

CS 839: Foundation Models Transformers and Attention

Fred Sala

University of Wisconsin-Madison

Sept. 12, 2024

Announcements

•Announcement: None

•Class roadmap:

Thursday Sept. 12	Architectures I: Transformers & Attention
Tuesday Sept. 17	Architectures II: Subquadratic Architectures
Thursday Sept. 19	Language Models I
Tuesday Sept. 24	Language Models II
Thursday Sept. 26	Prompting I

Mostly Language Models

Outline

•Mini-Intro

•Terminology, generative vs. discriminative, pretraining, representations vs. embeddings

Attention

•Notions of attention, self-attention, basic attention layer, QKV setup and intuition, positional encodings

Transformers

•Architecture, encoder and decoder setups

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

- Discriminative model
 - Directly predict label h(x) = y or compute h(x) = p(y|x)

• Canonical example: logistic regression

$$P_{\theta}(y=1|x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$$

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

Generative model

• Model h(x,y) = p(x,y) or h(x) = p(x). Can be unsupervised

• Canonical example: naïve Bayes

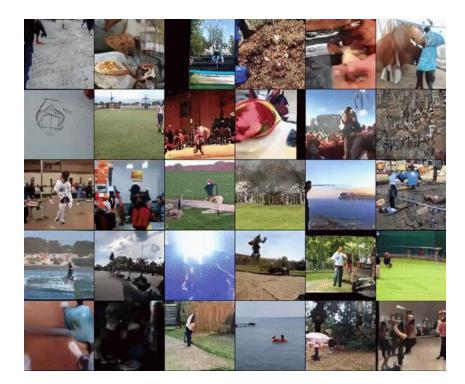
$$P(X_1, \dots, X_K, Y) = P(X_1, \dots, X_K | Y) P(Y)$$
$$= \left(\prod_{k=1}^K P(X_k | Y)\right) P(Y)$$

Generative Models

Learning a distribution from samples

 $x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$

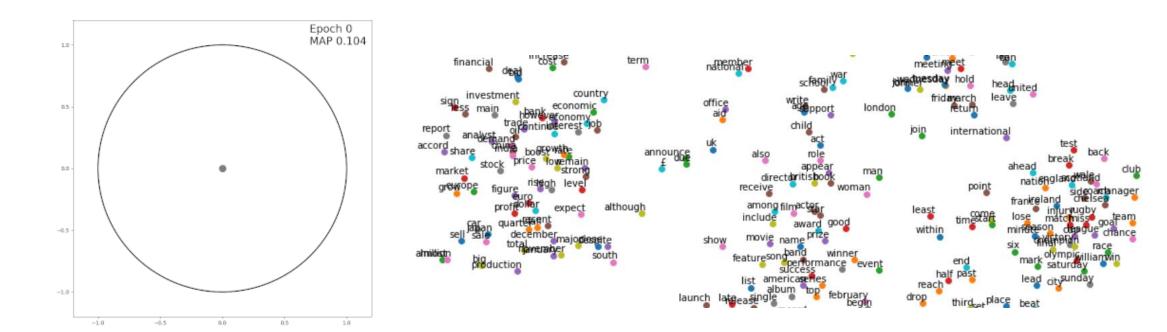
- •Traditionally, want to
 - **Compute density**: compute p(x) for some x
 - Inference: compute p(a|b) for some a,b
 - **Sampling**: obtain a sample from p
- •Modern methods: may only be able to sample/conditionally sample



Embeddings & Representations

Related terminology.

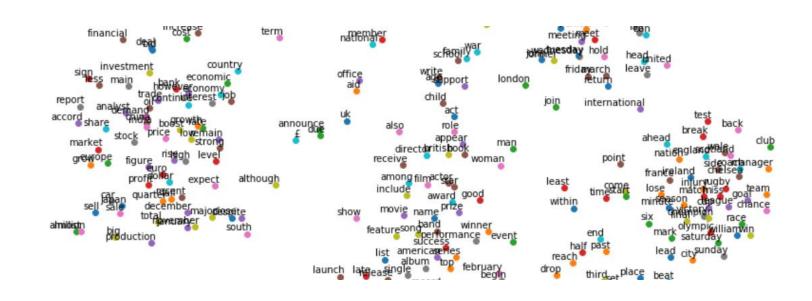
- Embeddings
 - Traditionally, goal is to take discrete objects (words, graphs, etc.) and produce vectors usable in DNNs
 - Text: Word2Vec Graphs: Hyperbolic embeddings



Embeddings & Representations

Related terminology.

