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Announcements

*Logistics:
*Homework 2 actually out!
*Continue to form teams and sign up for presentations!

*Class roadmap:
ThusdayOct 10 EffcentTraining

Tuesday Oct. 15 Efficient Inference

Thursday Oct. 17 Hybrid Models (Guest
Lecture)

Tuesday Oct. 22 Evaluation

Thursday Oct. 24 Multimodal Models



Outline

*Alignment: Review and Why Does It Work?
* Alignment Review, Failures of supervised learning,
knowledge-seeking interactions, abstains
*Variations + Open Questions
*Direct Preference Optimization (DPO), RLAIF, other
techniques
*Efficient Training

*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training



Outline

*Alignment: Review and Why Does It Work?

* Alignment Review, Failures of supervised learning,
knowledge-seeking interactions, abstains



Alignment: Basic Motivation

Goal: produce language model outputs that users like better...
*Hard to specify exactly what this means,
*Easy to query users

Collect human feedback and use it to change the model
*Can do this by fine-tuning, especially with instructions
*Doesn’t quite capture what users want "wm
*We’'ll use other approaches, like RLHF
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RLHF: Setup

Goal: produce language model outputs that users like better...
*VVia RL with trained reward model (Ouyang et al 222)

Low quality data High quality data 3 Human feedback RLHF 3
Text Demonstration ‘ Comparison Prombts
e.g. Internet data data i data P i
o ‘ ! Trained to give Optimized to generate i
¢ (?cptlmlz'ladt.for Flnetglnfd for 3 a scalar score for responses that maximize !
€xt compietion latogue ! (prompt, response) scores by reward model |
Language Supervised i . Reinforcement
. > ) : i — Classification — . <+
modeling finetuning 1 Learning !
Pretrained LLM —— SFT model  —— Reward model —— Final model
Scale >1 trillion 10K - 100K 100K - 1M comparisons 10K - 100K
May ‘23 tokens (prompt, response) (prompt, winning_response, losing_response) prompts
Examples GPT-x, Gopher, Falcon, Dolly-v2, Falcon-Instruct InstructGPT, ChatGPT,
Bolded: open  LLaMa, Pythia, Bloom, Claude, StableVicuna
sourced StableLM

Chip Huyen



RLHF: Reward/Preference Model

Second stage: train reward model
* Use the human feedback to train/fine-tune another model to

reproduce the metric
*Preference model

Prompts Dataset
Reward (Preference)

Model

,._"re

Sample many prompts

L

Initial Language Model Lorem ipsum dol /
sit amet, consec —
adipiscing elit. Al
Donec q feli N
vulp g - /
Nam quam nunc - —
eros faucibus tinci Human Scoring \
uuuuuu pulvinar, he \
Generated text

https://huggingface.co/blog/rlhf



RLHF: Reward/Preference Model

Second stage: train reward model

* Use the human feedback to train/fine-tune another model to
reproduce the metric

*Loss? Based on preference models,
* Example: Bradley-Terry model

EXp (’I"* (CE’, yl))
exp (r*(z,y1)) + exp (r*(z,y2))

P (y1 = y2 | ) =

* Then, our reward model loss is based on the log likelihood,

ﬁR(Tqba D) — _E(m,yw,y;)N’D [log O'(T¢ (.’L’, yw) — T (.CL’, yl))]



RLHF: Fine-Tuning with RL

.
Third stage: RL < Observations

Agen
*Use an RL algorithm e
*Goal: produce outputs that have high reward

RL formulation:

* Action space: all the tokens possible to output
*State space: all the sequences of tokens
*Reward function: the trained reward model

*Policy: the new version of the LM, taking in state and
returning tokens



RLHF: RL Approach

What approach for RL stage?

Agent

*Many deep RL methods available
*Policy gradient methods

*Popular: PPO (Proximal Policy
Optimization)
* Main difference from vanilla policy

gradient, you constrain change to
policy at each step (Schulman et al)

maxE, .p y~m,(y|z) [’T‘¢(:E,y):| — BDxk1 [779(?/ | ) || et (y | 33):|
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Why RLHF?

Why should we do this?

*Why does supervised fine-tuning by
itself not give our goal results?

* Many hypotheses; this section
inspired by Yoav Goldberg’s blog:

* https://gist.github.com/yoavg/6bffOfecd6
5950898ebalbb321cfbd81

e [tself based on Schulman’s talk

* https://www.youtube.com/watch?v=h
nilw5Q_UFg



https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81
https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81

Why RLHF? Ways To Interact

Three “modes of interaction”:

*text-grounded: provide the model with text, instruction
("what are the chemical names mentioned in this text”),

*knowledge-seeking: provide the model with question or
instruction, and expect a (truthful) answer based on the
model's internal knowledge

*creative: provide the model with question or instruction,
expect some creative output. ("Write a story about...")



