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Announcements

*Logistics:
*HW?2 out tonight (due Nov. 7).
*Sign-up sheet for project also.

*Class roadmap:

Thursday Oct. 26 Knowledge
Tuesday Oct. 31 Scaling & Scaling Laws
Thursday Nov. 2 Security, Privacy, Toxicity

Tuesday Nov. 7 The Future



Outline

Multimodal Models Intro + One-Encoder Models

*Short history, adapting models to incorporate multiple
modalities, BERT-like vision-language models, ViTs

*Two-Encoder and Other VLMs
*Contrastive training, CLIP, joint training, few-shot models

Other Modalities and Domains
*Audio, video, code generation, RL



Outline

Multimodal Models Intro + One-Encoder Models

*Short history, adapting models to incorporate multiple
modalities, BERT-like vision-language models, ViTs



Short History of Multimodal Models

Multimodal models pre-date foundation models
*Image-captioning models, VQA models, esc...

* But it has become more popular
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Making LLMs Multimodal

How do we use a language architecture for multiple
modalities?

VisualBERT: take all the ideas from BERT, add images
* Use bounding boxes from image detector + image embedder
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Making LLMs Multimodal: VisualBERT

VisualBERT: take all the ideas from BERT, add images

*What about training? Recall BERT training...
* Masked language modeling + image (text is masked, image same)
* Sentence-image prediction

*Results (Li et al, ‘19)




How Do We Get Image Embeddings?

Could always user resnets, etc., but...

*Didn’t Transformers make a big difference for text?

Transformers for Image Recognition at Scale

by A Dosovitskiy - 2020 - Cited by 23217 —

*Can also use for vision: ViT. Just use patches!

Vision Transformer (ViT)
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Put It Together

Multimodal with language and vision transformers: ViLT
Kim et al 21
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Variations...

Lots of different approaches!
*Du et al 22, “A Survey of Vision-Language Pre-Trained

Models”

VL-PTM

Text encoder

Vision encoder

Fusion scheme

Pre-training tasks

Multimodal datasets for pre-training

Fusion Encoder

VisualBERT [2019] BERT Faster R-CNN Single stream MLM+ITM COCO

Uniter [2020] BERT Faster R-CNN Single stream MLM+ITM+WRA+MRFR+MRC CC+COCO+VG+SBU
OSCAR [2020c] BERT Faster R-CNN Single stream MLM+ITM CC+COCO+SBU+Flickr30k+VQA
InterBert [2020] BERT Faster R-CNN Single stream MLM+MRC+ITM CC+COCO+5SBU
VIiLBERT [2019] BERT Faster R-CNN Dual stream MLM+MRC+ITM CC

LXMERT [2019] BERT Faster R-CNN Dual stream MLM+ITM+MRC+MRFR+VQA COCO+VG+VQA
VL-BERT [2019] BERT Faster R-CNN+ ResNet Single stream MLM+MRC CC

Pixel-BERT [2020] BERT ResNet Single stream MLM+ITM COCO+VG

Unified VLP [2020] UniLM Faster R-CNN Single stream MLM-+seq2seq LM CcC

UNIMO [2020b] BERT, RoBERTa  Faster R-CNN Single stream MLM+seq2seq LM+MRC+MRFR+CMCL COCO+CC+VG+SBU
SOHO [2021] BERT ResNet + Visual Dictionary Single stream MLM+MVM+ITM COCO+VG

VL-T5 [2021] TS, BART Faster R-CNN Single stream MLM+VQA+ITM+VG+GC COCO+VG

XGPT [2021] transformer Faster R-CNN Single stream IC+MLM+DAE+MRFR CcC

Visual Parsing [2021] BERT Faster R-CNN + Swin transformer  Dual stream MLM+ITM+MFR COCO+VG

ALBEF [2021a] BERT ViT Dual stream MLM+ITM+CMCL CC+COCO+VG+SBU
SimVLM [2021b] ViT ViT Single stream PrefixLM C4+ALIGN

WenLan [2021] RoBERTa Faster R-CNN + EffcientNet Dual stream CMCL RUC-CAS-WenLan
VILT [2021] viT Linear Projection Single stream MLM+ITM CC+COCO+VG+SBU
Dual Encoder

CLIP [2021] GPT2 ViT, ResNet CMCL self-collected

ALIGN [2021] BERT EffcientNet CMCL self-collected

DeCLIP [2021b] GPT2, BERT ViT, ResNet, RegNetY-64GF CMCL+MLM+CL CC+self-collected
Fusion Encoder+ Dual Encoder