- Embeddings
 - Often trained based on some custom loss (no "task")
 - Word2Vec: word co-occurrences \leftrightarrow embedding distances/ips

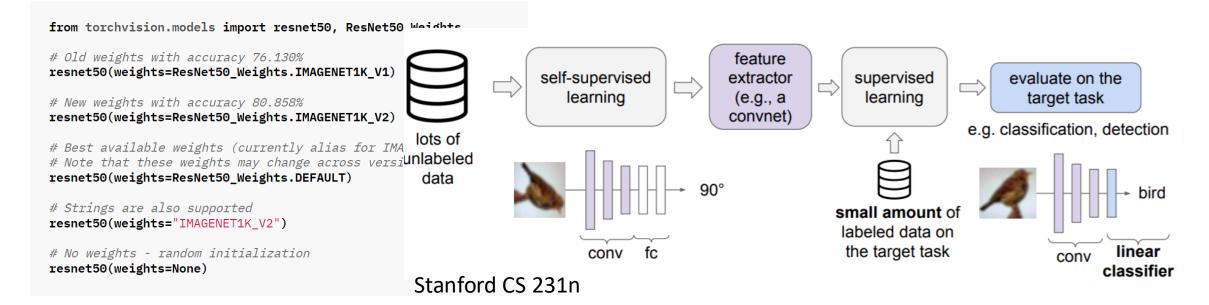


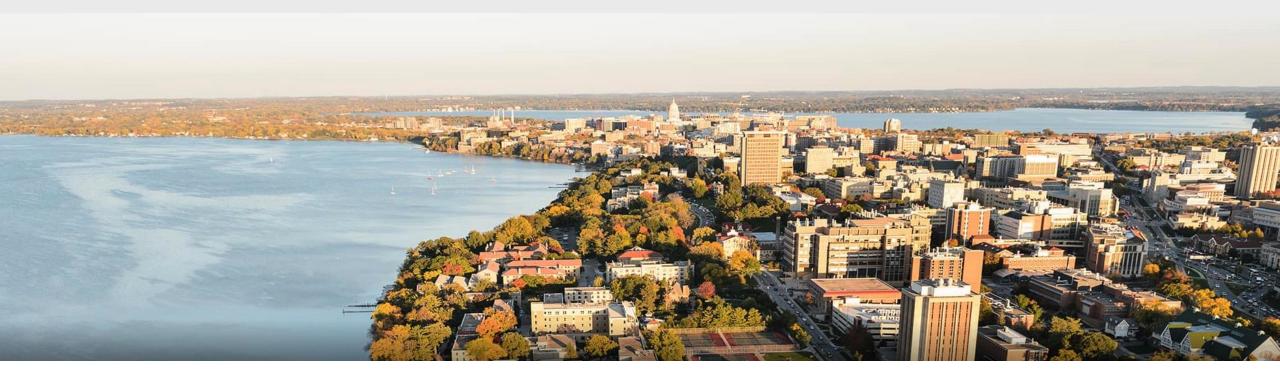
Embeddings & Representations

Related terminology.

• Representations

- Often trained based on related task OR pretext task
- Contain "deeper" information about each sample
- Come from "pretrained" models



