CS 839: Foundation Models
Models I

Fred Sala

University of Wisconsin-Madison

Sept. 21, 2023



Announcements

*Logistics:

*Check out some of the posted papers!
* Homework will start next week

*Class roadmap:

Tuesday Sept. 23
Thursday Sept. 28

Tuesday Oct. 3

Thursday Oct. 5

In-Context Learning:
Practice and Theory
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Outline

*From Last Time: Encoder-only Models
Example: BERT, architecture, multitask training, fine-tuning

*Decoder-only Models
*Example: GPT, architecture, basic functionality

*Variations and Advancements
*Scaling, upgrades to positional encodings, etc



Questions/Clarifications From Last Time

1. BERT initialization
eRandom

2. Differences between decoders in encoder-decoder
models and decoder-only models
*Gets rid of cross-attention, still use masked self-attention

3. Weight-tying input and output embeddings

*Trick to help performance (better usage of information, #
parameters)



Outline

*From Last Time: Encoder-only Models
Example: BERT, architecture, multitask training, fine-tuning



Why Encoder-Decoder?

Wanted two things for translation:
1) Outputs in natural language
2) Tight alignment with input

What happens if we relax these?
1. Encoder-only models
2. Decoder-only models




Encoder-Only Models: BERT

Let’s get rid of the first part

2) Tight alignment with input
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*Rip away decoders
 Just stack encoders
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Interlude: Word Embeddings

Q: Why is it called “BERT”?

*A: In a sense, follows up
ELMo

*Story:

*2013: “Dense” word
embeddings (Word2Vec,
Glove)

e Capture some information

e Surprising properties!

Highlights

1. Nearest neighbors
Ihe Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic
similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside

an average human's vocabulary. For example, here are the closest words to the target word frog:

o. frog
1. frogs
2. toad
3. litoria
4. leptodactylidae
5.rana
6. lizard

7. eleutherodactylus

3. litoria 4. leptodactylidae 5. rana 7. eleutherodactylus

2. Linear substructures
The similarity metrics used for nearest neighbor evaluations produce a single scalar that quantifies the relatedness of two words. This simplicity
an be problematic since two given words almost always exhibit more intricate relationships than can be captured by a single number. For
example, man may be regarded as similar to woman in that both words describe human beings; on the other hand, the two words are often

considered opposites since they highlight a primary axis along which humans differ from one another.

‘” ()Yd(,‘l to (,EJ_LJLUH.‘ na quﬂl_!t{JUVC way UK.‘ nuance necessary to d|:slmgu\sh man {TOfTV woman, itis necessary [Ol a [T\Od(,‘j to associate more

than a &)mg\(: number to the word pair. A natural and simple candidate for an (m\urg(:d set of discriminative numbers is the vector difference

between the two word vectors. GloVe is designed in order that such vector differences capture as much as possible the meaning specified by

the juxtaposition of two words.
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https://nlp.stanford.edu/projects/glove/



Interlude: Word Embeddings

Q: Why is it called “BERT”?

*A: In a sense, follows up ELMo

*Story:
*2013: “Dense” word embeddings
(Word2Vec, Glove)

* Downside: fixed representations per word

* “Bank”: building or riverside?
* Capturing context--—-one direction not L LA oS et g e e ek s 4
sufficient!

* | went to the bank to deposit a check
* | went to the bank by the riverside

https://nlp.stanford.edu/projects/glove/



Interlude: Word Embeddings

Q: Why is it called “BERT”?

*A: In a sense, follows up ELMo

*Story:
*2013: “Dense” word embeddings
(Word2Vec, Glove)
* Downside: fixed representations per word
e “Bank”: building or riverside?
* Need: contextual representations
* Bidirectional!
* 2018: ELMo, BERT
 ELMo: uses LSTMs, BERT uses transformers

https://nlp.stanford.edu/projects/glove/



Interlude: Back to Self-Supervised Learning

*These representations aren’t for a particular task

*Once we fix a task, we can
* Fine-tune them
* Freeze them and build on top of them
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BERT: Forward Pass

BERT architecture

*Rip away decoders
 Just stack encoders
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BERT: Using It

How to use it for e.g., classification?
*Special token/word [CLS]

e Output representation here can be trained on (add classifier!)
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BERT: Training

Training is more interesting!
* Pretraining. Then fine-tuning on task of interest

*Back to self-supervised learning!

° .

*Two tasks for pretraining.
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1. Masked Language Modeling 2. Next Sentence Prediction



BERT: Training Task 1

Masked Language Modeling Task
* Use [MASK] token for word to be predicted

*Which words to mask?
* Original paper: 15% of words at random

* But... of these
* 10% of the time, no [MASK], flip word randomly
* 10% of the time leave word unchanged
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BERT: Fine-Tuning

Training is more interesting,
* Pretraining. Then fine-tuning on task of interest
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Devlin et al



BERT: Variations

Lots of work!

*Examples:

* ROBERTa: better trained, better performance
* 10x more data, no next-sentence prediction pretraining task

* SpanBERT: masking spans, not just tokens!

* ALBERT: parameter reduction (but same or better perf.)
 How? Parameter tying/sharing cross layer, factorization

*Specializations: multilingual, domain-specific
* BioBERT etc.
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Outline

*Decoder-only Models
*Example: GPT, architecture, basic functionality



Decoder-Only Models: GPT

Let’s get rid of the first part
1) Outputs in natural language

*Rip away encoders

GPT-2
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Decoder-Only Models: GPT

Rip away encoders
 Just stack decoders

* Use causal masking! NB: not a mask token like in BERT
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Decoder-Only Models: GPT

Rip away encoders
 Just stack decoders

* Decoders: get rid of encoder aspects (masked self-attention

only)
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From GPT2 to GPT3

Mainly make things larger!

* 96 decoder blocks (getting very tall)
* Context size: 2048
* 175 billion parameters in total (800GB!)

Training data:

GPT-3 training datal'l*°

Proportion
Dataset # tokens
within training
Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books?2 55 billion 8%
Wikipedia 3 billion 3%

https://en.wikipedia.org/wiki/GPT-3
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Outline

*Variations and Advancements
*Scaling, upgrades to positional encodings, etc



Variations

Lots of new large language models
*Same basic idea for the architecture

*Example: PALM

* Different activations, position embeddings, no biases
*Scales!

# of Parameters

Model Layers # of Heads dyoqel (in billions) Batch Size
PaLM 8B 32 16 4096 8.63 256 — 512
PaLM 62B 64 32 8192 62.50 512 — 1024
PaLM 540B 118 48 18432 540.35 512 — 1024 — 2048

Chowdhery et al



Thank You!
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