn f* to Align Target & Source Distributions :: h Task Loss

ORCA: Stage 1

Let’s understand each stage of ORCA

*Stage 1: compatibility for inputs and
outputs

e Custom input and output embedders
that depend on the task

* Input example: convolutional layers for
Image settings

* Qutput example: average pooling+linear
layer for classification

Stage 1: Dimensionality

Alignment
zt y’
v)
ft ht

Task-Specific Task-Specific
Embedder Predictor

ORCA: Stage 2

Let’s understand each stage of ORCA

*Stage 2: distribution alignment

*Intuition:

* Change embeddings so target features
resemble source features

*Learn the function ffthat minimizes
distance between

(f10x),y") and (F0¢),y°)

$t yt T 8§ ys
f 7
-- ;— =1
Embeddedt Embedded
Target Source z°
y Y \!)’

- | Learn f tto Align Target & Source Distributions Jf

ORCA: Distributional Distances

Want: learn the function fthat minimizes distance between

(F(x),y7) and (F(x),y°)

*How? Need a distance function on these distributions
*Let’s use the optimal transport dataset distance (OTDD)

Label-to-label d ‘e Samples and Optimal Coupling 7* Optimal Coupling =*

sabel-to-label distanc
=4 15 4 @
® .\
10 ass: 3) ® 2 ' ‘
i laggy: (
L ®
9 -

Class: D . . .
51 3 &
L) o ’\ ® y {
S \ I/ ® .
- " S e .] 2
*) . ﬁ(B Class: 0 ® “('LN; A ;
Class: 4 ® o ® | Class: 2 T
T - N4 2 P TR
3- % g > " %
:] . Wlass: E ;- i g
_ 10 o s Class: B . {
4 -. 15 " x'l.n\\\: 1
'] J
.\. H’ (' I'; lf']ir I'l

Alvarez-Melis and Fusi, 20

LaJd—pA cHA_pJ_¢

Interlude: Optimal Transport

In optimal transport, we solve

n{ [cle,p)datan) v € D) |

| |

Cost or distance The two marginals we care
of moving xtoy about, i.e.,onxandy

*Want to “move” distribution on x to one on y
* Qutput is a joint distribution with the original source and target

*But there’s a cost to moving x to y, given by c(x,y)

Interlude: Optimal Transport

In optimal transport, we solve

n{ [el datan) v € D) |

*Cost given by distance: Wasserstein distance
*Gives a distance on distributions, i.e.,

1/p
W, (u,v) = (inf E(mjy)m,}.d(m,y)p)
el (p,v)

Interlude: Dataset Distance

What should this cost/distance c(x,y) be for us?

*For inputs x, pretty easy: feature vectors in spaces that have
distances, e.g., | |x-x"| |

*For outputs y, not so easy M
@ ®

*A clever idea: gy -

* Replace y with P(X]y) " 5
\ | ’

*Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’))
* Approximate this with a Gaussian: closed form too!

ORCA: Distributional Distances

Want: learn the function fthat minimizes distance between

(F(x),y7) and (F(x),y°)

*Need a distance function on these distributions
*Here, optimal transport dataset distance (OTDD)

dz ((,y), (@',3) 2 (dac(ar, ') + Wh(ay,0)) "

| 1

i.e., Euclidean p-Wasserstein distance on
distance P(x]|y)

ORCA: Stage 3

Let’s understand each stage of ORCA

Stage 3: Refine
Model Weights

*Stage 3: fine-tune the input and : ,

output network weights 3-1 Y
e For particular tasks ft
*Or, could do any other variant of what l
we’ve talked about... qg°

Y

:t Fine-Tune for
lask Loss

ORCA: Results

Extremely good, even against state-of-the-art results

Compare to Neural Architecture Search (NAS)
* Produces custom architectures that hit sota for various tasks
e Same procedure on many types of tasks works well:

wr

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) O-1 error (%) relative /s MAEgs 1-AUROC O0-1error (%) 1-mAP 1-Fl1score O0-1error(%) 1- AUROC
Hand-designed 19.39 67.41 8E-3 3.35 0.127 8.73 0.62 0.28 19.80 0.30
NAS-Bench-360 23.39 48.23 2.6E-2 2.94 0.229 7.34 0.60 0.34 12.51 0.32
DASH 24.37 71.28 7.9E-3 3.30 0.19 6.60 0.60 0.32 12.28 0.28
Perceiver 10 70.04 82.57 2.4E-2 8.06 0.485 22.22 0.72 0.66 15.93 0.38
FPT 10.11 76.38 2.1E-2 4.66 0.233 15.69 0.67 0.50 20.83 0.37

ORrcCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29

Model Editing

So far, adapting to new tasks

*But what if we just want to change the model?