Why RLHF? Knowledge-seeking

Three “modes of interaction”:

*knowledge-seeking: provide the model with question or
instruction, and expect a (truthful) answer based on the
model's internal knowledge

*This is hypothesized to require RL. Why does SL fail?
*Case 1: know the answer: fine.

e Case 2: don’t know the answer. Supervised learning forces
memorization, cannot produce “don’t know”.

* Worse, SL on case 2 encourages model to lie...




Why RLHF? Knowledge-seeking with RL

Three “modes of interaction”:

*knowledge-seeking: provide the model with question or
instruction, and expect a (truthful) answer based on the
model's internal knowledge

*Why does RL succeed?

e Case 1: know the answer: fine. Get a reward

*Case 2: don’t know the answer. Sometimes make it up and get a
reward if lucky, most of the time low reward

* Encourages truth telling.



Why RLHF? Abstains

Additionally, we’d like our model to abstain

*SL will really struggle with this

* Usually no abstains in datasets

*Even if there were, “generalization” here means
abstaining on similar questions? Difficult

*RL still challenging, need to produce high reward
for “don’t know”, but specific to model

*One way to craft a reward function:
* High reward: correct answers
* Medium reward: abstain
* Negative reward: incorrect
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Outline

*Variations + Open Questions

*Direct Preference Optimization (DPO), RLAIF, other
techniques



RLHF Problems

Lots of challenges!

*Casper et al, “Open Problems and Fundamental Limitations
of Reinforcement Learning from Human Feedback”

*Challenges everywhere, all three phases:
*In human feedback,
* In obtaining reward model,
* In obtaining the policy




RLHF Problems: Human Feedback

*Need to obtain some kind of “representative” collection of
feedback providers
*Simpler:
* Some people have biases
* Mistakes due to lack of care (standard in crowdsourcing)

* Adversarial data poisoners

*Harder:
*In tough settings, what is “good” output?
* Possible to manipulate humans




RLHF Problems: Human Feedback

* Additionally, need high-quality data.
*Expensive to hand-craft good prompts to drive feedback

*Feedback quality:
* Tradeoffs in feedback levels

*|deally, rich
 But harder to work with to train reward




RLHF Problems: Reward Model

*Values can be difficult to express as a reward function

*May need to combine multiple reward functions:
* What’s a “universal” one? People are different

*Reward Hacking
*In tough settings, what is “good” output?
* Possible to manipulate humans



RLHF Problems: Training

*The RL in RLHF can be difficult

*Also, learned policies do not necessarily generalize to other
environments

© >
Actions
<

Observations
Agent




RLHF Alternatives

*Direct preference optimization (DPO)

* Bypass separate trained reward model: just use preference
information directly (Rafailov et al,’23)

* How? Model a preference distribution from samples, integrate into
a single loss (one-stage approach)

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem about x: “write me a poem about
the history of jazz" la bel. rewa rdS the history of jazz"
7~ N\
— —_— - ) — —_— .
: > | = —> reward model LM policy —_— > | — _ final LM
_—Yw AL Yw Yt
preference data maximum sample completions preferencedata _. .

likelihood reinforcement learning likelihood



RLHF Alternatives

*Direct preference optimization (DPO)

* Bypass separate trained reward model: just use preference
information directly (Rafailov et al,’23)

* How? Model a preference distribution from samples, integrate into
a single loss (one-stage approach)

o (Yw | ) mo(y1 | ) )]
L T, Tire :_Eﬁc w Y1)~ logo lo _610 .
ppO (95 Tret) (2,yw,y1)~D [ S (6 & Tref(Yw | ) . Tref (Y1 | @)

* Gradient step:

Vo Lppo(To; Mrer) =

~ BEapn | alinle) o)) | Talogrlyn |2) ~ Tologru|2) ||
higher weight when reward estimate is wrong increase likelihood of y,,  decrease likelihood of y;




RLHF Alternatives

*Many new approaches:
* A good survey: Ji et al '24

*New approaches to rewards,
new forms of feedback
(including Al feedback), etc

*Popular research area!

Al Alignment: A Comprehensive Survey

Jiaming Ji"! Tianyi Qiu™! Boyuan Chen™! Borong Zhang™! Hantao Lou' Kaile Wang!
Yawen Duan? Zhonghao He? Jiayi Zhou! Zhaowei Zhang! Fanzhi Zeng! Juntao Dai!
Xuehai Pan' Kwan Yee Ng Aidan O’Gara® Hua Xu! Brian Tse Jie Fu* Stephen McAleer®
Yaodong Yang!*®? Yizhou Wang! Song-Chun Zhu! Yike Guo? Wen Gao!

