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Announcements

Announcement:

*Check out some of the posted papers!
* Homework will start next week

*Class roadmap:

Thursday Sept. 21
Tuesday Sept. 23

Thursday Sept. 28
Tuesday Oct. 3
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Outline

*From Last Time
eSelf-attention, transformers architecture

*Encoder-only Models
*Example: BERT, architecture, multitask training, fine-tuning

*Decoder-only Models
*Example: GPT, architecture, basic functionality



Outline

*From Last Time
eSelf-attention, transformers architecture



Self-Attention Review: Basic Operations

* Have query, value vectors via Input
weight matrices: linear mbedding T |
transformations!
* Have softmax score outputs (focus) — Queres LD
e Add up the values! Keys [(TT1]
Values Djj
ObjECtS: Score =
Divide by 8 (d;. )
Query
Value

Credit to Jay Alammar: http://jalammar.github.io for many figures ©



http://jalammar.github.io/

Self-Attention Review : Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ} — X ,V — XWV

Query

Value

. ® T)
Attention((), /v, V) = softmax ( V
( | Vi

Hr@ 1
Attention(Q, /1, V) = softmax (X — XT> vV



Self-Attention Review: Multi-head Attention

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs




Self-Attention Review: Position Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!
* Solution: add positional encodings

PE(pOS,Qi) — Sin(pas/:_oooozi/dmodel)
Pl (pos,2i+1) = cos(pos/ j_oooo2i/dmodel)

1Location index
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Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder
* Get rid of recurrence
* Replace with self-attention

*Architecture r’__’c_ﬁ
* The famous picture you’ve seen
* Centered on self-attention blocks =) =

Vaswani et al. ‘17



Interlude: Encoder-Decoder Models

*Translation tasks: natural encoder-decoder architecture
*Intuition:

‘avau, L v e any Y AGLU QLU YL Snivuauas v
yms. Oh, do let us go in a caravan.”
Mrs. Russell shook her head. I know it lounds lovely, darling; but
: we to get a caravan ? It would cost at least fifty pounds to buy one,
en if we had one, Daddy couldn’t get away this summer. No, we !
ike up our minds to do without a holiday this year; but I’ll tell you wha
Il do: we’ll all go to Southend for the day, as we did last year, and
r lunch and tea with us and have a splendid picnic.”
“ Then we can bathe again,” said Bob; “ but, oh! I do wish I could he
ny and ride,” he added unexpectedly. ‘ You don’t know how I long !
ny,” he continued, sighing deeply as he remembered the blissful holi
ien a friend let him share his little Dartmoor pony and ride occasional
“ Southend is nothing but houses and people,” cried Phyllis; *“ it’s no b
an this place; and oh! Mummie, I do so long for fields and flowers
imals,” she added piteously; and she shook her long brown hair fory
hide the tears in her eyes.
““ Never mind, darling, you shall have them one day,” answered |
1ssell with easy vagueness.
This really was not very comforting, and it was the most fortunate thing
it at that moment a car stopped at the door.
““ Uncle Edward! >’ shouted Bob, rushing from the room. Phyllis bru
e tears so hastily from her eyes that she arrived at the front door almo !

s . . : produire chez A
on as he did, and both flung themselves on the tall, kindly-looking man st 3 .
g beside the car. e A ois;
“Uncle Edward! Uncle Edward !” they cried. “ You’ve come at e
e’ve been longing to see you. Oh, how glad we are you’re here !’
Now the delightful thing was that their uncle seemed just as pleased t
em as they were to see him, and returned their hugs and greetings witt
most cordiality. They were just on the point of dragging him into
wuse, hanging one on each arm, when he said: *“ Stop, not so fast. Ther
me things to fetch in from the car.’ ;
So saying he began diving into the back of it and bringing out, not o
itcase, but various parcels, which he handed out one by one.

