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Announcements

•Logistics:
•Homework 1 due in ~12 days
• https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/homework1.pdf

•Class roadmap: Thursday Sept. 28 Prompting II

Tuesday Oct. 3 Reasoning & Chain-of-
Thought

Thursday Oct. 5 In-Context Learning: Practice 
and Theory

Tuesday Oct. 10 Fine-Tuning, Specialization, 
Adaptation

Thursday Oct. 12 Training

https://pages.cs.wisc.edu/~fredsala/cs839/fall2023/files/homework1.pdf


Outline

•Review and More Auto-Prompting
•Zero-shot, few-shot, etc., LLMs as optimizers used for 
prompt optimization

•Prompting in VLMs and Multimodal Models
•Improving CLIP prompts, image inversion, few-shot/in-
context learning for image models

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples 
for few-shot, tree-of-thoughts
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Questions/Clarifications From Last Time

1. Can you include a bibliography?
•A: Yes

2. How does GrIPS split instructions into phases?
•“we use a state-of-the-art CRF-based constituency parser… 
Using the constituency tree, we combine the leaves until 
we obtain disjoint phrase-level constituents”



Prompting: Ask Your Model

Essentially, ask your model to perform your goal task

Example: sentiment analysis task

•Prompt:  “Text: The visuals were lacking and the 
characters felt flat. Sentiment:”

•Result: “Negative”



Prompting: Zero-shot vs Few-shot

Terminology:

•Zero-shot: No “examples” provided to the model.

•Few-shot/in-context learning: Provide “examples”

Zhao et al '21



Prompting: Few-shot vs. In-context learning

Terminology conflicts! Note: we have 
a set of labeled examples. Could 
fine-tune! 

Few-shot: sometimes means fine-
tune on this dataset, then prompt

In-context learning: do not fine-
tune. Model weights unchanged. 

Weng / SST

Dong et al, ‘23



Few-Shot Choices

Examples/structure affect performance:

1. Prompt format (affects everything)

2. Choice of examples

3. Order of examples (permutation)

Zhao et al '21



More on Auto-Prompting

LLMs as “prompt engineers” (Zhou et al, ‘23)
•Use an LLM to generate candidate instructions (prompts)
•Evaluate them externally
•Select best candidate. 
•Optionally iterate.

Example Output: 
• “Let’s work this out in a 

step by step way to be 
sure we have the right 
answer.”



More on Auto-Prompting

LLMs as “optimizers” (Yang et al, ‘23)
•Use the LLM to guess solutions to an optimization problem
•Evaluate them externally
•Run in a loop with few-shot

•Can use for
•Standard optimization problems
•Tougher settings like prompts 



LLMs as Optimizers: Example

Example:
Meta-instructions

Trajectory points

Problem to be solved



LLMs as Optimizers: Prompt Optimization

Resulting trajectory



Break & Questions
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Prompting VLMs and Multimodal Models

Training and prediction in CLIP-style VLMs

OpenAI



How to Prompt VLMs?

Standard way: use pre-defined templates

•E.g., “a photo of a [X]” 

•But, might struggle…

OpenAI



LLMs to Improve VLMs: Description

Static class descriptions may fail…
•Replace with descriptive features (Menon and Vondrick, ‘23)
• Instead of “tiger”, include “stripes, claws, …”



LLMs to Improve VLMs: Spurious Features

This helped with positives.
•What about negatives (i.e., spurious features?)
•Example: waterbirds with CLIP

•Spurious correlations: generally a problem 
with all pretrained models
•But LLMs can also tell us about this (Adila ‘23)



LLMs to Improve VLMs: Spurious Features

Modify embeddings used for prediction:



How to Prompt VLMs, Image Models?

Generally, all the methods for language cases apply

•Especially soft prompts

•Often part of “inversion” pipelines (Gal et al ‘22)



In-Context Learning for VLMs

Surprisingly in-context/few-shot also applies to visual models

•Standard questions apply here too:
•How to select examples
•What makes for a good example?

Zhang et al ‘23



Break & Questions
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Chain-of-Thought

Performing complex reasoning is hard. Help the model:

Wei et al ‘22



Chain-of-Thought: Applications

Some things it can be used for:

• Math problems

• Commonsense 
reasoning

• Symbolic reasoning



Chain-of-Thought: Zero-Shot

No examples shown; encourage model to decompose
•Add to prompt: “Let’s think step by step” before each answer
•For answer extraction, add prompts like “Therefore, the 

answer (arabic numerals) is” (Kojima et al ‘23)



Chain-of-Thought: Few-Shot Examples

As before, we must choose few-shot examples. 
•More structured than simple semantic similarity
•Complexity-based prompting. 

• “[S]imply choose complex prompts over simple ones.”

•Prompting: include most steps. Ensembling: MV over set of 
most complex chains.

Fu et al ‘23



Chain-of-Thought: Generalizations

How do we really “reason”?
•Not really by sampling a bunch of chains… 

Yao et al ‘23
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Thank You!
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