S8 \ :
A%

[}

CS 839: Foundation Models
Transformers and Attention

Fred Sala

University of Wisconsin-Madison

Sept. 14, 2023

Announcements

*Announcement:
*Emily Bender talk at 3:00 pm. OH shorter as a result.

*Class roadmap:

Tuesday Sept. 19 Language Models | T
Thursday Sept. 21 Language Models Il

Tuesday Sept. 26 Prompting |

Thursday Sept. 28 Prompting I)

|

S|[9PO|A @3engueq] Aj3SoN

Outline

*Mini-Intro
*Terminology, generative vs. discriminative, pretraining,
representations vs. embeddings

e Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition, positional encodings

*Transformers
* Architecture, encoder and decoder setups

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Discriminative model
* Directly predict label h(x) = y or compute h(x) = p(y|x)

* Canonical example: logistic regression

Py(y =1|z) = o(0'2) =

1 4+ exp(—0Tx)

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Generative model
* Model h(x,y) = p(x,y) or h(x) = p(x). Can be unsupervised

* Canonical example: naive Bayes

P(X17°°'7XK7Y) :P(XlaaXK‘Y)P(Y)

= (H P(XkY)) P(Y)

k=1

Generative Models

Learning a distribution from samples
x(l)ax(Z)a S 733(71) i pdata(x)

*Traditionally, want to
* Compute density: compute p(x) for some x
* Inference: compute p(a|b) for some a,b
* Sampling: obtain a sample from p

*Modern methods: may only be able to
sample/conditionally sample

Embeddings & Representations

Related terminology.
*Embeddings

* Traditionally, goal is to take discrete objects (words,
graphs, etc.) and produce vectors usable in DNNs

* Text: Word2Vec Graphs: Hyperbolic embeddings

N
L

P

financig) byl e tern rdl?BWé\‘-‘J i gD
: ol ey o e
||||| tment coun
Wy g Y T e TER T
report tra mmi%ere%t%og chilg jip ong
%%an% t
. gSh S stoc pnb(e)%? a“”f“ﬁ . also r:I-.e breaj back
marke t st ro appear ma ahea
FOHO0E figu ;1 g e % mce.‘\fgfec“’e"t'sm& G T 4 pig ™0 Sﬁgldﬁmd
pro fE" [expect although = dgmmac@& Eg{g& f'r r:zel jf
quartEEEy arg goog tim %
se‘%?g CE emb‘e&mm“n“% show mov s nam Wﬁs “g d% e
ahitqn w south son d)a d winner olymp ,Li
Md (g feature’ gPe"’m gevrg eng \a}sat x
"ﬁf ha‘fpat Ieag tf“ ay
unch lafge ;gwg?gm‘pfebgeap drp .mdmp‘cf -

Embeddings & Representations

Related terminology.
*Embeddings

e Often trained based on some custom loss (no “task”)
* Word2Vec: word co-occurrences ¢ embedding distances/ips

ﬁnanclgl "q "'&ﬁ:’f term ,‘{W me'et:l?eg &Y

investment country _ . id rca leave
sap economig offic % londo tu& s
¢ ™ Uagwb onom a‘é d”pp”} (Y
repog w ntin re%t lgarg oip internationg|
uk
aC(Orgshars boSEP annou%i £ BISQ r0|§ i % back
market Suck pnce e - Stror é appear ma ahead = | dup
fi | directdyitisbo 2 nati 9'“9““’
g%zfopg figur 939& eve receive [woman po:r‘t Gﬁ qtl?nage.r
o | é"i
Dfof%’%J expect although ~amon ﬁ|mac Iea;t frarﬁé
includé © tim Ios s tram
awarg 9ood ?9% 90
s %?8 L prg vithin ncg
“ be‘malowg show MOVIE nam ®
a"w‘) th winne ol m
« B’sducuog .- featurgson d>alﬁ.)rmancg {everg e:s mar} y p Ilna
Iust amerlc e half

?‘ reach ‘2§ Ot«fu ndax
launch lq@ea;‘g\g s ® P hbrﬁe&. T0 third,PACE peat

Embeddings & Representations

Related terminology.

