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Announcements

*Announcement:
*Emily Bender talk at 3:00 pm. OH shorter as a result.

*Class roadmap:

Tuesday Sept. 19 Language Models | T
Thursday Sept. 21 Language Models Il

Tuesday Sept. 26 Prompting |

Thursday Sept. 28 Prompting I )
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Outline

*Mini-Intro
*Terminology, generative vs. discriminative, pretraining,
representations vs. embeddings

e Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition, positional encodings

*Transformers
* Architecture, encoder and decoder setups



Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Discriminative model
* Directly predict label h(x) = y or compute h(x) = p(y|x)

* Canonical example: logistic regression

Py(y =1|z) = o(0'2) =

1 4+ exp(—0Tx)




Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Generative model
* Model h(x,y) = p(x,y) or h(x) = p(x). Can be unsupervised

* Canonical example: naive Bayes

P(X17°°'7XK7Y) :P(XlaaXK‘Y)P(Y)

= (H P(XkY)) P(Y)

k=1



Generative Models

Learning a distribution from samples
x(l)ax(Z)a S 733(71) i pdata(x)

*Traditionally, want to
* Compute density: compute p(x) for some x
* Inference: compute p(a|b) for some a,b
* Sampling: obtain a sample from p

*Modern methods: may only be able to
sample/conditionally sample




Embeddings & Representations

Related terminology.
*Embeddings

* Traditionally, goal is to take discrete objects (words,
graphs, etc.) and produce vectors usable in DNNs

* Text: Word2Vec Graphs: Hyperbolic embeddings
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Embeddings & Representations

Related terminology.
*Embeddings

e Often trained based on some custom loss (no “task”)
* Word2Vec: word co-occurrences ¢ embedding distances/ips
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Embeddings & Representations

Related terminology.

*Representations

e Often trained based on related task OR pretext task
* Contain “deeper” information about each sample
* Come from “pretrained” models

from toxrchvision.models import resnet50, ResNet50 “Weidh+e

# 01d weights with accuracy 76.130% 4 N 4 feature ) 4 N
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) SE|f—Sup6NiSEd [ > extractor > supervised

# New weights with accuracy 80.858% leammg (e-g-: a |eam|ng
resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) \_ Y, L convnet) ) _ Y,

lots of q

evaluate on the |
:>{ target task ‘

,

e.g. classification, detection
# Best available weights (currently alias for IMA

# Note that these weights may change across versidnlabeled :
resnet50(weights=ResNet50_Weights.DEFAULT) data . g
" 90 - H |~ bird
# Strings are also supported small amount of [ L
—,

resnet50(weights="IMAGENET1K_V2") labeled data on

o

. " AN . Y -
# No weights - random initialization conv fc the target task convy linear
resnet50(weights=None) classifier
Stanford CS 231n
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History of Attention

Basic motivation: in NLP fixed context vector not enough
*Why?
* Words depend on each other
* Dependencies are complex

agreement
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*Bahdanau et al, 2014 1992
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Bahdanau et al, 2014



Self-Attention: Motivation

Popularized from 2017 on...

*From bottom-up. Let’s design a basic layer.
* Intuition: dependencies within same sentence

The
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The FBI is chasing a criminal on the run .

FBI 1s chasing a criminal on the run .

FBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

18
1S
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s
18
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chasing a criminal on the run .

chasing a criminal on the run .
chasing a criminal on the run .
chasing a criminal on the run.

chasing a criminal em the run.

chasing @ criminal em the run.

chasing a criminal on the mn .

Chengetal, 2016
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Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

*Two criteria
* Transform incoming word vectors,
 Enable interactions between words

*Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/




Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”
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Score 0.3
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Score 0.7




Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding [T T 1] [T 111
ObjeCtS: Queries D:D |:|:|:|
Query
Keys [T 1] [TT1]
Value

Values D:l:' D:':I



Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

g1

\ J \ J

Query

|

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product gy l© =

* Then we’ll do softmax



Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
* Enable interactions between words
* Get our query, value vectors via weight

matrices: linear transformations! input
* Compute scores
Embedding
Objects: Queries
Keys
Query
Values

Value




Self-Attention: Putting it Together

* Have query, value vectors via nput
weight matrices: linear |
, Embedding LT[ 1] RN
transformations!
* Have softmax score outputs (focus) — Queres LL1] LT
e Add up the values! Keys [TT1] [T 1]
Values Djj Dj]
ObjECtS: Score = =
Divide by 8 (/d; )

Query

Value




Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ} — X ,V — XWV

Query

Value

. ® T)
Attention((), /v, V) = softmax ( V
( | Vi

Hr@ 1
Attention(Q, /1, V) = softmax (X — XT> vV



Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs




Self-Attention: Position Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!
* Solution: add positional encodings

PE(pos,Qi) Sin(pas/:_oooozi/dmodel)
Pl (pos,2i+1) = cos(pos/ j_oooo2i/dmodel)

1Location index
POSITIONAL 1 1 084 X002 054 1 XXMl 0.0002| -0.42 R
ENCODING

- - -

EMBEDDINGS HEEN L1 | [ [ ]

INPUT
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Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder
* Get rid of recurrence
* Replace with self-attention

*Architecture r’__’c_ﬁ
* The famous picture you’ve seen
* Centered on self-attention blocks =) =

Vaswani et al. ‘17



Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student
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Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

! $

Feed Forward

t

— ( Feed Forward ]
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Encoder-Decoder Attention
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Self-Attention Self-Attention

t 1 t




Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
e 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head

t t

| [ ||

Feed Forward Feed Forwar d

Neural Network Neural Network
t t
|
t t
[ Self-Attention j

t 1




Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

¢ 4
I,#( Add & Normalize )
: 4 4
. ( Feed Forward ) ( Feed Forward )
AR —— A-----cccccccccnnnn= A
,-p( Add & Normalize )
: R )

E ( Self-Attention )

*
----------------------------
POSITIONAL
ENCODING

x1 [ x2 [

Thinking Machines




Transformers: Inside a Decoder

*|Let’s take a look at the decoder. Three components:
e 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head
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Transformers: Putting it All Together

\What does the full architecture look like?

2 : ( Softmax )
(,( Add & Normalize } ( Lin’ear )

: 4 L :
E ( Feed Forward ) ( Feed Forward ) —— ‘ o aie

i gl i
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Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.

$ o
I )
.,( Add & Normalize ) | ( =
4 4 i
( Feed Forward ) ‘ Feed Forward i .
---------------------------- * : ey
» : s s
’( Add & Normalize ) ,"( Add & Normalize )
4 >
( Self-Attention ) | ¢ >
’ , ) : Feed Forward Feed Forward
"""""""""""""" 1 — Tl CEL L LI R LT |
o( Add & Normalize ) ‘ ‘ *( Add & Normalize

Feed Forwar d Feed Forward ) | i ’( Encoder-Decoder Attention
________________________________________________________ )
0( Add & Normalize ) 0( Add & Normalize

( Self-Attention ) g ( Self-Attention
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