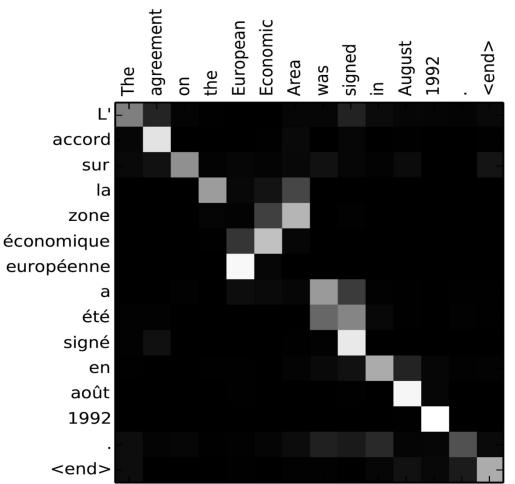


Break & Questions

History of Attention

Basic motivation: in NLP *fixed* context vector **not** enough

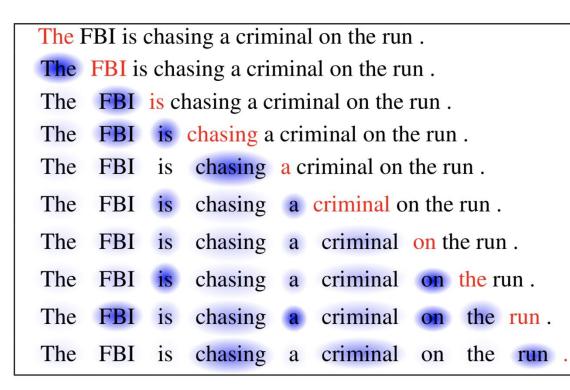
- •Why?
 - Words depend on each other
 - Dependencies are complex
- •Need: mechanism to help model focus on the right "part"
- Lots of approaches from 2014 on
 - Bahdanau et al, 2014

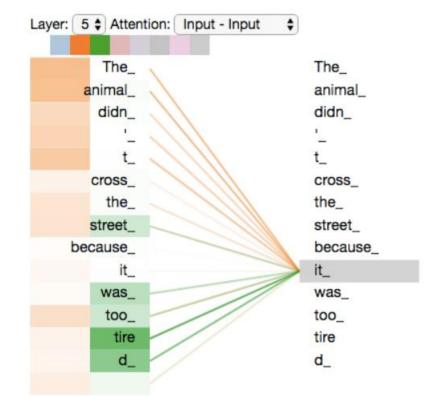


Self-Attention: Motivation

Popularized from 2017 on...

- From bottom-up. Let's design a basic layer.
 - Intuition: dependencies within same sentence





Self-Attention: Goals and Inputs

From bottom-up. Let's design a basic layer.

- Two criteria
 - Transform incoming word vectors,
 - Enable *interactions* between words
- Input: vectors for words

Note: All visualizations are due to Jay Alammar

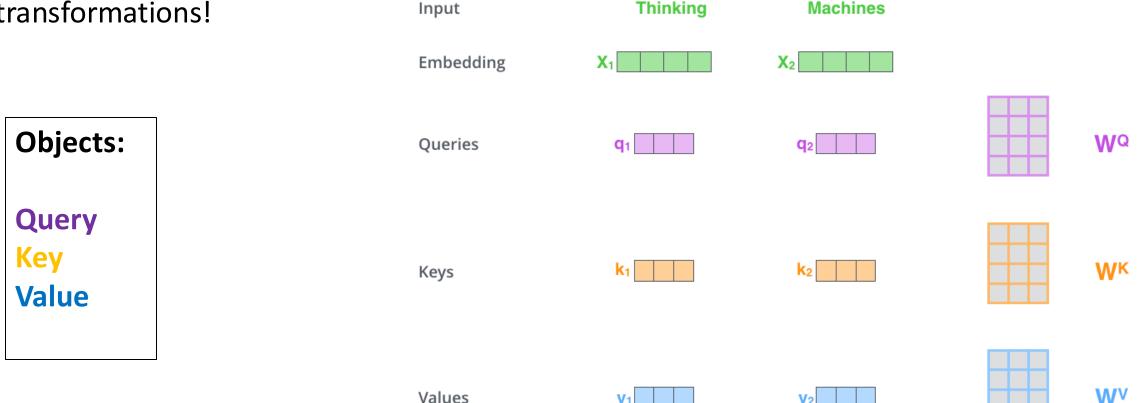
Excellent resource: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Retrieval Intuition

