
CS 839: Foundation Models
In-Context Learning

Fred Sala

University of Wisconsin-Madison

Oct. 5, 2023

Announcements

•Logistics:
•Homework 1 due in 5 days---hopefully you’ve gotten
started ☺

•Class roadmap:
Thursday Oct. 5 In-Context Learning: Practice

and Theory

Tuesday Oct. 10 Fine-Tuning, Specialization,
Adaptation

Thursday Oct. 12 Training

Tuesday Oct. 17 RLHF

Thursday Oct. 19 Data

Outline

•Back to In-Context Learning
•Basic idea, two ways of thinking about ICL, metalearning

•Analysis and Theory
•Setup, learning simple function classes, implicit training,
existence, learning results

•Prompting Review
•Everything we’ve talked about so far

Outline

•Back to In-Context Learning
•Basic idea, two ways of thinking about ICL, metalearning

•Analysis and Theory
•Setup, learning simple function classes, implicit training,
existence, learning results

•Prompting Review
•Everything we’ve talked about so far

Reminder: In-context learning

Also called few-shot: but sometimes
means fine-tune on this dataset,
then prompt

In-context learning: do not fine-
tune. Model weights unchanged.

•Everything happens in forward pass

Weng / SST

Dong et al, ‘23

Dong et al, ‘23

ICL: Two ways to think about it

One way to think about few-shot is
recovering some fixed model

•I.e., sentiment analysis model

•Here: goal of few-shot examples is to
activate this model

Other way: be able to learn a function in
a function class

•Learn wTx for any w

ICL: Various ways to think about it

Other way: be able to learn a function in a function class

•Learn wTx for any w

•Note: this is metalearning
• Learn a transformers-based model that can then learn other functions
•Traditionally a hard bilevel optimization problem

Hospedales et al ‘20

ICL: Various ways to think about it

Other way: be able to learn a function in a function class

•Learn wTx for any w

•Metalearning approach

•Q: How is this possible?
•Note that we’re not changing the trained model, so has to itself do a

full training (inner-level) procedure in a forward pass
•Perhaps doable with a big model?

Break & Questions

Outline

•Back to In-Context Learning
•Basic idea, two ways of thinking about ICL, metalearning

•Analysis and Theory
•Setup, learning simple function classes, implicit training,
existence, learning results

•Prompting Review
•Everything we’ve talked about so far

What Can Transformers Learn?

Can study from theoretical or empirical points of view

Theoretical setup:

Note: trained model T is the in-context learner: it’s given a
“dataset” in a prompt, plus a test point

Akyurek et al ‘23

Akyurek et al ‘23

What Can Transformers Learn?

Theoretical setup:

Here, during training we’re not learning one function f

•We’re training an ICL to “learn” new functions!
•At test time!
•This is the metalearning idea

What Can Transformers Learn? Linear Case

Let’s try learning linear functions

Loss function: squared loss

Regularized empirical risk

What Can Transformers Learn? Linear Case

Let’s try learning linear functions

How do we learn a function like f?

Two ways:

1. Closed-form:

2. Gradient descent:

Next iterate

What Can Transformers Learn? Implicit GD

Note: the ICL model can’t learn some specific w
•Different for each input/prompt…
•But, what if it can learn the procedure that generates a solution?

How can we tell? Possibility result from Akyurek et al ’23

See also Oswald et al

Input Dataset

Prediction after next step of GD

What about the closed-form approach?
•Have to invert

•Note: these are sums of rank 1-terms + diagonal, can run it
sequentially with Sherman-Morrison

•Here too,

What Can Transformers Learn? Closed Form

Does this Work?

These existence results show this is possible…

•I.e., there exist weights that produce this behavior

But does training actually get us these?

•A: Yes

What About Learning?

Is it possible to show that training a transformer produces this
behavior?

•A: Yes: Ahn et al ’23
•Model choice: multi-layer linear self-attention

Break & Questions

Outline

•Back to In-Context Learning
•Basic idea, two ways of thinking about ICL, metalearning

•Analysis and Theory
•Setup, learning simple function classes, implicit training,
existence, learning results

•Prompting Review
•Everything we’ve talked about so far

Review: Few-Shot Choices

Examples/structure affect performance:

1. Prompt format (affects everything)

2. Choice of examples

3. Order of examples (permutation)

Zhao et al '21

Diao et al ‘23

Review: Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a “small’ number of examples can be shown,
unlike in supervised learning.