Ipeking University 2University of Cambridge *Carnegie Mellon University
“Hong Kong University of Science and Technology SUniversity of Southern California

Abstract

Al alignment aims to make Al systems behave in line with human intentions and values. As Al systems
grow more capable, so do risks from misalignment. To provide a comprehensive and up-to-date overview
of the alignment field, in this survey, we delve into the core concepts, methodology, and practice of align-
ment. First, we identify four principles as the key objectives of Al alignment: Robustness, Interpretability,
Controllability, and Ethicality (RICE). Guided by these four principles, we outline the landscape of cur-
rent alignment research and decompose them into two key components: forward alignment and back-
ward alignment. The former aims to make Al systems aligned via alignment training, while the latter
aims to gain evidence about the systems’ alignment and govern them appropriately to avoid exacerbating
misalignment risks. On forward alignment, we discuss techniques for learning from feedback and learning
under distribution shift. Specifically, we survey traditional preference modeling methods and reinforce-
ment learning from human feedback, and further discuss potential frameworks to reach scalable oversight
for tasks where effective human oversight is hard to obtain. Within leaming under distribution shift, we
also cover data distribution interventions such as adversarial training that help expand the distribution of
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Outline

*Efficient Training

*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training



Training Foundation Models: Scale

Llama family of models,

*“we estimate that we used 2048 A100-80G8B for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),
*“training OPT-175B on 992 80GB A100 GPUs”

GPU Type GPU th.i'er GPU-hours Total pmai'&r Carbon emitted
consumption consumption (tCO2eq)
OPT-175B A100-B80GB 400W 809,472 356 MWh 137
BLOOM-175B A100-830GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-830GB 400W 82,432 36 MWh 14
LLaMA-13B A100-830GB 400W 135,168 539 MWh 23
LLaMA-33B A100-80GB 400W 530,432 233 MWh 90
LLaMA-65B A100-830GB 400W 1,022,362 449 MWh 173

Touvron et al, 23



Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations
* A little bit of fast memory, lots of slower memory

* Avoid using slow memory when possible
* FlashAttention: Tiling + computing tricks

Attention on GPT-2

:| Matmul

-
i
1

:19TB/s (20 MB) Dropout

HEM: 1.5TB/s (40GB) 2 £10-
= o Softmax
= E
QU —
:12.8GB/s = = 5. Fused
(>1TB) Mask Kernel

1

Memory Hierarchy with ] Matmul

Bandwidth & Memory Size

o
1

Qutput to HEM

sm(QKV: N xd PyTorch FlashAttention

Inner Loop

FlashAttention

Dao et al ‘22



Flash Attention

: 19 TB/s (20 MB)

Idea for FlashAttention
Different kinds of GPU memory

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

* Fast: on-chip SRAM

e But very little of this: 192KB for each of ~100 processors for an A100 (20MB)
Slow(er): HBM

* But lots: 40-80GB for an A100

*Goal: use fast as much as possible, avoid moving to HBM



Flash Attention: Basic Idea

Will use two tricks for higher efficiency
*Tiling and re-computing.

First, recall standard attention

* Will use HBM memory repeatedly
 Lots of reads and writes:

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*? in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4

. Return O.




Flash Attention: Tiling

Will use two tricks for higher efficiency
*Tiling and re-computing.

How do we avoid writing and reading from HBM?

* A: don’t load the whole thing, use custom tiling and save the pieces
(small). Standard version

f(x)

m(x) :==max x;, f(x):= [exl_m(x) exB_m(x)] , L(x):= Zf(x);-, softmax(x) := 1G)

*Tiling version: two components (can extend)

m(x) = m([x® x@]) = max(m(x), m(x@)),  f(x) = [N fx D) D) f(x2) |

t(x) =£( [x(l) x(Z)]) — em(x(ﬂ)—m(x)g(x(l)) + em(x@))—m(x){)(x(Z)), softmax(x) = );((x)) |
X



Flash Attention: Recomputing

Will use two tricks for higher efficiency
*Tiling and re-computing.

How do we avoid writing and reading from HBM?
* A: don’t load the whole thing, use custom tiling and save the pieces

“Tiling enables us to implement our algorithm in one CUDA kernel,
loading input from HBM, performing all the computation steps
(matrix multiply, softmax, optionally masking and dropout, matrix
multiply), then write the result back to HBM (masking and dropout in
Appendix B). This avoids repeatedly reading and writing of inputs and
outputs from and to HBM.”

Don’t we need to store full S, P for backwards pass, anyway?
* A: No! Can recompute on the fly S, P on the fly



Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
*Tiling and re-computing.

What’s the tradeoff?

*Using tiling and computing/re-computing things normally
trades off memory consumption for speed

*But... by reducing memory consumption, we can stick to fast
memory only

* And this makes us much faster
* So no tradeoff at all (except for needing custom CUDA kernels ©)



Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
*Tiling and re-computing.

Results:
Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0%)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)




Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*Classic centralized distributed training

* Synchronize each local gradient update
* Send synchronized vector back to each node (lots of

communication!)
@ Central Server

PR TN

Computation Nodes




Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*This is by itself impossible (each node can’t handle full model
for large models)

*Need further parallelism:
* Data: each node sees a different slice of data
* Weights/tensors: chunks so no GPU sees whole model

* Pipeline: only a few layers per GPU EZIQZ; e -
*Great resource: A T

https://huggingface.co/blog/bloom-megatron-deepspeed

time. Bottom: GPipe
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