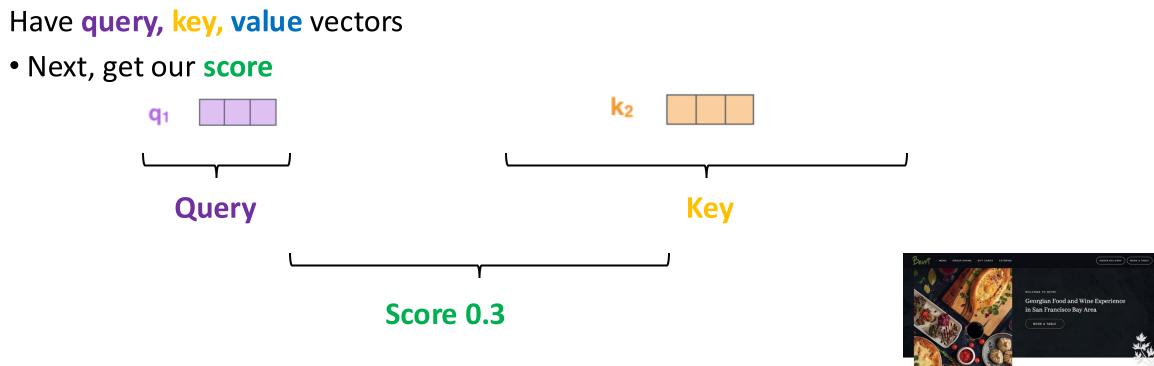
- How should we design the interactions?
 - Analogy: search

Self-Attention: Query, Key, Value Vectors

- Transform incoming word vectors,
- Enable *interactions* between words
- Get our **query**, key, value vectors via weight matrices: linear transformations!



Self-Attention: Score Functions



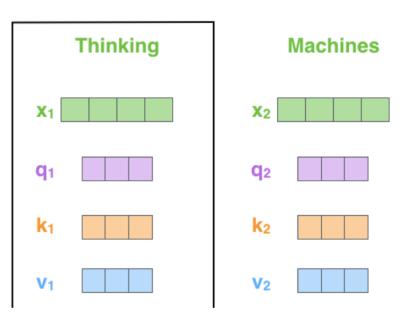
- Lots of things we could do --- **simpler** is usually better!
- Dot product $q_1 \cdot k_2 = 96$
- Then we'll do softmax

Self-Attention: Scoring and Scaling

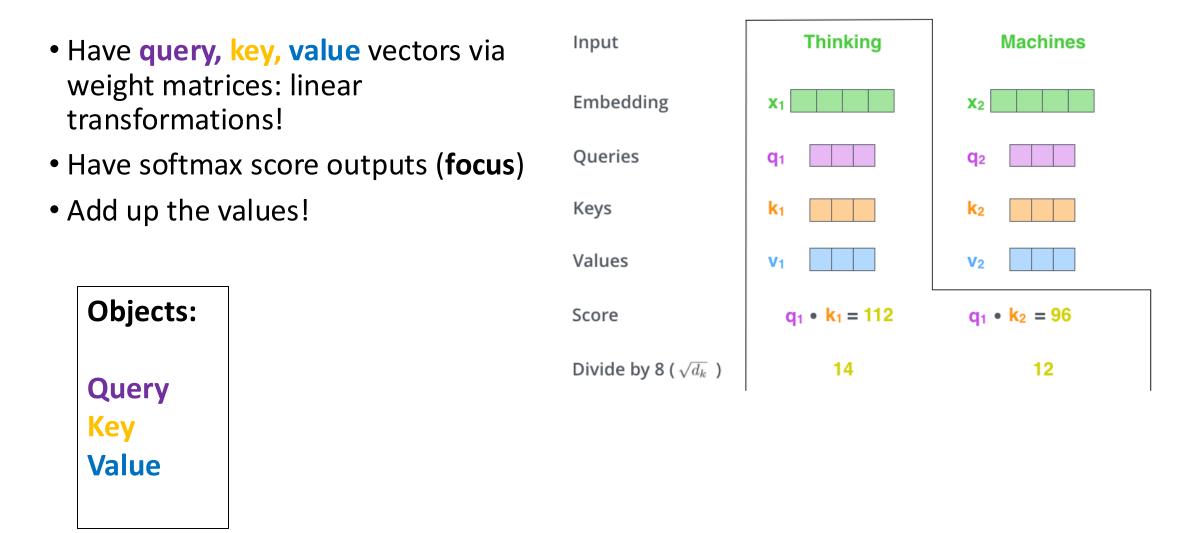
- Transform incoming word vectors,
- Enable *interactions* between words
- Get our **query**, key, value vectors via weight matrices: linear transformations! Input
- Compute scores

Objects: Query Key Value

mpac
Embedding
Queries
Keys
Values



Self-Attention: Putting it Together



Self-Attention: Matrix Formulas

- Have query, key, value vectors via weight matrices: linear transformations!
- Have softmax score outputs (focus)
- Add up the values!

