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Announcements

•Logistics:
•Note slight change: scaling today, diffusion models Tuesday
•HW2 due today. HW3 due Nov. 12
•Project. Dates: Nov. 21: proposal, Dec. 13: report
•Presentation: Nov: 12,14,19,21,26 Dec: 3,5

• Warning: will ask for volunteers for days with 4 groups to shift to Dec. 5

•Presentation proposal due On Nov. 7!

•Class roadmap:
Thursday Oct. 31 Scaling & Scaling Laws

Tuesday Nov. 5 Diffusion Models

Thursday Nov. 7 Security, Privacy, Toxicity + 
Future Areas



Outline

•Scaling Laws Intro 
•What are laws and why, regimes, idealized versions, 
initial findings from Kaplan et al

•Scaling Laws Revised
•Additional methods, new results, Chinchilla and related 
hypotheses

•Beyond Scaling Laws
•Data pruning and others
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Trends: Models

Models have gotten bigger

Villalobos et al ‘22



Trends: Compute

Compute has gotten bigger

https://www.tomshardware.com/news
/startup-builds-supercomputer-with-
22000-nvidias-h100-compute-gpus

https://www.tomshardware.com/news/te
slas-dollar300-million-ai-cluster-is-going-
live-today

https://www.pcmag.com/news/zuckerber
gs-meta-is-spending-billions-to-buy-
350000-nvidia-h100-gpus



Trends: Data

Datasets have gotten bigger

wiki

Villalobos et al, “Will we run out of data? An analysis of the 
limits of scaling datasets in Machine Learning”



Scaling Laws

We want to understand

•How performance scales with these quantities…

•And how they interact!

Kaplan et al ‘20



Scaling Laws

Not unique to machine learning models.

•Note: often have multiple “regimes” 

•Example: LDPC and other codes

“Waterfall” regime, 

“Error floor” regime

Costello et al ‘13



Scaling: Setup

Kaplan et al ’20

Measurement units:

•Compute: FLOPs 

•Model size: parameters

•Data: tokens

•Ranges:

•Model size : 768 to 1.5B (non-embedding) parameters

•Data: 22M to 23B tokens



Compute: FLOPS

FLOPs: a measure of computing performance

•“floating point operations per second”

•Our neural network operations involve adding and 
multiplying real numbers → flops
•Note: standard approach 32 bit floating point
•Popular area of research: smaller precision or mixed precision 

training, inference, or both

Wiki



Scaling: Power Laws

How to model relationships measured?

•Power laws

•In our case, for model size and training to convergence, 

Coefficient Exponent

Coefficient Exponent



Scaling: Power Laws

Not a new idea. For data: hypothetical power-law like scaling

•Note: different regimes

Hestness et al ‘17



Scaling: Varying the Model Size

Let’s see this in detail. 

Kaplan et al ’20. Fix the dataset (large). 

•Vary model size: 769 to 1.5B 

•Measure test loss 

•Fit the curve as before:



Scaling: Varying the Dataset

Same idea, but for data.

Fix the model size (large).

•Vary Data: 22M to 23B tokens

•Measure test loss

•Again fit a curve 



Scaling: Interactions

What about the effect of both model size and data? 

•Why? Need to figure out what to prioritize: get more data or 
increase the model size?
• “as we increase the model size, we should increase the dataset size 

sublinearly according to D ∝ Nα_N/α_D ∼ N0.74 ”



Scaling: Compute

How much compute do we need?

•Note: not independent of the data/model size! 

•Rough equation: C = 6 N x B x S

•C is a direct function of model size. 
•Batch size varies (existing heuristics for optimal batch size). 
•Steps depend on stopping rules

# Params Batch 
Size

Steps



Scaling: Compute

What are the interactions?

•Using the critical batch size (optimizes the speed/efficiency 
tradeoff).  

•Empirically optimal results: N∝C0.73, B∝C0.24, and S∝C0.03

•“As the computational budget C increases, it should be spent 
primarily on larger models, without dramatic increases in 
training time or dataset size”



Scaling: Architectures

What about choosing various architectures?

•Compare transformers vs LSTMs

•Change parameter counts, #layers 
•Fixed dataset (WebText2)

•Transformers win here
•Some recent work challenges this



Scaling: Predicting

All of this requires huge 
numbers of training runs…

•But, if the laws are reliable, 
can:

•Train smaller models,

•Obtain a scaling law, 

•Make design decisions based 
on this law. 



Break & Questions
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Scaling: How Universal Is This?

Kaplan et al made certain choices, 
•Results used early stopping, etc.
•One particular learning rate 

schedule

•Scaling law results may change 
with different choices!

•Hoffman et al ‘22: another 
exploration with different 
results. 



SL2: Approach #1: Minimum Over Curves

For each number of parameters (range: 70M to 10B),

•Vary # of training steps,

•4 training sequences, take overall minimum

•Results:



SL2: Approach #2: IsoFLOP Profiles

Vary model size for a fixed set of 
FLOP counts

•Obtain best performance for 
fixed FLOP at various models, 
use to obtain curve



SL2: Approach #3: Direct Fitting 

Fit the function (inspired by classical risk bounds)

Results:



SL2 Conclusion

Note all results fairly similar:

“All three approaches suggest that as compute budget 
increases, model size and the amount of training data should 
be increased in approximately equal proportions”

•Quite different from Kaplan et al!



SL2 Chinchilla

What are the implications?

•For a particular (large) 
compute budget, very massive 
models are not the way to go,

•“Smaller” is better.

•Chinchilla model: 70B 
parameters, 1.4T tokens
•Comparison against Gopher: 

same compute in FLOPs, but 
much larger 



Reconciling Differences & Practical Use

https://github.com/karpathy/nanoGPT/blob/master/scaling_laws.ipynb



Break & Questions
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Back to Universality

Even if we could estimate these law parameters correctly, are 
we stuck with the implications?

•Maybe not!

•Better data via pruning
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Thank You!
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