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Announcements

•Logistics:
•Homework 1 due in 5 days---hopefully you’ve gotten 
started ☺ 

•Class roadmap:
Thursday Oct. 5 In-Context Learning: Practice 

and Theory

Tuesday Oct. 10 Fine-Tuning, Specialization, 
Adaptation

Thursday Oct. 12 Training

Tuesday Oct. 17 RLHF

Thursday Oct. 19 Data



Outline

•Back to In-Context Learning
•Basic idea, two ways of thinking about ICL, metalearning

•Analysis and Theory
•Setup, learning simple function classes, implicit training, 
existence, learning results

•Prompting Review
•Everything we’ve talked about so far
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Reminder: In-context learning

Also called few-shot: but sometimes 
means fine-tune on this dataset, 
then prompt

In-context learning: do not fine-
tune. Model weights unchanged.

•Everything happens in forward pass 

Weng / SST

Dong et al, ‘23



Dong et al, ‘23

ICL: Two ways to think about it

One way to think about few-shot is 
recovering some fixed model 

•I.e., sentiment analysis model

•Here: goal of few-shot examples is to 
activate this model

Other way: be able to learn a function in 
a function class

•Learn wTx for any w 



ICL: Various ways to think about it

Other way: be able to learn a function in a function class

•Learn wTx for any w 

•Note: this is metalearning
• Learn a transformers-based model that can then learn other functions
•Traditionally a hard bilevel optimization problem

Hospedales et al ‘20



ICL: Various ways to think about it

Other way: be able to learn a function in a function class

•Learn wTx for any w 

•Metalearning approach

•Q: How is this possible?
•Note that we’re not changing the trained model, so has to itself do a 

full training (inner-level) procedure in a forward pass
•Perhaps doable with a big model?



Break & Questions
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What Can Transformers Learn?

Can study from theoretical or empirical points of view

Theoretical setup:

Note: trained model T is the in-context learner: it’s given a 
“dataset” in a prompt, plus a test point

Akyurek et al ‘23



Akyurek et al ‘23

What Can Transformers Learn?

Theoretical setup:

Here, during training we’re not learning one function f

•We’re training an ICL to “learn” new functions!
•At test time! 
•This is the metalearning idea



What Can Transformers Learn? Linear Case

Let’s try learning linear functions

Loss function: squared loss

Regularized empirical risk



What Can Transformers Learn? Linear Case

Let’s try learning linear functions

How do we learn a function like f?

Two ways:

1. Closed-form: 

2. Gradient descent: 

Next iterate



What Can Transformers Learn? Implicit GD

Note: the ICL model can’t learn some specific w
•Different for each input/prompt… 
•But, what if it can learn the procedure that generates a solution? 

How can we tell? Possibility result from Akyurek et al ’23

See also Oswald et al

Input Dataset

Prediction after next step of GD



What about the closed-form approach?
•Have to invert

•Note: these are sums of rank 1-terms + diagonal, can run it 
sequentially with Sherman-Morrison

•Here too,  

What Can Transformers Learn? Closed Form



Does this Work?

These existence results show this is possible…

•I.e., there exist weights that produce this behavior

But does training actually get us these?

•A: Yes



What About Learning?

Is it possible to show that training a transformer produces this 
behavior?

•A: Yes: Ahn et al ’23
•Model choice: multi-layer linear self-attention



Break & Questions
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Review: Few-Shot Choices

Examples/structure affect performance:

1. Prompt format (affects everything)

2. Choice of examples

3. Order of examples (permutation)

Zhao et al '21



Diao et al ‘23

Review: Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a “small’ number of examples can be shown, 
unlike in supervised learning. 

Many options. Sampling:
• Liu et al, ‘21: kNN in embedding 

space (semantic similarity)
• Su et al, ‘22: Encourage diversity 

in embeddings
• Diao et al, ’23: “Active 

prompting” 
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Chain-of-Thought

Performing complex reasoning is hard. Help the model:

Wei et al ‘22



Chain-of-Thought: Generalizations

How do we really “reason”?
•Not really by sampling a bunch of chains… 

Yao et al ‘23



Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text 
explanations in CoT steps with 
lines of Python code

• LMs can already output code
• Just need to prompt the right 

way

Gao et al ‘23
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Thank You!
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