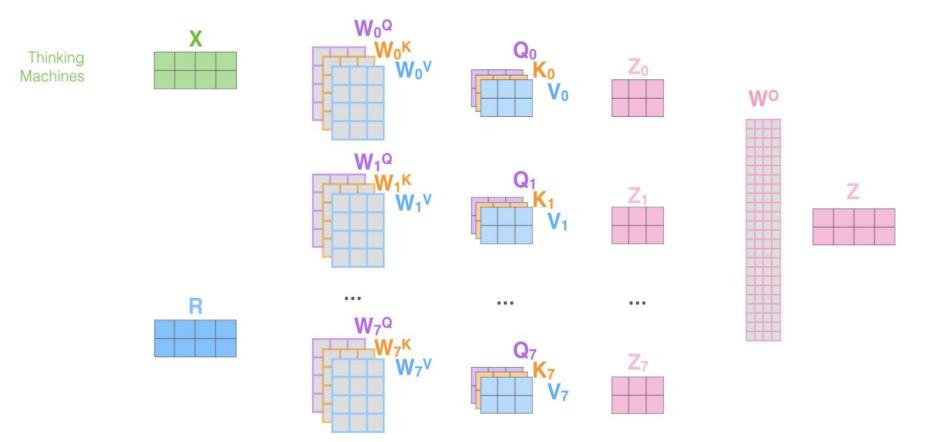
Objects:	$Q = XW_Q, K = XW_K, V = XW_V$
Query Key Value	Attention $(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

Attention
$$(Q, K, V) = \operatorname{softmax}\left(X \frac{W_Q W_K^T}{\sqrt{d_k}} X^T\right) V$$

Self-Attention: Multi-head

This is great but will we capture everything in one?

- Do we use just 1 kernel in CNNs? No!
- Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Position Encodings

Almost have a full layer designed.

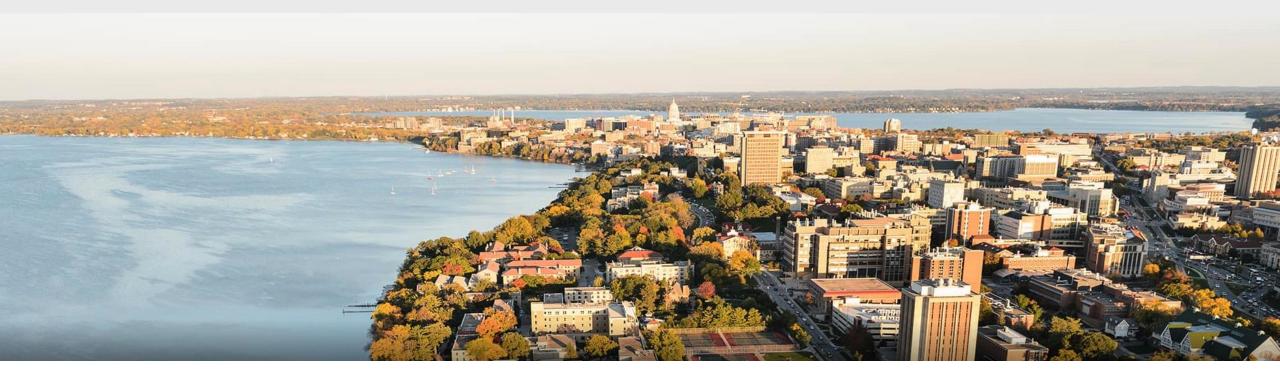
- One annoying issue: so far, order of words (position) doesn't matter!
- Solution: add positional encodings

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$Component$$
index
$$POSITIONAL = 0 \quad 0 \quad 1 \quad 1 \quad 0.84 \quad 0.001 \quad 0.54 \quad 1 \quad 0.91 \quad 0.002 \quad 0.42 \quad 1$$

$$EMBEDDINGS \quad x_1 \quad x_2 \quad x_3 \quad \dots \quad x_4 \quad x_4 \quad x_4 \quad x_5 \quad \dots \quad x_5 \quad (tudiant)$$