Many options. Sampling:
• Liu et al, ‘21: kNN in embedding

space (semantic similarity)
• Su et al, ‘22: Encourage diversity

in embeddings
• Diao et al, ’23: “Active

prompting”

Diao et al ‘23

2. Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a “small’ number of examples can be shown,
unlike in supervised learning.

Many options. Sampling:
• Liu et al, ‘21: kNN in embedding

space (semantic similarity)
• Su et al, ‘22: Encourage diversity

in embeddings
• Diao et al, ’23: “Active

prompting”

Diao et al ‘23

2. Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a “small’ number of examples can be shown,
unlike in supervised learning.

Many options. Sampling:
• Liu et al, ‘21: kNN in embedding

space (semantic similarity)
• Su et al, ‘22: Encourage diversity

in embeddings
• Diao et al, ’23: “Active

prompting”

Chain-of-Thought

Performing complex reasoning is hard. Help the model:

Wei et al ‘22

Chain-of-Thought: Generalizations

How do we really “reason”?
•Not really by sampling a bunch of chains…

Yao et al ‘23

Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text
explanations in CoT steps with
lines of Python code

• LMs can already output code
• Just need to prompt the right

way

Gao et al ‘23

Bibliography

• Hospedales et al ’20: Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey, “Meta-Learning in Neural Networks: A Survey”
(https://arxiv.org/pdf/2004.05439.pdf)

• Akyurek et al ‘23: Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny Zhou, “What learning algorithm is in-context learning?
Investigations with linear models” (https://arxiv.org/abs/2211.15661)

• Oswald et al ‘22: Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, Max
Vladymyrov (https://arxiv.org/abs/2212.07677)

• Ah et al ‘23: Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra, “Transformers learn to implement preconditioned gradient descent for in-
context learning” (https://arxiv.org/abs/2306.00297)

• Zhao et al ’21: Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, Sameer Singh, “Calibrate Before Use: Improving Few-Shot Performance of Language
Models” (https://arxiv.org/abs/2102.09690)

• Dong et al ‘23: Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui, “A Survey on In-context
Learning” (https://arxiv.org/abs/2301.00234)

• Zhou et al ‘23: Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, Jimmy Ba, “Large Language Models Are
Human-Level Prompt Engineers” (https://arxiv.org/abs/2211.01910)

• Yang et al ‘23: Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen, “Large Language Models as Optimizers”
(https://arxiv.org/abs/2309.03409)

• Wei et al ’22: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, “Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models” (https://arxiv.org/abs/2201.11903)

• Yao et al ’23: Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan, “Tree of Thoughts: Deliberate
Problem Solving with Large Language Models” (https://arxiv.org/abs/2305.10601)

• Gao et al ’23: Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, Graham Neubig, “PAL: Program-aided Language
Models” (https://arxiv.org/abs/2211.10435)

https://arxiv.org/pdf/2004.05439.pdf
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2306.00297
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2211.10435

Thank You!

	Slide 1: CS 839: Foundation Models In-Context Learning
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Reminder: In-context learning
	Slide 6: ICL: Two ways to think about it
	Slide 7: ICL: Various ways to think about it
	Slide 8: ICL: Various ways to think about it
	Slide 9: Break & Questions
	Slide 10: Outline
	Slide 11: What Can Transformers Learn?
	Slide 12: What Can Transformers Learn?
	Slide 13: What Can Transformers Learn? Linear Case
	Slide 14: What Can Transformers Learn? Linear Case
	Slide 15: What Can Transformers Learn? Implicit GD
	Slide 16: What Can Transformers Learn? Closed Form
	Slide 17: Does this Work?
	Slide 18: What About Learning?
	Slide 19: Break & Questions
	Slide 20: Outline
	Slide 21: Review: Few-Shot Choices
	Slide 22: Review: Choice of Examples
	Slide 23: 2. Choice of Examples
	Slide 24: 2. Choice of Examples
	Slide 25: Chain-of-Thought
	Slide 26: Chain-of-Thought: Generalizations
	Slide 27: Tools: Program-aided LMs
	Slide 28: Bibliography
	Slide 29: Thank You!