*Representations

e Often trained based on related task OR pretext task
* Contain “deeper” information about each sample
* Come from “pretrained” models

from toxrchvision.models import resnet50, ResNet50 “Weidh+e

01d weights with accuracy 76.130% 4 N 4 feature) 4 N
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) SE|f—Sup6NiSEd [> extractor > supervised

New weights with accuracy 80.858% leammg (e-g-: a |eam|ng
resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) _ Y, L convnet)) _ Y,

lots of q

evaluate on the |
:>{ target task ‘

,

e.g. classification, detection
Best available weights (currently alias for IMA

Note that these weights may change across versidnlabeled :
resnet50(weights=ResNet50_Weights.DEFAULT) data . g
" 90 - H |~ bird
Strings are also supported small amount of [L
—,

resnet50(weights="IMAGENET1K_V2") labeled data on

o

. " AN . Y -
No weights - random initialization conv fc the target task convy linear
resnet50(weights=None) classifier
Stanford CS 231n

et

St X et

Break & Questions

History of Attention

Basic motivation: in NLP fixed context vector not enough
*Why?
* Words depend on each other
* Dependencies are complex

agreement
European
Economic
Area

was
signed
August
1992
<end>

[}
e
[

on
the
in

Ll
accord
sur

la

*Need: mechanism to help model

économique

focus on the right “part” européennz
été
signé

Lots of approaches from 2014 on e

aolt

*Bahdanau et al, 2014 1992

<end>

Bahdanau et al, 2014

Self-Attention: Motivation

Popularized from 2017 on...

*From bottom-up. Let’s design a basic layer.
* Intuition: dependencies within same sentence

The
The
The
The

The
The
The
The
The

The FBI is chasing a criminal on the run .

FBI 1s chasing a criminal on the run .

FBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

18
1S
1S
s
18
18

1S

chasing a criminal on the run .

chasing a criminal on the run .
chasing a criminal on the run .
chasing a criminal on the run.

chasing a criminal em the run.

chasing @ criminal em the run.

chasing a criminal on the mn .

Chengetal, 2016

Layer. 5 § Attention:

The_
animal_
didn_

t

Cross_
the_
street_
because_

it_

was

too_
tire

Jay Alammar

d

Input - Input

A
v

The_
animal_
didn_

t

Cross_
the_
street_
because_
it

was

too

tire
d

Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

*Two criteria
* Transform incoming word vectors,
 Enable interactions between words

*Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”

\ J \ J
I 1

Query Value
\)
Objects: '
Score 0.3
Query
Value
Score 0.7

Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
* Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding [T T 1] [T 111
ObjeCtS: Queries D:D |:|:|:|
Query
Keys [T 1] [TT1]
Value

Values D:l:' D:':I

Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

g1

\ J \ J

Query

|

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product gy l© =

* Then we’ll do softmax

Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
* Enable interactions between words
* Get our query, value vectors via weight

matrices: linear transformations! input
* Compute scores
Embedding
Objects: Queries
Keys
Query
Values

Value

Self-Attention: Putting it Together

* Have query, value vectors via nput
weight matrices: linear |
, Embedding LT[1] RN
transformations!
* Have softmax score outputs (focus) — Queres LL1] LT
e Add up the values! Keys [TT1] [T 1]
Values Djj Dj]
ObjECtS: Score = =
Divide by 8 (/d;)

Query

Value

Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ} — X ,V — XWV

Query

Value

. ® T)
Attention((), /v, V) = softmax (V
(| Vi

Hr@ 1
Attention(Q, /1, V) = softmax (X — XT> vV

Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs

Self-Attention: Position Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!
* Solution: add positional encodings

PE(pos,Qi) Sin(pas/:_oooozi/dmodel)
Pl (pos,2i+1) = cos(pos/ j_oooo2i/dmodel)

1Location index
POSITIONAL 1 1 084 X002 054 1 XXMl 0.0002| -0.42 R
ENCODING

- - -

EMBEDDINGS HEEN L1 | [[]

INPUT

et

St X et

Break & Questions

Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder
* Get rid of recurrence
* Replace with self-attention