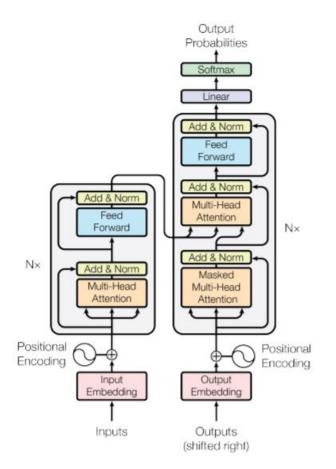


Break & Questions

Transformers: Model Architecture

- Initial goal for an architecture: encoder-decoder
 - Get rid of recurrence
 - Replace with self-attention

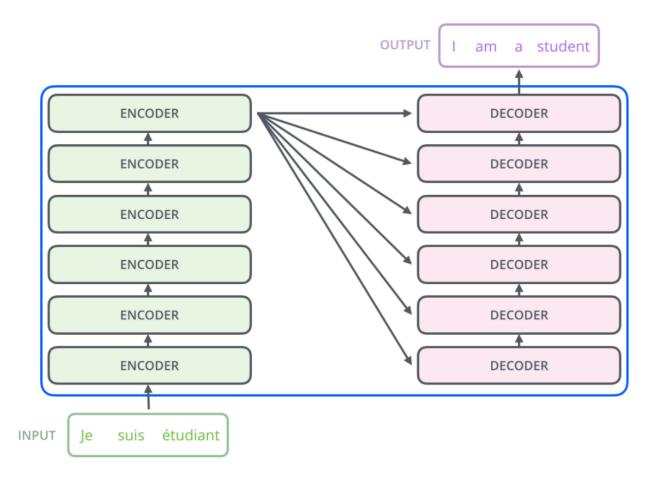
- •Architecture
 - The famous picture you've seen
 - Centered on self-attention blocks



Vaswani et al. '17

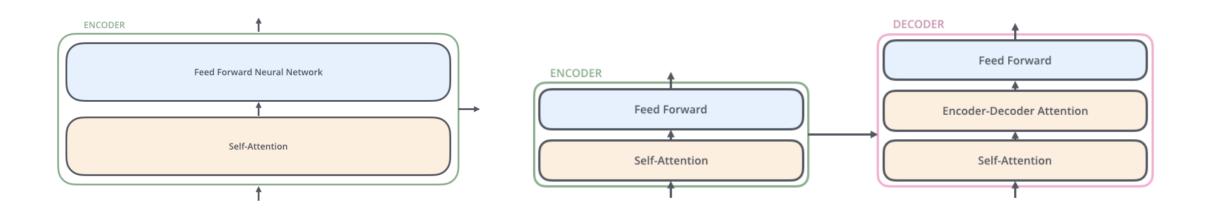
Transformers: Architecture

- •Sequence-sequence model with stacked encoders/decoders:
 - For example, for French-English translation:



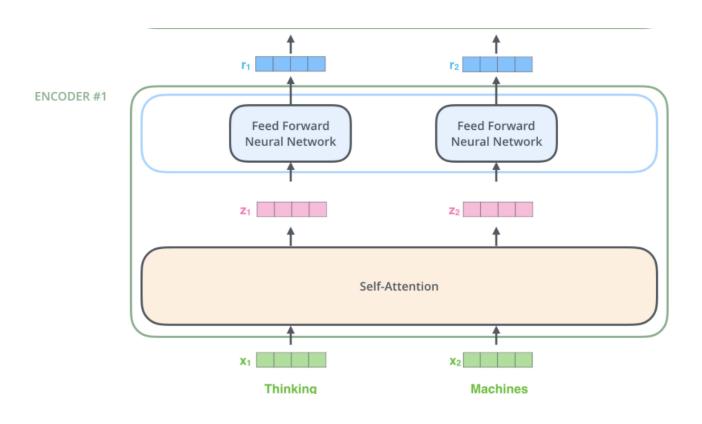
Transformers: Architecture

- •Sequence-sequence model with **stacked** encoders/decoders:
 - What's inside each encoder/decoder unit?
 - Focus encoder first: **pretty simple**! 2 components:
 - Self-attention block
 - Fully-connected layers (i.e., an MLP)