VLMo [2021al BERT ViT Single stream MLM+ITM+CMCL CC+COCO+VG+SBU
FLAVA [2021] ViT ViT Single stream MMM+ITM+CMCL CC+COCO+VG+SBU+RedCaps




Datasets

Trained on? Datasets with image-text pairs

Dataset Year | Num. of Image-Text Pairs | Language | Public
SBU Caption [92] [link] 2011 1M English v
COCO Caption [93] [link] 2016 1.5M English v
Yahoo Flickr Creative Commons 100 Million (YFCC100M) [94] [link] | 2016 100M English v
Visual Genome (VG) [Y5] [link] 2017 54 M English v
Conceptual Captions (CC3M) [96] [link] 2018 3.3M English v
Localized Narratives (LN) [97] [link] 2020 0.87M English v
Conceptual 12M (CC12M) [95] [link] 2021 12M English v
Wikipedia-based Image Tex (WIT) [99] [link] 2021 37.6M 108 Languages v
Red Caps (RC) [100] [link] 2021 12M English v
LAION400M [28] [link] 2021 400M English v
LAIONS5B [27] [link] 2022 5B Over 100 Languages v
WuKong [101] [link] 2022 100M Chinese v
CLIP [14] 2021 400M English X
ALIGN [24] 2021 1.8B English X
FILIP [25] 2021 300M English X
WebLI [102] 2022 12B 109 Languages X

Zhang et al ‘23
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Outline

*Two-Encoder and Other VLMs
*Contrastive training, CLIP, joint training, few-shot models



Contrastive Vision-Language Models

So far, trained the modalities together
*|.e., text and images were both inputs to a transformer
*This is “fusion”, but we could do it later...

*|.e., produce two representations separately, then produce
some means of connecting/tying them together
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VLMs: Constrastive Training

Training approach: contrastive
*Loss example: InfoNCE (noise contrastive estimation) loss:

B
EInfoNCE 1 Zl exp (z] Z+ / 7)
0g B+l I
j 1,75#1 exp( /T)

*To train a text and image encoder simultaneously,
symmetrize:

exp (2] - z{ /T)
Lror=——= log
; ZJ 16Xp( / Z}j/T)

B
1 Zlog BXP(Z;-?'Z{/T)
B
i=1 Zj:l exp(z; - Z;,{/T)




VLMs: CLIP

A simple but easily scalable constrastive VLM

1. Contrastive pre-training

pepggrthe Text
aussie pup Encoder

Image
Encoder




VLMs: FLAVA

Foundational Language And Vision Alignment Model (FLAVA)
*Combines everything

*Pretrain separately and jointly
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Few-Shot VLMs

The models we’ve talked about are either meant to

* Do zero-shot prediction, OR
* Be fine-tuned for a particular task

*What about few-shot (like in LLMs) for VLMs?

Input Prompt

Thisis a
chinchilla. They
are mainly found

in Chile.

This is a shiba.
They are very

popular in Japan.

This is

What is the title
of this painting?
Answer: The
Hallucinogenic
Toreador.

Where is this
painting
displayed?
Answer: Louvres
Museum, Paris.

What is the name

of the city where

this was painted?
Answer:

~

-

™ Completion

L

a flamingo.
They are found
in the
Caribbean and
South America.

~\

Alayrac et al '22
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Few-Shot VLMs: Flamingo

Flamingo: 80B parameter model (based on an LLM)
* Multi-image!
* More complex interleaved architecture

&
This is a cityscape. It looks
(™ like Chicago.
What makes you think this is
This is a picture of two teddy Chicago? (&)

™ bears on the moon.
What are they doing?

They are  having a
™ conversation.

What object are they using?

(™ Itlooks like a computer.

What is the common thing

This is an apple with a sticker
onit.

What does the sticker say?
The sticker says "1Pod".
Where is the photo taken”

I think 1t's Chicago because
of the Shedd Aquarium in the
™ background.

. %
: : AN e e 0 © It looks like it's taken in a
'8 Sy mapiging? (™ They are all flamingos. backyard.
: T - o What about this one? Which
(™ Yes,itis surprising. What is the ditf;rcncc-'bC- hD_.longou' thm:: it is printed or city is this and what famous
Why is this picture surprising tween these three images? &) WS landmark helped you recog-

to you?

I think it is surprising because
teddy bears arc not usually
™ found on the moon.

The first one is a cartoon, the

second one is a real flamingo,

and the third onc is a 3D
(™ model of a flamingo.

It looks like 1t's handwritten.
What color is the sticker?

It's white.

nisc the city?

This is Tokyo. | think it's

Tokyo because of the Tokyo
™ Tower.