Why?

*Models have outdated (or wrong!) information in them

*Need to update these facts... but fine-tuning on just one
point can be hard
* Overfit to the point
* May change other aspects

et

St X et

Break & Questions

Outline

*Training
*Scale, parallelization, memory optimization,
heterogenous training

Training Foundation Models: Scale

Llama family of models,

*“we estimate that we used 2048 A100-80G8B for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),
*“training OPT-175B on 992 80GB A100 GPUs”

GPU Power Total power Carbon emutted

GPU Type consumption GPU-hours consumption (tCOzeq)
OPT-175B A100-80GB 400W 800,472 356 MWh 137
BLOOM-175B A100-80GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-80GB 400W 82,432 36 MWh 14
LLaMA-13B A100-80GB 400W 135,168 59 MWh 23
LLaMA-33B A100-830GB 400W 530,432 233 MWh 90
LLaMA-65B A100-80GB 400W 1,022,362 449 MWh 173

Touvron et al, 23

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*Classic centralized distributed training
* Synchronize each local gradient update
* Send synchronized vector back to each node (lots of

communication!)
@ Central Server

R TN

Computation Nodes

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*This is by itself impossible (each node can’t handle full model
for large models)

*Need further parallelism:
e Data: each node sees a different slice of data

*Pipeline: only a few layers per GPU ol 3 =

*Great resource: R o o Pt o o v o R

Device 1

B

B Baso

B B B
B Be: | B

https://huggingface.co/blog/bloom-megatron-deepspeed

Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations
*A little bit of fast memory, lots of slower memory

* Avoid using slow memory when possible
* FlashAttention: Tiling + computing tricks

Attention on GPT-2

:| Matmul

<
=
=
(=%

—

0

:19TB/s (20 MB) Dropout
HBM: 1.5TB/s (40GB) 2 S e | o| E10-
8 . > Block I = Softmax
g I | ~| E
:12.8GB/s = Lo N o | F 5. Fused
(>1TB) N e Mask Kernel
o = rm
| |

j Matmul

Memory Hierarchy with Output to HBM

Bandwidth & Memory Size

o
1

sm(QKT)V: Nxd PyTorch FlashAttention

Inner Loop

FlashAttention

Dao et al ‘22

et

St X et

Break & Questions

Outline

*Reinforcement Learning From Human Feedback
*Basic idea, goals, mechanisms

RLHF: Basic Motivation

Goal: produce language model outputs that users like better...
*Hard to specify exactly what this means,
*Easy to query users

Collect human feedback and use it to change the model
*Can do this by fine-tuning, especially with instructions
*Doesn’t quite capture what users want

A
éf‘!
| %

How was
your day?
® r S
|

i

1

RLHF: Setup

Goal: produce language model outputs that users like better...

Low quality data High quality data E Human feedback RLHF i
i |
Text Demonstration : Comparison Prompts }
e.g. Internet data data l data g :
. . i Trained to give Optimized to generate i
ODtlmllfd for Fmetu.ned for E a scalar score for responses that maximize :
text completion dialogue ! (prompt, response) scores by reward model l
Langugge Syperw;ed Classification Relnforcgment |
modeling finetuning : Learning !
! ‘
Pretrained LLM — SFT model —— Reward model Final model
Scale >1 trillion 10K - 100K 100K - 1M comparisons 10K - 100K
May ‘23 tokens (prompt, response) (prompt, winning_response, losing_response) prompts
Examples GPT-x, Gopher, Falcon, Dolly-v2, Falcon-Instruct InstructGPT, ChatGPT,
Bolded: open LLaMa, Pythia, Bloom, Claude, StableVicuna
sourced StableLM

Chip Huyen

RLHF: Feedback

First stage: get human feedback to train reward model

*Fix a set of prompts

*Take two language models and produce outputs for each
prompt

e Ask human users which is better
* Binary output

RLHF: Reward/Preference Model

Second stage: train reward model
*Use the human feedback to train/fine-tune another model to

reproduce the metric
*Preference model

Prompts Dataset
Reward (Preference)

