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Announcements

*Resources
*https://mistory.org/ : fun new book by Hardt and Recht

*Class roadmap:

Tuesday Sept. 21 Transformers & Attention ~—
Thursday Sept. 23 Language Models |
Tuesday Sept. 28 Language Models Il
Thursday Sept. 30 Prompting | )
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https://mlstory.org/

Outline

*General Supervised Learning Review
*Features, labels, hypothesis classes, training, generalization

*Neural Networks
*Perceptrons, MLPs, training and backprop, CNNs, brief
review of RNNs and LSTMSs, data augmentation

*Self-Supervised Learning

*Getting representations, pretext tasks, using
representations



Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f: X =)

*Set of models (a.k.a. hypotheses): H = {h‘h X — y}

Get
* Training set of instances for unknown target function,

(2, y), (), y@),.. (2, y™)
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Supervised Learning: Objects

Three types of sets
* Input space, output space, hypothesis class
XV, H
*Examples:

» Input space: feature vectors X C R4

* Qutput space:
* Binary y — {—1,—|—1}

e Continuous y Q ]R

safe poisonous
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Output Space: Classification vs. Regression

Choices of V' have special names:

*Discrete: “classification”. The elements of )/ are classes
* Note: doesn’t have to be binary

//‘g N ," 0;\\
Versmo'or

*Continuous: “regression”
* Example: linear regression

*There are other types...




Hypothesis Class

We talked about X', ) what about ’H ?

*Pick specific class of models. Ex: linear models: -

h@ (CI’J) — (9() (91%1 (9251’}2 .o (9d£1’)d

*Ex: feedforward neural networks

f¥(@) = o(Wy ()

Parameters: O, w.

Wikipedia



SL: Training & Generalization

Goal: model h that best approximates f

*One way: empirical risk minimization (ERM)

f = arg min — Z O(h(zD), y D))

hE?—L n
\
Model prediction

Hypothesis Class
Loss function (how far are we)?

*Generalization?



Evaluation: Validation and Test Sets

e Avalidation set (a.k.a. tuning set) is

e Not used for primary training process, used to select among
models

e A test set
e Not used for training or selection
e Compute metrics




Overfitting

Notation: error of model h over
e training data: errory(h)
e entire distribution of data: error,(h)

Model h overfits training data if it has
*a low error on the training data (low errory(h))

Wikipedia



Beyond Accuracy: Confusion Matrices

*How can we understand what types of mistakes a learned

model makes?
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Perceptron: Simple Network

Input
X1
\44
L X w
5%
Y V‘J \A‘ Output

1

7 () 1 wliz>0
€T ) —

X, Wa Y 0 otherwise

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]
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Neural Networks: Multilayer Perceptrons

An (L + 1)-layer network

First layer

A
[ \

4
@

Input x = h° Hidden variables h'

h2

Output layer




Training Neural Networks

*Algorithm:
* Initialize weights
* Until stopping criteria met,
e For each training point (29, y9)

* Compute: fnetwork (m(d) ) <— Forward Pass

oL HI.(d) OL(D)
Owg = Owy ' Ow,,

T
» Compute gradient: VL") (w) = [ ] «—— Backward Pass

* Update weights: W — w — QVL(Z) (UJ)



Neural Networks: Convolution Layers

*Notation:
*X: n, X n, input matrix
* W: k, x k, kernel matrix
b : bias (a scalar)
*Y: () x () output matrix

*As usual W, b are learnable parameters

0| 1] 2
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Neural Networks: Convolution NNs

*Properties
*Input: volume ¢;x n, x n, (channels x height x width)

* Hyperparameters: # of kernels/filters c,, size k, x k,, stride s, x s,
zero padding p, xp,,

* Output: volume ¢, x m, x m ,(channels x height x width)
* Parameters: k, x k,, x c; per filter, total (k, x k,, x ¢;) x c,

@E>©oooo
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Training a CNN

*Q: so we have a bunch of layers. How do we train?
*A: same as before. Apply softmax at the end, use backprop.

DOo0e000000000 |

exp (fi(x)) | softmax




CNN Architectures: AlexNet

*First of the major advancements: AlexNet
*Wins 2012 ImageNet competition
* Major trends: deeper, bigger LeNet
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Tasks We Can Handle with NNs?

one to one one to many many to one many to many many to many
! Pt ! tt t
f ! tr o Pt S

* Mostly talked about (1) so far
e Others: need a new kind of model



Neural Networks: Simple RNNs

eClassical RNN variant:

a® = p+WstD 4 yx®
s® = tanh(a®)
0® =¢c+Vs®
@ @ $® = softmax(o®)
L® = CrossEntropy(y®, )

ot—1) o® ot+1)




Neural Networks: LSTMs

*RNN: can write structure as:
R

ST S
®)

|
©®

*Long Short-Term Memory: deals with problem. Cell:
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Data Augmentation

Augmentation: transform + add new samples to dataset
*Transformations: based on domain
e|dea: build invariances into the model

* Ex: if all images have same alignment, model learns to use it
*Keep the label the same!




Data Augmentation: Examples

Examples of transformations for images

*Crop (and zoom)

*Color (change contrast/brightness)
*Rotations+ (translate, stretch, shear, etc)
Many more possibilities. Combine as well!

Q: how to deal with this at test time?
*A: transform, test, average
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Representations

*Basic idea in ML is to discover useful representations
*|.e., higher level features that are discriminative
* These are not necessarily present in raw data...

S T

’/ _‘J'ilf‘-
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Layer 2

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what
part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations

of the 16 different filters (on the left) DeSphande



Where to Get Representations?

*Deep learning:
* Automatically obtain good features, but
* Downside: Need lots of labeled data

*Pre-trained models:
*E.g., ResNets trained on ImageNet. Use last layer (pre-prediction)
* Downside: pre-trained task may not match our goal task

*Generative model encoders:
* Downside: may not relate to semantics we care about



Representations from Self Supervision

*There’s lots of information in our dataset already
* Of course, specific to our task

*Need to create tasks from unlabeled data: “Pretext tasks”

* Ex: predict stuff you already know

image completion rotation prediction “‘ligsaw puzzle” colorization
Stanford CS 231n




Using the Representations

*Don’t care specifically about our performance on self-task
*Use the learned network as a feature extractor

*Once we have labels for a particular task, train
* A small amount of data

~,

e D
feature
self-supervised > extractor N supervised

Ve ™ (
2 i _ i " evaluate on the |
> : |: :
@ learning — (e.g.,a learning [:% target task ‘
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