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Announcements

•Logistics:
•HW2 out (due Nov. 9). 
•Presentation dates: Nov: 9,14,16,21,28,30 Dec: 5,7

• Two slots/date (worst-case three might be needed in some special cases)

• Please sign up! 
https://docs.google.com/spreadsheets/d/1SqXAtm6VXyofmKh0U3jaH8qg0v6nydnxoptauI8Z_1g/edit#gid=0

•Class roadmap: Thursday Oct. 26 Knowledge

Tuesday Oct. 31 Scaling & Scaling Laws

Thursday Nov. 2 Security, Privacy, Toxicity

Tuesday Nov. 7 The Future



Outline

•Knowledge in ML
•Short history of KBs/KGs, representing KGs, models for 
downstream tasks

•Integrating Knowledge Graphs into FMs
•Multimodal-like integration, fusion, RAG, using KGs for 
hallucination reduction

•Using FMs for KGs
•Crafting KGs from FMs, LLM encoders for KG procedures, 
etc.
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Short History of Knowledge Bases/Graphs

Convenient way to represent information about the world

•Classical approach: triplets (head, relation, tail)
•Ex: (Albert Einstein, WinnerOf, Nobel Prize)

•Encode into a graph

Ji et al `21



Short History of KGs: Examples

Convenient way to represent information about the world

•Lots of hand-crafted KBs/KGs out there

•WordNet, YAGO, Freebase, Wikidata

Wei et al ‚15

Yago Wikidata



Short History of KGs: Use

Reasoning!

•Logical equivalences: 
(Y, sonOf, X) ← (X, hasChild, Y) ∧ (Y, gender, Male)

•Multi-hop for question-answering or missing facts
•Q: What country was Barack Obama born in?

 (Obama, bornIn, Hawaii) ∧ (Hawaii, locatedIn, US) ⇒ 
(Obama, bornin, US)

A: Obama was born in the US.



Short History of KGs: Embeddings

KGs are discrete, so we need to represent them in a ML-
friendly way

•KG embeddings: a fairly big ML area

•Classic way: embed each entity and relation in Rd in a way 
that can recover. TransE (Bordes et al ‘13): use loss 

•Note: can also infer new relations that we didn’t have in KG 
(good, since all KGs are incomplete!)



KG embeddings: a fairly big ML area

•Many variations: instead of relationship a vector to be 
added, can parametrize some transformation instead

fr(h, t) = hTdiag(Mr)t

•Can use some other spaces to avoid Euclidean distance-
based scoring
•Complex vector spaces C
•Quaternions 
•Non-Euclidea spaces

Short History of KGs: Embeddings

Yang et al `14



Short History of KGs: Non-Euclid. Embeddings

Can use some other spaces to avoid Euclidean distance-based 
scoring: hyperbolic space
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Short History of KGs: Hyperbolic Embeddings

•Poincaré model of hyperbolic space

•Connection to hierarchical distance:
•Hyperbolic distance:



Short History of KGs: Hyperbolic Embeddings

•Optimize with non-Euclidean variants of SGD



Short History of KGs: GNNs

Post-embeddings, use for downstream task

•Can combine representation learning + task

•GCNs:

Layer 1 
Weights

Layer 2 
Weights

Adjacency 
Matrix

Kipf and Welling ‘16



Short History of KGs: Transformers

Can also use transformers as well

•Ex: KG-BERT

Yao et al ‘19



Break & Questions
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Mixing LLMs and KGs: Why?

Both approaches have downsides by themselves

KGs: 

•Need lots of supervised data (often manual) to create

•Fixed schemas for questions

•Incomplete and noisy

FMs:

•Hallucinate

•Not aware of stale facts + hard to update
Princeton CS579



Mixing LLMs and KGs: Approaches

A nice categorization:

•Pan et al ‘23, “Unifying Large Language Models and 
Knowledge Graphs: A Roadmap”



KG-Enhanced LLMs: Pretraining

Goal: create more structured information in LLMs

•In pretraining: add information from KG 

Sun et al ‘20



KG-Enhanced LLMs: Fusion

Goal: create more structured information in LLMs

•Note: similar to multimodal models, can do fusion earlier or 
later 

•Ex: allow text processing,

 combine with a later module



KG-Enhanced LLMs: RAG

Retrieval-Augmented Generation (RAG)

•Not strictly just for knowledge graphs

•Search for relevant documents, use results as part of context 
for generator

Lewis et al `21



RAG Components: Retriever Side

Let’s walk through each component in RAG

•Query encoder q(x)

•Document encoder d(z)

•Obtain k documents z with highest prob. using MIPS

Retriever Documents Query



RAG Components: Generator Side

Let’s walk through each component in RAG

•Generator: sample y conditioned on x, zs

•Any sequence-to-sequence model

•Obtain k documents z with highest prob. using MIPS

•Note: backprop through whole thing, but easier to keep the 
document encoder fixed. 



RAG Results

How does it do compared to non-augmented LLMs?



KGs to Reduce Hallucination

Recall that LLMs have a tendency to hallucinate

•Example: summarizing non-existent article

Wiki



KGs to Reduce Hallucination

Reduce it by leveraging existing KG

•Example: Neural Path Hunter (Dziri et al ‘21)

•Produce a path on KG

 from LLM outputs

•Compute likelihood 

 of path. 

•Throw out paths that are 

 unlikely.



Using KGs to Evaluate LLMs

Recall our efforts to evaluate LLMs

•LAMA: LAnguage Model Analysis

•Evaluate factual and commonsense knowledge

•Transform KG triplets into queries 

  to evaluate the LM

Petroni et al '19



Break & Questions



Outline

•Knowledge in ML
•Short history of KBs/KGs, representing KGs, models for 
downstream tasks

•Integrating Knowledge Graphs into FMs
•Multimodal-like integration, fusion, RAG, using KGs for 
hallucination reduction

•Using FMs for KGs
•Crafting KGs from FMs, LLM encoders for KG procedures, 
etc.



LLMs to help KGs

Other direction: use LLMs to improve KGs.

Recall the downsides of KGs: somewhat 
inflexible and generally incomplete.

•Completing them: use a mixed model like 
KGBERT
• Predict that a triplet is valid or not

•Generating entities for KGs:
• Prompt an LLM with (h,r,?) and use output to 

define tail entity.

 



Building KGs From LLMs

Directly extract triplets to build KB/KG

•Use attention weights 

•Decode directly into the graph structure

•Caveat: might be noisy!

Wang et al '21
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Thank You!
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