
CS 839: Foundation Models
Transformers and Attention

Fred Sala

University of Wisconsin-Madison

Sept. 14, 2023



Announcements

•Announcement:
•Emily Bender talk at 3:00 pm. OH shorter as a result.

•Class roadmap:
Thursday Sept. 14 Transformers & Attention

Tuesday Sept. 19 Language Models I

Thursday Sept. 21 Language Models II

Tuesday Sept. 26 Prompting I

Thursday Sept. 28 Prompting II

M
o

stly Lan
gu

age M
o

d
els



Outline

•Mini-Intro
•Terminology, generative vs. discriminative, pretraining, 
representations vs. embeddings

•Attention
•Notions of attention, self-attention, basic attention layer, 
QKV setup and intuition, positional encodings

•Transformers
•Architecture, encoder and decoder setups



Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

•Discriminative model
•Directly predict label h(x) = y or compute h(x) = p(y|x)

•Canonical example: logistic regression 



Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

•Generative model
•Model h(x,y) = p(x,y) or h(x) = p(x). Can be unsupervised

•Canonical example: naïve Bayes



Generative Models 

Learning a distribution from samples

•Traditionally, want to
•Compute density: compute p(x) for some x
• Inference: compute p(a|b) for some a,b 
•Sampling: obtain a sample from p

•Modern methods: may only be able to 
sample/conditionally sample



Embeddings & Representations

Related terminology.

•Embeddings
•Traditionally, goal is to take discrete objects (words, 

graphs, etc.) and produce vectors usable in DNNs
•Text: Word2Vec Graphs: Hyperbolic embeddings



Embeddings & Representations

Related terminology.

•Embeddings
•Often trained based on some custom loss (no “task”)
•Word2Vec: word co-occurrences ↔ embedding distances/ips



Embeddings & Representations

Related terminology.

•Representations
•Often trained based on related task OR pretext task
•Contain “deeper” information about each sample
•Come from “pretrained” models

Stanford CS 231n



Break & Questions



History of Attention

Basic motivation: in NLP fixed context vector not enough

•Why? 
•Words depend on each other
•Dependencies are complex

•Need: mechanism to help model
focus on the right “part”

Lots of approaches from 2014 on
•Bahdanau et al, 2014

Bahdanau et al, 2014



Self-Attention: Motivation

Popularized from 2017 on…

•From bottom-up. Let’s design a basic layer.
• Intuition: dependencies within same sentence

Cheng et al, 2016 Jay Alammar



Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

•Two criteria
•Transform incoming word vectors,
•Enable interactions between words

•Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/



Self-Attention: Retrieval Intuition

•How should we design the interactions?
•Analogy: search
“Which restaurants near me are open at 9:00 pm?”

Query Key

Score 0.3

Value

Score 0.7

Objects:

Query
Key
Value



Self-Attention: Query, Key, Value Vectors

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight matrices: linear 
transformations!

Objects:

Query
Key
Value



Self-Attention: Score Functions

Have query, key, value vectors

• Next, get our score 

• Lots of things we could do --- simpler is usually better!

• Dot product

• Then we’ll do softmax 

Query Key

Score 0.3



Self-Attention: Scoring and Scaling

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight 
matrices: linear transformations!

• Compute scores

Objects:

Query
Key
Value



Self-Attention: Putting it Together

• Have query, key, value vectors via 
weight matrices: linear 
transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value



Self-Attention: Matrix Formulas

• Have query, key, value vectors via weight matrices: linear transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value



Self-Attention: Multi-head

This is great but will we capture everything in one?

• Do we use just 1 kernel in CNNs? No!

• Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Position Encodings

Almost have a full layer designed.

• One annoying issue: so far, order of words (position) doesn’t matter!

• Solution: add positional encodings

Location index



Break & Questions



Transformers: Model Architecture

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•The famous picture you’ve seen
•Centered on self-attention blocks

Vaswani et al. ‘17



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

•Focus encoder first: pretty simple! 2 components:
• Self-attention block
• Fully-connected layers (i.e., an MLP) 



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer (covered this)
•2. “Independent” feedforward nets for each head



Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers



Transformers: Inside a Decoder

•Let’s take a look at the decoder. Three components:
•1. Self-attention layer (covered this)
•2. Encoder-decoder attention (same, but K, V come from encoder)
•3. “Independent” feedforward nets for each head



Transformers: Putting it All Together

•What does the full architecture look like?



Transformers: The Rest

•Next time: we’ll talk about 
•How to use it (i.e., outputs)
•How to train it
•How to rip it apart and build other models with it.


	Slide 1: CS 839: Foundation Models Transformers and Attention
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Terminology: Generative vs. Discriminative
	Slide 5: Terminology: Generative vs. Discriminative
	Slide 6: Generative Models 
	Slide 7: Embeddings & Representations
	Slide 8: Embeddings & Representations
	Slide 9: Embeddings & Representations
	Slide 10: Break & Questions
	Slide 11: History of Attention
	Slide 12: Self-Attention: Motivation
	Slide 13: Self-Attention: Goals and Inputs
	Slide 14: Self-Attention: Retrieval Intuition
	Slide 15: Self-Attention: Query, Key, Value Vectors
	Slide 16: Self-Attention: Score Functions
	Slide 17: Self-Attention: Scoring and Scaling
	Slide 18: Self-Attention: Putting it Together
	Slide 19: Self-Attention: Matrix Formulas
	Slide 20: Self-Attention: Multi-head
	Slide 21: Self-Attention: Position Encodings
	Slide 22: Break & Questions
	Slide 23: Transformers: Model Architecture
	Slide 24: Transformers: Architecture
	Slide 25: Transformers: Architecture
	Slide 26: Transformers: Inside an Encoder
	Slide 27: Transformers: More Tricks
	Slide 28: Transformers: Inside a Decoder
	Slide 29: Transformers: Putting it All Together
	Slide 30: Transformers: The Rest

