

CS 839: Foundation Models **Prompting I**

Fred Sala

University of Wisconsin-Madison

Sept. 21, 2023

Announcements

•Logistics:

- •Homework 1, info for presentations coming out today
- Interesting talk: Copyright's Latent Space: From Fair Use to Generative Art. BJ Ard. Wednesday, September 27th 10 AM, Discovery Building, Orchard View Room

•Class roadmap:

Tuesday Sept. 26	Prompting I
Thursday Sept. 28	Prompting II
Tuesday Oct. 3	Reasoning & Chain-of- Thought
Thursday Oct. 5	In-Context Learning: Practice and Theory
Tuesday Oct. 10	Fine-Tuning, Specialization, Adaptation

Outline

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Hard and Soft Prompting

 Searching for good prompts, techniques for continuous/soft prompts

•Prompt Ensembling and Other Methods

•Combinations, majority vote, chain-of-thought introduction, weighted ensembling

Outline

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Hard and Soft Prompting

 Searching for good prompts, techniques for continuous/soft prompts

Prompt Ensembling and Other Methods

 Combinations, majority vote, chain-of-thought introduction, weighted ensembling

Prompting: Ask Your Model

Essentially, ask your model to perform your goal task **Example**: sentiment analysis task

• Prompt: "Text: The visuals were lacking and the characters felt flat. Sentiment:"

• Result: "Negative"

Default (GPT-3.5)

Text: The visuals were lacking and the characters felt flat. Sentiment:

Negative

Prompting: Zero-shot vs Few-shot

Terminology:

- •Zero-shot: No "examples" provided to the model.
- •Few-shot/in-context learning: Provide "examples"

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment:

Zhao et al '21

Prompting: Few-shot vs. In-context learning

Terminology conflicts! Note: we have a set of labeled examples. Could **fine-tune**!

Few-shot: *sometimes* means finetune on this dataset, then prompt

In-context learning: do not finetune. Model weights unchanged. Text: (lawrence bounces) all over the stage, dancing, Sentiment: positive

Text: despite all evidence to the contrary, this clun Sentiment: negative

Text: for the first time in years, de niro digs deep Sentiment: positive

Weng / SST

Dong et al, '23

Few-Shot Choices

Examples/structure affect performance:

- 1. Prompt format (affects everything)
- 2. Choice of examples
- 3. Order of examples (permutation)

Zhao et al '21

1. Prompt Formats

The choice of model affects the prompt format

Note: eval datasets have pre-created prompts.

• LAMA (LAnguage Model Analysis): Cloze prompts

1. Prompt Formats: Recent Models

Modern instruction-tuned models have more complex instructions/formats

- •The good: more natural way to tell the model what to do
- •The bad: searching over formats/templates increasingly challenging
 - Example: (White et al, '23): "From now on, I would like you to ask me questions to deploy a Python application to AWS. When you have enough information to deploy the application, create a Python script to automate the deployment."

2. Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a "small' number of examples can be shown, unlike in supervised learning.

Many options. Sampling:

- Liu et al, '21: kNN in embedding space (semantic similarity)
- Su et al, '22: Encourage diversity in embeddings
- Diao et al, '23: "Active prompting"

Diao et al '23

3. Order of Examples

What order to show them to the model?

Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity

Yao Lu[†] Max Bartolo[†] Alastair Moore[‡] Sebastian Riedel[†] Pontus Stenetorp[†] [†]University College London [‡]Mishcon de Reya LLP {yao.lu,m.bartolo,s.riedel,p.stenetorp}@cs.ucl.ac.uk alastair.moore@mishcon.com

• Findings:

- Model size doesn't guarantee low-variance
- Adding more examples doesn't reduce variance
- Good prompts don't transfer from one model to another $\boldsymbol{\Im}$
- Good orders don't transfer

Break & Questions

Outline

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Hard and Soft Prompting

 Searching for good prompts, techniques for continuous/soft prompts

 Prompt Ensembling and Other Methods
 Combinations, majority vote, chain-of-thought introduction, weighted ensembling

Hard Prompting

Also called **zero-shot**.

• Note: terminology conflict with another area called zero-shot learning

"Hard prompt discovery is a specialized alchemy, with many good prompts being discovered by trial and error, or sheer intuition

(Wen et al '23)

• Note: not just for language models!

Zero-shot Generalization

Most exciting aspect of zero-shot: don't need to have been explicitly trained or fine-tuned.

•Example: Multitask Prompted Training Enables Zero-Shot Task Generalization

Recipe

- Pretrain
- Fine-tune
 - Multitask

Sanh et al '22

Hard Prompting: **Discrete Optimization**

Sometimes, can avoid gradients

- Random search
- Greedy

GRIPS: Gradient-free Instructional Prompt Search

Soft Prompting

Also called continuous prompting

Basic idea: insert some (non-language) parameters into prompt

- Train these parameters
- Do not directly correspond to words in prompt

Prefix-Tuning: Optimizing Continuous Prompts for Generation

GPT Understands, Too

Xiang Lisa Li Stanford University xlisali@stanford.edu Percy Liang Stanford University pliang@cs.stanford.edu

Xiao Liu^{*12} Yanan Zheng^{*12} Zhengxiao Du¹² Ming Ding¹² Yujie Qian³ Zhilin Yang⁴² Jie Tang¹²

Soft Prompting: Prefix-Tuning

Goal: create prefixes that *steer* models

- Prefixes are trainable parameters
- •Train one for each goal task, only store these new parameters
- Enables cheap adaptation of frozen language model

Li and Liang '21

Soft Prompting: Composing

What about multimodal models?

- Vision-language models like CLIP
- •Not great composed concepts like *old tiger*
- •Tune on [attribute] [object] pairs

Break & Questions

Outline

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

•Hard and Soft Prompting

 Searching for good prompts, techniques for continuous/soft prompts

•Prompt Ensembling and Other Methods

•Combinations, majority vote, chain-of-thought introduction, weighted ensembling

Ensembling Prompts

One prompt can give you an answer... but might be wrong

Witnesses

Votes

- •One simple approach: get multiple samples
- •From?
 - Change temperature parameter
 - Vary your prompts

Chain-of-Thought

A form of prompting that helps break down the problem (more in a week!)

• Produces more answers to run majority vote on

Wang et al '23

Ensembling Prompts: Weighted Version

Downside of majority vote... most responses might be wrong

• Should weight them by how accurate they are

AMA PROMPTING

Input Example

Is the following claim True or False given the context?

Context: John and his friends went to the theater and saw Jurassic Park. **Claim:** John went to the park. **Answer:**

Model Input
Prompt Chain
Model Output

Run a collection of prompt()-chains where the LLM will generate inputs to question and answer

2 Combine the noisy answers using weak supervision

False

final prediction

Chen et al, '23

Thank You!