¥ That's tha main af chickane Pya hrancht far vanr mathar 2 sald Lo Lo




Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student
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Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus on encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)
» Captures 1) interactions 2) processing (separately!)
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Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
e 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head
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Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

¢ 4
I,#( Add & Normalize )
: 4 4
. ( Feed Forward ) ( Feed Forward )
AR —— A-----cccccccccnnnn= A
,-p( Add & Normalize )
: R )
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Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
e 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head
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Transformers: Cross-Attention

*Why encoder-decoder attention ?
e Recall: same as before, but K, V come from encoder
* Actually more traditional, but... intuition:

. Key term 1
. Key term 2

. Key term 3
. Key term 4...




Transformers: Decoder Masking

*One more interesting bit!
* At the decoder level, self-attention changes a bit:
* Masked instead: block future words from being attended to

orders

Masked Self-Attention

anYela
UL

robot must obey



Transformers: Outputs

*Finally, let’s see the final layer and outputs

Which word in our vocabulary

. ) ) o am
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs (NI TR N

@ 12345 . vocab size
* -

( Softmax )
3

logits (5 5 1 T (00 [ o

@ 12345 .. vocab_size
4

( Linear )

Decoder stack output LI 1]



Transformers: Putting it All Together

\What does the full architecture look like?
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Transformers: Training

e Data: standard datasets (WMT English-German)

*~5 million pairs for this dataset
* Nothing very special: Adam optimizer
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Outline

*Encoder-only Models
*Example: BERT, architecture, multitask training, fine-tuning



Why Encoder-Decoder?

Wanted two things for translation:
1) Outputs in natural language
2) Tight alignment with input

What happens if we relax these?
1. Encoder-only models
2. Decoder-only models




Encoder-Only Models: BERT

Let’s get rid of the first part

2) Tight alignment with input

24 [ ENCODER ]

*Rip away decoders
 Just stack encoders
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Interlude: Contextual Embeddings
-

Q: Why is it called “BERT”?

*A: In a sense, follows up ELMo

*Story:
*2013: “Dense” word embeddings
(Word2Vec, Glove)
* Downside: fixed representations per word
e “Bank”: building or riverside?
* Need: contextual representations

* Using language model-like techniques
* 2018: ELMo, BERT
 ELMo: uses LSTMs, BERT uses trasnformers

https://nlp.stanford.edu/projects/glove/



Interlude: Contextual Embeddings
-

Q: Why is it called “BERT”?

*A: In a sense, follows up ELMo

BERT acronym:

* Bidirectional Encoder Rpresentations from
Transformers.

* ERT should make sense,

e Bidirectional: no causal masks, look at both
sides of a word!

e Captured in self-attention block



BERT: Forward Pass

BERT architecture

*Rip away decoders
 Just stack encoders
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BERT: Training

Training is more interesting!
* Pretraining. Then fine-tuning on task of interest

*Back to self-supervised learning!

° .

*Two tasks for pretraining.
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scaler.com

1. Masked Language Modeling 2. Next Sentence Prediction



BERT: Training Task 1

Masked Language Modeling Task
* Use [MASK] token for word to be predicted

*Which words to mask?
* Original paper: 15% of words at random

* But... of these
* 10% of the time, no [MASK], flip word randomly
* 10% of the time leave word unchanged
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BERT: Training

Training is more interesti

ng,

* Pretraining. Then fine-tuning on task of interest
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Outline

*Decoder-only Models
*Example: GPT, architecture, basic functionality



Decoder-Only Models: GPT

Let’s get rid of the first part
1) Outputs in natural language

*Rip away encoders

GPT-2

EXTRA
LARGE
* Just stack decoders -
as( DECODER
GPT-2 [« )
LARGE
G pT‘ 2 Cs ( DECODER )\
C p—r 2 MEDIUM 6 ( DECODER )
» ) (. ) 5 ( DECODER )
SMALI_ 24( DECODER ) C
a( DECODER ) a( DECODER )
12 DECODER ,| 3 ( DECODER ) 3 ( DECODER )
cee 2 ( DECODER ) 2 DECODER ) 2 DECODER )
1( DECODER ) % ¢ DECODER :\5 % C DECODER >j \ ( DECODER )j
Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600



Decoder-Only Models: GPT

Rip away encoders
 Just stack decoders

* Use causal masking! NB: not a mask token like in BERT

orders

Masked Self-Attention
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Thank You!
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