&}

Alayrac et al '22
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Outline

Other Modalities and Domains
*Audio, video, code generation, RL



Other Modalities: Audio

Can do similar things with all sorts of other modalities
* Audio: can always convert to image and apply directly
*Ex: Whisper. 680K hours of audio supervision
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Radford et al ‘22



Other Modalities: Audio + Video + Text

Merlot: video + text + audio

cLs Contrastive Temporal ordering Unmask words

We're

making a L

green-
house.
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Code Models: Codex

Start with GPT-3 and fine-tune on large-scale code.

*Data: “0 from 54 million public software repositories hosted
on GitHub, containing 179 GB of unique Python files under 1
MB. “

PASS @k

M M k=1 k=10 k=100

*Plus pre-processing. Filter out
GPT-NEO 125M 0.75% 1.88% 2.97%
H GPT-NEO 1.3B 4.79% 7.47% 16.30%
* High-chance of autogenerated
o L | I h GPT-] 6B 11.62% 15.74% 27.74%
Ong average Ine engt TABNINE 2.58% 4.35% 7.59%
CODEX-12M 2.00% 3.62% 8.58%
'~16OGB Of data. CODEX-25M 321%  T1%  12.89%
CODEX-42M 5.06% 8.8% 15.55%
. CODEX-85M 8.22% 12.81% 22.4%
*Eval: Pass @ k CODEX-300M  13.17% 2037%  36.27%
. CODEX-679M 16.22% 25.7% 40.95%
() CODEX-2.5B 21.36% 35.42% 59.5%
k samples per prob, correct if any pass CODEX-2.3B  21.36% 35.42%  59.5%

Chenetal ‘21



Code Models: StarCoder

Codex (and descendants) are not open source.
Lots of open variants. Trained on open dataset: “The Stack”

*“From the 358 programming languages... we selected 86
languages”

Model HumanEval MBPP
LLaMA-7B 10.5 17.7
LaMDA-137B 14.0 14.8
*15B model LLaMA-13B 15.8 22.0
CodeGen-16B-Multi 18.3 20.9
*1T tokens for pretraining LLaNA-338 o 02
LLaMA-65B 23.7 37.7
*35B Python tokens Pal M-540B 26.2 36.8
. . CodeGen-16B-Mono 29.3 35.3
for fine-tuning StarCoderBase 30.4 49.0
code-cushman-001 33.5 45.9
StarCoder 33.6 52.7

StarCoder-Prompted 40.8 49.5




Foundation Models in Robotics

Can use language models for planning/robotics, but
*Not “grounded” since not aware of the environment
*Can mix together with RL concepts

| spilled my drink, can you help? | spilled my drink, can you help?

_______________________________

f
You could try using ! LLM Value Functions :
GPT3 a vacuum cleaner. ' “find a cleaner” ks e P S |
: “find a sponge” find a sponge i d |
: bckihisailt “go to the trash can” I
| “pick up the sponge” "pick up the sponge” = . |
I "try using the vacuum” .
LaMDA Do you want me to | : | would:
find a cleaner? . ; 1 1k ﬂnd a sponge
; SayCan & /2. pick up the sponge
| "ﬁnd;‘.;;;bnge" : 3. come to you
I'm sorry, | didn't : 90 1o the trash can” , 4. put down the sponge
FLAN | I 5.done
\

“pick up the sponge”
Vy using Ihe vacuum’

mean to spill it.

Ahn et al ‘22



Foundation Models in Robotics: SayCan

Can use language models for planning/robotics, but
*Not “grounded” since not aware of the environment

*Can mix together with RL concepts
*Basic idea (Ahn et al '22)

m = argmaxX, c P(Cr|S, {r)p(Ur|7)

)

Prob. of completing  LLM-provided

skill/step from states  prob of next
step being valid




Foundation Models in Robotics: Navigation

For navigation:

*Connect multiple FMs (language, vision, action)
*Inputs: observations, instructions

*Output: plan

go towards a square with a large tree. Go
further, until you find a stop sign.

After passing a , take right
next to a . Then take left and

Free-form Navigation Instructions

Observations in Target Environment

Shah et al 22



Foundation Models in Robotics: Navigation

For navigation:
*Connect multiple FMs (language, vision, action)

(a) Construct Graph \ / (d) Graph Search
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- |

/

Go towards a park bench, take a
left at the stop sign. Go towards
a blue dumpster, take a left and
stop at the blue truck.

Picnic bench
Stop sign
Blue truck

Blue dumpster
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Shah et al ‘22
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Thank You!
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