Model

H'~T‘9

Sample many prompts

L

Initial Language Model Lorem ipsum dolor

@ 7 = i onec quam felis
‘(-'-':r A o ; vulputate eget, arc
4AUNY 7 | ¥ A JR—
[SN 4 Nam guam nunc
Yy y

eros faucibus tinci{ Human scoring
i e

[
N
YA

https://huggingface.co/blog/rlhf

RLHF: Fine-Tuning with RL

Third stage: RL
*Use an RL algorithm
*Goal: produce outputs that have high reward

RL formulation:

* Action space: all the tokens possible to output

*State space: all the sequences of tokens

*Reward function: the trained model (some variations)

*Policy: the new version of the LM, taking in prompts and
returning output

Bibliography

Kumar et al “22: Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, “Fine-Tuning can Distort Pretrained Features and
Underperform Out-of-Distribution” (https://openreview.net/pdf?id=UYneFzXSJWh)

* Houlsby et al "19: Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan,
Sylvain Gelly, “Parameter-Efficient Transfer Learning for NLP” (https://arxiv.org/abs/1902.00751)

* Huetal’22: Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, “LoRA: Low-Rank Adaptation
of Large Language Models” (https://arxiv.org/abs/2106.09685)

* Luetal’21: Kevin Lu, Aditya Grover, Pieter Abbeel, Igor Mordatch, “Pretrained Transformers as Universal Computation Engines”
(https://arxiv.org/abs/2103.05247)

* Shen et al ’23: Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar, “Cross-Modal Fine-Tuning: Align
then Refine” (https://arxiv.org/abs/2302.05738)

* Alvarez-Melis and Fusi, '20: David Alvarez-Melis, Nicolo Fusi, “Geometric Dataset Distances via Optimal Transport” (https://arxiv.org/abs/2002.02923)

* Touvron et al ‘23: Hugo Touvron and many others, “LLaMA: Open and Efficient Foundation Language Models” (https://arxiv.org/abs/2302.13971)

» Stas Bekman: https://huggingface.co/blog/bloom-megatron-deepspeed

* Dao et al 22: Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré, “FlashAttention: Fast and Memory-Efficient Exact Attention with 10-
Awareness” (https://arxiv.org/abs/2205.14135)

* Chip Huyen: https://huyenchip.com/2023/05/02/rlhf.html

* Nathan Lambert et al: https://huggingface.co/blog/rlhf

https://openreview.net/pdf?id=UYneFzXSJWh
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2302.05738
https://arxiv.org/abs/2002.02923
https://arxiv.org/abs/2302.13971
https://huggingface.co/blog/bloom-megatron-deepspeed
https://arxiv.org/abs/2205.14135
https://huyenchip.com/2023/05/02/rlhf.html

Thank You!

	Slide 1: CS 839: Foundation Models Training
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Last time: Full Fine-Tuning Downsides
	Slide 6: Last time: PEFT: Adapters
	Slide 7: PEFT: Low-Rank Adapters (LoRA)
	Slide 8: What About Other Modalities?
	Slide 9: Cross-Modal: FPTs
	Slide 10: Cross-Modal: ORCA
	Slide 11: ORCA: Stage 1
	Slide 12: ORCA: Stage 2
	Slide 13: ORCA: Distributional Distances
	Slide 14: Interlude: Optimal Transport
	Slide 15: Interlude: Optimal Transport
	Slide 16: Interlude: Dataset Distance
	Slide 17: ORCA: Distributional Distances
	Slide 18: ORCA: Stage 3
	Slide 19: ORCA: Results
	Slide 20: Model Editing
	Slide 21: Break & Questions
	Slide 22: Outline
	Slide 23: Training Foundation Models: Scale
	Slide 24: Training Foundation Models: Parallelization
	Slide 25: Training Foundation Models: Parallelization
	Slide 26: Training Foundation Models: GPU Usage
	Slide 27: Break & Questions
	Slide 28: Outline
	Slide 29: RLHF: Basic Motivation
	Slide 30: RLHF: Setup
	Slide 31: RLHF: Feedback
	Slide 32: RLHF: Reward/Preference Model
	Slide 33: RLHF: Fine-Tuning with RL
	Slide 34: Bibliography
	Slide 35: Thank You!

