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Announcements

*Logistics:

HW3 due Nov. 12
Project. Dates: Nov. 21: proposal, Dec. 13: report

Presentation: Nov: 12,14,19,21,26 Dec: 3,5

* Warning: will ask for volunteers for days with 4 groups to shift to Dec. 5

*Presentation proposal due on Nov. 7 (Thursday)!

Thursday Nov. 7 Security, Privacy, Toxicity +
Future Areas



Outline

*Generative Models Overview
*Basic idea, complexity challenges, overview of major
image generation techniques, intuitions
*Normalizing Flows & GANs

*Normalizing flow transformations, training, sampling,
GAN generators, discriminators, training

Diffusion Models

*Overall intuition, score-based training, controlling and
latent space formulations, extensions



Outline

*Generative Models Overview

*Basic idea, complexity challenges, overview of major
image generation techniques, intuitions



Goal: Learn a Distribution

*Want to estimate p,.,, from samples

x(l),x(z), == ,x(”) ~ Pdata ()

e Useful abilities to have:

* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)

*As always need efficiency for this too...




Directly Modeling the Distribution
* Want to estimate pg,., from samples

x(l),x(z), . ,x(n) ~ Pdata ()

*One straightforward idea: parametrize the pdf of the
distribution. To train, maximize the log likelihood

N
max ; log pe (xs).

*However, we’ll face some challenges...
* Why? Both training and inference can be complex



Goal: Learn a Distribution

*Want to estimate p,.,, from samples

CU(l) , 55(2)7 o ’Qj'(n) ~ pdata(m) Energy function
*Let’s set 1 ,

*Have to deal with the normalizing partition function Z,

Zy = /exp(fa(ﬁ))dx Usually intractable!



Getting Around the Partition Function

All gen. modeling techniques must deal with this. How?

* Avoid modeling the pdf explicitly
> GANs

*Choose special choices of p/f that keeps Z tractable
e = Certain normalizing flows

*Use approximations
* = VAEs, using ELBO-style bounds

*Obtain training objectives that sidestep maximum likelihood
* = GANs, score-based diffusion models



Generative Modeling Approaches

GAN: Adversarial < || x 7 Generator o
. X
training G(z)

VAE: maximize - N Encoder 7 Decoder o x!
variational lower bound q4(2[x) po(x|z)
Flow-based models: X > Flow > Z - Inlnierse X
Invertible transform of f(x) [ (2)

distributions
Diffusion models:_ X0 Xy . Xo - 7z

Gradually add Gaussian - - - - - - - - —- - +-------
noise and then reverse

Lilian Weng



Generative Modeling Intuitions

We can think of GMs as doing two things:

*“Mapping” a simple (fake) distribution
into a complex (real) distribution e I W

distributions

*Why? Sample from simple distribution, then - - =

Gradually add Gaussian | Qo LTI e Y

transform with learned map ==
*”Latent space” interpretation Hifan Weng

*Learning to undo noise or undo a
particular transformation
* Related to self-supervised learning
Combine with previous training considerations to get various
techniques
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Outline

*Normalizing Flows & GANs

*Normalizing flow transformations, training, sampling,
GAN generators, discriminators, training



Flow Models

*Want to fit pg(x), as we described

*Some goals:

* Good fit for the data
* Computing a probability: the actual value of py(x) for some x

* Ability to sample
* Also: a latent representation

*Won't model pg(x) directly... instead we’ll get some latent
variable z

Flow-based

Flow Inverse

generative models: X > > z > >

| f (=)

minimize the negative f(x)
log-likelihood

Lilian Weng




Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

Flow-based
generative models: X > Flow > z > Inverse - x/
minimize the negative f(x) f(2)
log-likelihood

e ~ - ~ -

Zg ~ Po(zo) z; ~ pi(zi) Zg ~ PK(ZK)

Lilian Weng



Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of invertible transformations (the “flow”)

Flow-based

generative models: x . Flow 2 N Inverse o
minimize the negative f(x) f—l () -
log-likelihood

* How to sample?