*Architecture r’__’c_ﬁ
* The famous picture you’ve seen
* Centered on self-attention blocks =) =

Vaswani et al. ‘17

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student

&

g -\ r '\\
(ENCODER = DECODER
7 . w
4 4
N é 3
(ENCODER DECODER
v A\ J
4 4
Y 8 '
[ENCODER DECODER
J . J
4 4
. 3 ()
ENCODER DECODER
\ J \ J
4 4
') s n
ENCODER DECODER
\ J \. J
4 4
4 N a)
ENCODER DECODER
. J \. J
- y,

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

! $

Feed Forward

t

— (Feed Forward]

A —_—

[

Encoder-Decoder Attention

)

r N[/ N7 N
| A

N)
—

Self-Attention Self-Attention

t 1 t

Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
e 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head

t t

| [||

Feed Forward Feed Forwar d

Neural Network Neural Network
t t
|
t t
[Self-Attention j

t 1

Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

¢ 4
I,#(Add & Normalize)
: 4 4
. (Feed Forward) (Feed Forward)
AR —— A-----cccccccccnnnn= A
,-p(Add & Normalize)
: R)

E (Self-Attention)

*

POSITIONAL
ENCODING

x1 [x2 [

Thinking Machines

Transformers: Inside a Decoder

*|Let’s take a look at the decoder. Three components:
e 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head

t

Feed Forward J

4

Encoder-Decoder Attention

)

Self-Attention

f

¢ /[N/ N

N

Transformers: Putting it All Together

\What does the full architecture look like?

2 : (Softmax)
(,(Add & Normalize } (Lin’ear)

: 4 L :
E (Feed Forward) (Feed Forward) —— ‘ o aie

i gl i
(&C l Add & Normalize l 5 = '.*(Add & Normalize)

el ™ | i)
E (Feed Forward) (Feed Forward) :’(Encoder-Decoder Attention)
Q| ennneanses T ——— 4 T | &
v »(Add & Normalize) ,«»C Add & Normalize)
: ;) ; ;)

(Self-Attention) (Self-Attention)

(e Js
s & S & &
o 1] 11

Thinking Machines

Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.

$ o
I)
.,(Add & Normalize) | (=
4 4 i
(Feed Forward) ‘ Feed Forward i .
---------------------------- * : ey
» : s s
’(Add & Normalize) ,"(Add & Normalize)
4 >
(Self-Attention) | ¢ >
’ ,) : Feed Forward Feed Forward
"""""""""""""" 1 — Tl CEL L LI R LT |
o(Add & Normalize) ‘ ‘ *(Add & Normalize

Feed Forwar d Feed Forward) | i ’(Encoder-Decoder Attention
__)
0(Add & Normalize) 0(Add & Normalize

(Self-Attention) g (Self-Attention

	Slide 1: CS 839: Foundation Models Transformers and Attention
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Terminology: Generative vs. Discriminative
	Slide 5: Terminology: Generative vs. Discriminative
	Slide 6: Generative Models
	Slide 7: Embeddings & Representations
	Slide 8: Embeddings & Representations
	Slide 9: Embeddings & Representations
	Slide 10: Break & Questions
	Slide 11: History of Attention
	Slide 12: Self-Attention: Motivation
	Slide 13: Self-Attention: Goals and Inputs
	Slide 14: Self-Attention: Retrieval Intuition
	Slide 15: Self-Attention: Query, Key, Value Vectors
	Slide 16: Self-Attention: Score Functions
	Slide 17: Self-Attention: Scoring and Scaling
	Slide 18: Self-Attention: Putting it Together
	Slide 19: Self-Attention: Matrix Formulas
	Slide 20: Self-Attention: Multi-head
	Slide 21: Self-Attention: Position Encodings
	Slide 22: Break & Questions
	Slide 23: Transformers: Model Architecture
	Slide 24: Transformers: Architecture
	Slide 25: Transformers: Architecture
	Slide 26: Transformers: Inside an Encoder
	Slide 27: Transformers: More Tricks
	Slide 28: Transformers: Inside a Decoder
	Slide 29: Transformers: Putting it All Together
	Slide 30: Transformers: The Rest

