
CS 839: Foundation Models
Efficient Training & Inference

Fred Sala

University of Wisconsin-Madison

Oct. 15, 2024

Announcements

•Logistics:
•Homework 2 in progress.
•No OH on Thursday!
•Mini-OH at end of lecture today

•Project information coming out shortly.

•Class roadmap: Tuesday Oct. 15 Efficient Training & Inference

Thursday Oct. 17 Hybrid Models (Guest
Lecture)

Tuesday Oct. 22 Data

Thursday Oct. 24 Evaluation

Tuesday Oct. 29 Multimodal Models

Announcements

•Logistics:
•Thursday’s guest lecture: Nick Roberts (UW-Madison,
Meta, Together.ai)

•Topics: ”Hybrid” architectures, models
and neural architecture search.

Outline

•Efficient Training
•Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

•Efficient Inference
•Speculative decoding, early-exist strategies, Flash
decoding

•Mini-OH
•Also form groups

Outline

•Efficient Training
•Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

•Efficient Inference
•Speculative decoding, early-exist strategies, Flash
decoding

•Mini-OH
•Also form groups

Training Foundation Models: Scale

Llama family of models,

•“we estimate that we used 2048 A100-80GB for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),

•“training OPT-175B on 992 80GB A100 GPUs”

Touvron et al, 23

Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations

•A little bit of fast memory, lots of slower memory

•Avoid using slow memory when possible
•FlashAttention: Tiling + computing tricks

Dao et al ‘22

Flash Attention

Idea for FlashAttention

•Different kinds of GPU memory

•Fast: on-chip SRAM
• But very little of this: 192KB for each of ~100 processors for an A100 (20MB)

•Slow(er): HBM
• But lots: 40-80GB for an A100

•Goal: use fast as much as possible, avoid moving to HBM

Flash Attention: Basic Idea

Will use two tricks for higher efficiency
•Tiling and re-computing.

First, recall standard attention
•Will use HBM memory repeatedly

• Lots of reads and writes:

Flash Attention: Tiling

Will use two tricks for higher efficiency
•Tiling and re-computing.

How do we avoid writing and reading from HBM?
•A: don’t load the whole thing, use custom tiling and save the pieces

(small). Standard version

•Tiling version: two components (can extend)

Flash Attention: Recomputing

Will use two tricks for higher efficiency
•Tiling and re-computing.

How do we avoid writing and reading from HBM?
•A: don’t load the whole thing, use custom tiling and save the pieces
“Tiling enables us to implement our algorithm in one CUDA kernel,
loading input from HBM, performing all the computation steps
(matrix multiply, softmax, optionally masking and dropout, matrix
multiply), then write the result back to HBM (masking and dropout in
Appendix B). This avoids repeatedly reading and writing of inputs and
outputs from and to HBM.”

Don’t we need to store full S, P for backwards pass, anyway?
•A: No! Can recompute on the fly S, P on the fly

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
•Tiling and re-computing.

What’s the tradeoff?

•Using tiling and computing/re-computing things normally
trades off memory consumption for speed

•But… by reducing memory consumption, we can stick to fast
memory only
•And this makes us much faster
•So no tradeoff at all (except for needing custom CUDA kernels ☺)

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
•Tiling and re-computing.

Results:

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•Classic centralized distributed training
•Synchronize each local gradient update
•Send synchronized vector back to each node (lots of

communication!)

Computation Nodes

Central Server

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

•This is by itself impossible (each node can’t handle full model
for large models)

•Need further parallelism:
•Data: each node sees a different slice of data
•Weights/tensors: chunks so no GPU sees whole model
•Pipeline: only a few layers per GPU

•Great resource:
https://huggingface.co/blog/bloom-megatron-deepspeed

Break & Questions

Outline

•Efficient Training
•Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

•Efficient Inference
•Speculative decoding, early-exist strategies, Flash
decoding

•Mini-OH
•Also form groups

Efficient Inference

Similar goal to training

•Gains are more visible

Many different approaches. We’ll talk about two:

•Speculative decoding
• Inspired by speculative execution in computer architecture

•Adaptive language modeling
• Inspired by early termination methods in ML

Leviathan et al ‘23

Speculative Decoding: Idea

What’s slow in autoregressive generation?

•Have to wait for a token to be generated before generating
the next token

If we’re not generating, not slow---can compute probabilities
quickly

•Processing the fixed prompt can be reasonably fast

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Speculative Decoding: Idea

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Problem: what if the generated tokens have different
probabilities?

•Can reject new ones

•Can run multiple of these in parallel, increase the chances
we’ll find something we want.

Speculative Decoding: Example

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

•Green: accepted, red: rejected, blue: original LM.
•Each line is one iteration of speculative decoding.

Leviathan et al ‘23

Speculative Decoding: Algorithm

Algorithm:

•Mp original model, Mq small
model (efficient)

•Generate γ parallel paths with Mq

•Check what was accepted
•Adjust if needed
•Sample from “adjusted” distribution

•Generate one more token from
Mp

Speculative Decoding: Results

Some sample results:

Note: lots of extensions!

• What kind of generation ”paths” should we use?

Adaptive Language Modeling

Basic idea: make predictions based on
earlier layers

• When it is safe to do so.

• Goal: introduce constraints and
ensure these are satisfied,
•Textual consistency
•Risk consistency

Schuster et al ‘22

Break & Questions

Outline

•Efficient Training
•Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

•Efficient Inference
•Speculative decoding, early-exist strategies, Flash
decoding

•Mini-OH
•Also form groups

Thank You!

	Slide 1: CS 839: Foundation Models Efficient Training & Inference
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Training Foundation Models: Scale
	Slide 7: Training Foundation Models: GPU Usage
	Slide 8: Flash Attention
	Slide 9: Flash Attention: Basic Idea
	Slide 10: Flash Attention: Tiling
	Slide 11: Flash Attention: Recomputing
	Slide 12: Flash Attention: Tradeoffs?
	Slide 13: Flash Attention: Tradeoffs?
	Slide 14: Training Foundation Models: Parallelization
	Slide 15: Training Foundation Models: Parallelization
	Slide 16: Break & Questions
	Slide 17: Outline
	Slide 18: Efficient Inference
	Slide 19: Speculative Decoding: Idea
	Slide 20: Speculative Decoding: Idea
	Slide 21: Speculative Decoding: Example
	Slide 22: Speculative Decoding: Algorithm
	Slide 23: Speculative Decoding: Results
	Slide 24: Adaptive Language Modeling
	Slide 25: Break & Questions
	Slide 26: Outline
	Slide 27: Thank You!