* Sample from Z (the latent variable)---has a simple distribution that lets us do
it: Gaussian, uniform, etc.

* Then run the sample z through the inverse flow to get a sample x

e How to train? Let’s see...



Flow Models: Density Relationships

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does each transformation affect the density p?

Latent variable Transformation
/

Yz = fo(x)
po(z) dz = p(z) dz

pe(z) = p(fo(z))

Ofo(x)

ox

Determinant of
Jacobian matrix

~



Flow Models: Training

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does training change?
*ldea: might be easier to optimize p,

Ofo ,

1 (1)) — 1 (4) I (.(i)
max }_logpo(¢")) = max } logpz(fo(+')) +log | = (1)
S r 1
Y Latent variable Determinant of
I\{Iax!mum version Jacobian matrix

Likelihood

Can extend to many chained transformations...



Flows: Example

*Flow to a Gaussian (right)

Flow
1.0 A 15 -
0.8 1 104 3000 -
*Before training: .. 5
0_
0.4 N
0.2 1 1o
0.0 A [ . . —15 A . | |
-2 0 2 -2 0 ’
1.0- 7.5
50 - 2500 ~
0.8 1 '
2.5 - 2000 -
[ [ 0.6 4
After training: |
' ~2.5 1 1000
> —5.07 500 -
e [ . ~7.5 ‘ , , 0
-2 0 2 -2 0 >

UC Berkeley: Deep Unsupervised Training



Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
o Affine: f(x) = AY(x - b)

— Forward

* Elementwise: f(x4, ..., Xg) = (f(x4), ..., f(xy)) ;:: — Inverse

® Endpoints

*Splines: 0.50
*Desirable properties:

* |Invertible ~0.501
* Differentiable (forward and inverse) o

—-1.00 -
-1.0 -0.5 0.0 0.5 1.0

(a) Forward and inverse transformer

Papamakarios et al’ 21



GANSs: Generative Adversarial Networks

*So far, we’ve been modeling the density...
* What if we just want to get high-quality samples?

*GANSs do this. Based on a clever idea:
* Art forgery: very common through history
e Left: original

* Right: forged version

* Two-player game. Forger wants to pass off the
forgery as an original; investigator wants to
distinguish forgery from original




GANSs: Basic Setup

*|Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Fake Images
(from generator)

Real or Fake

Dlscnmmator Network

Real Images
(from training set)

Generator Network

Random noise

t

Vs

Stanford CS231n / Emily Denton



GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

Irbax Ewdiata lOg DQd (:U) + EZNP(Z) log(l B ng (GQQ (Z)))
f I

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:

* Minimax game! Train jointly.

min max
0, 04

Hj‘xwpdafca, log DQd (I) T

I

Real data, want
to classify 1

j‘zwp(z) 10g(1 o DQd (GQQ (Z)))

I

Fake data, want
to classify 0



GAN Training: Alternating Training

*So we have an optimization goal:

min max

{:xr\"pdata log ng (aj) —I_

0, 0Og

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max K wpy... 108 Do, () + E,op(z) log(l — Do, (G, (2)))

04

{"zrvp(Z) log(l — DQd (GQQ (Z)))

* Gradient descent: fix discriminator, make the generator better

minlE, ;) log(1 — Dy, (G, (2)))

Og



GAN Training: Issues

*Training often not stable

* Many tricks to help with this:
* Replace the generator training with

wmax . . p(z) log(Do, (Go, (2)))

* Better gradient shape |
* Choose number of alt. steps carefully /‘

/ ﬂ
. . High gradient signal
*Can still be challenging. |

4 0.6 . Tos . 10
Cow gradient signal

Stanford CS231n



GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
height)
* Can just reverse our CNN pattern...