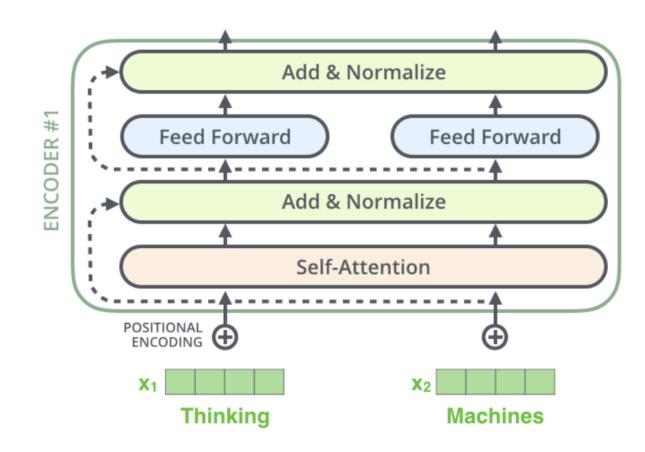
Transformers: Inside an Encoder

- •Let's take a look at the encoder. Two components:
 - 1. Self-attention layer (covered this)
 - •2. "Independent" feedforward nets for each head



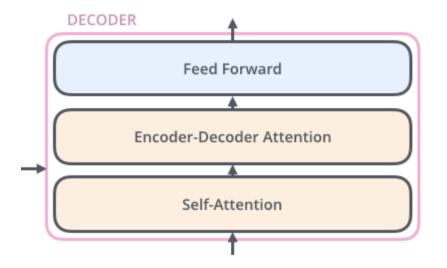
Transformers: More Tricks

- Recall a big innovation for ResNets: residual connections
 - And also layer normalizations
 - Apply to our encoder layers



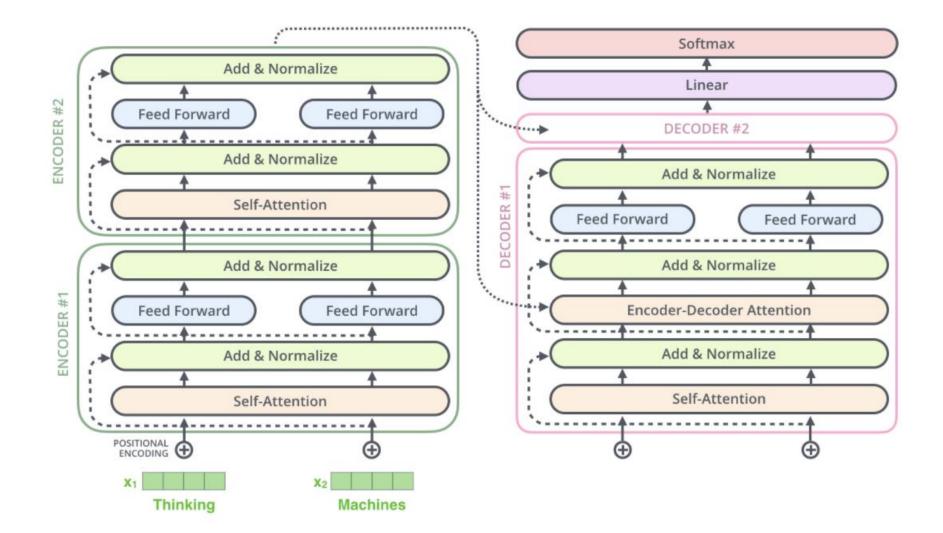
Transformers: Inside a Decoder

- •Let's take a look at the decoder. Three components:
 - 1. Self-attention layer (covered this)
 - •2. Encoder-decoder attention (same, but K, V come from encoder)
 - 3. "Independent" feedforward nets for each head



Transformers: Putting it All Together

•What does the full architecture look like?



Transformers: The Rest

- •Next time: we'll talk about
 - How to **use** it (i.e., outputs)
 - How to **train** it
 - How to **rip** it apart and build other models with it.