GANSs: Example

*From Radford’s paper, with 5 epochs of training:

:n ‘ [" i :
{ M LTS

] Lo
"«'.‘ -
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Outline

Diffusion Models

*Overall intuition, score-based training, controlling and
latent space formulations, extensions



Diffusion Models Idea

*Let’s return to something that looks like a normalizing flow,

Diffusion models: X0 X1 - Xo > -l Z

Gradually add Gaussian - - - - - - - «-—— - “«-——m =
noise and then reverse

Lilian Weng

*Really a large family of techniques that share some common
properties

* But have been derived from different starting principles / desired
properties



Score-Based Generative Models

*How do we avoid running into the partition function?
*Let’s not model the pdf
*|nstead, model the “score”

Vx log p(x)

*Score: gradient of the log likelihood with respect to the data.

e Goal: train s such that
sg(x) = Vxlogps(x)



Score-Based Generative Models

Instead, model the “score” Y/ log p(x)
Goal: train s such that

sg(x) = Vxlogpg(x) :

*Why does this avoid the partition function?
*Let’s plug in our energy-based function from earlier. We get:

Gradient w.r.t. x, not ©

so(x) = Vxlogps(x) = —Vx[fo(x) — Vxlog Zg = —V fo(x).

=0




Training & Inference for Score-Based Models

*Training: can directly run M.S.E. as a loss,

E ) [|| Vx log p(x) — sp(x)]]3]

*We usually can’t access the left hand term, but techniques
for training despite this

*Inference: special methods that can sample, like Langevin
dynamics

Xii1 < X; + €Vylogp(x) + Vv 2€ z;

1

T 1

Sample Learned Noise
lterates score function




Training & Inference for Score-Based Models

H...;'-H_H"ﬁ-‘ T | Mg TS T Tagl N " N
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Score-Based - Denoising Diffusion Models

*Our story so far is s
Pl
S My — fmr-{
SCOre  +vvv.osslala d1AENAN Langevin Z
matching - ©ozzzzze N dynamics
femardi e
BRI e
Data samples Scores New samples
{X1,X2,"',XN} I}\Si p(x) So(x) v logp(x)
*But, this leads to inaccurate modeling in low-prob regions:
Data scores Estimated scores

Data density

Yang Song



Score-Based - Denoising Diffusion Models

*Solution: perturb the density with noise
* To ensure accurate modeling in more regions
* In particular, noise at multiple scales
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Score-Based - Denoising Diffusion Models

*So far, “noise” showed up in a few places, but not in a strictly
connected way
* Train model with score matching
e Sample with Lagenvin dynamics (which includes noise)
* Use noise perturbation to train better

*Denoising diffusion models directly use noise in both training
and inference

p@(Xt1|Xt
@H — @ @H = (%)

"--_._.-’

Ho et al ‘20



Diffusion Models

*Basic graphical model

pO(xt1|Xt
G — @) @H — (%)

S ==

Ho et aI 20

*Can easily set up the noising process,
T
q(x¢|x¢—1) = N(xt; V1= B8x¢1,60) q(x1.7|%0) = HQ(Xt|Xt—1)
t=1

To sample, directly compute from reverse, i.e., q(X¢—1[%¢)
e Simple, nice parametrizations in Ho et al ‘20.



Latent Diffusion Models

Latents are really just the noised images in pixel space

*No “latent space” so far at |

east

*But, can add by using an autoencoder

S
e

0

z
El
Z  |*FT-1

Pixel Space,

pq

denoising step crossattention

Rombach et al ‘22

{

Latent Space
Diffusion Process )I

Denoising U-Net €g 2T

6onditionina
emanti
‘ Ma; \
Text

Repres
entations

Images

o
KV

switch  skip connection concat

-

- J




Text-to-Image Generation + Conditional DMs

Lots of approaches! In particular, for text-to-image generation
*All based on similar principles from multimodal training

*Example: for latent diffusion (Rombach et al ’22)

* “Process y from various modalities (such as language prompts) we
introduce a domain specific encoder ... that projects y to an
intermediate representation ... which is then mapped to the
intermediate layers of the UNet via a cross-attention layer
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