Y G T N G M ey Y 4+
S8 B

R

CS 839: Foundation Models
Transformers, Attention, Subqguadratic Architectures

Fred Sala

University of Wisconsin-Madison

Sept. 17, 2024

Announcements

*Announcements: Recordings available on Canvas
(under Kaltura tab)

*Class roadmap:

__

Thursday Sept. 19 Language Models |
Tuesday Sept. 24 Language Models II
Thursday Sept. 26 Prompting |
—
Tuesday Oct. 1 Prompting lI

S|opo|N @23endue Aj1so

Outline

Conclude Attention Discussion

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition, positional encodings

*Transformers
* Architecture, encoder and decoder setups

*Subquadratic Models

*Basic ideas. Examples: S4, Mamba.

Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”

\ J \ J
I I

Query Value
| J
Obijects: '
Score 0.3
Query
Value
Score 0.7

Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding [T TT] [T T 1]
Objects: Queries o I e T 1]
Query
Keys [:I:I:] [:I:I:]
Value

Values [:I:I:] [:I:I:]

Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

d+1

\ J \ J

Query

I

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product gy * o =

* Then we’ll do softmax

Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight
matrices: linear transformations! input
* Compute scores
Embedding l ‘ ‘ ‘ |
Objects: Queries
Keys
Query
Values

Value

Self-Attention: Putting it Together

* Have query, value vectors via Input
weight matrices: linear Embedding T T
transformations!
* Have softmax score outputs (focus) — Queres o [T q [T
* Add up the values! Keys [T 1] L]
Values [T 1] [T 1]
ObjECtS: Score qi* ki = qi e ko =
Divide by 8 (/d;)

Query

Value

Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ:, — X }V — XWV

Query

Value

. ® T)
Attention((Q), /v, V) = softmax (V
() Vi

Ur@ T
Attention(Q, /', V) = softmax (X — XT) vV

Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs

Self-Attention: Position Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!

* Solution: add positional encodings

PE(pos,2i) = Sin(pos/j_()()()()z’i/dmodel)
PE(pos,2i+1) = cos(pos 100002/ dmose)

‘Component POSITIONAL 1 1 084 [XNIE 054 | 1 (XTI 0.0002| -0.42 [
ENCODING

index

- + -

EMBEDDINGS LT] LT HEN

INPUT

Sl GaC R E S

'l:i'-"‘_;""‘; iy “;—I‘—‘Xf‘
B L -

reak & Questions

Transformers: Model Architecture

*Initial goal for an architecture: encoder-decoder

* Get rid of recurrence
* Replace with self-attention

e Architecture
* The famous picture you’ve seen
e Centered on self-attention blocks

Multi-Head Muiti-Head
Attention Attention

Vaswani et al. ‘17

v
e J \ prem—
tional F
Input Output
Embedding Embedding
NpUts

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student

r 3

fr ~ e \
ENCODER g DECODER
\ y \ J
i I
(A 4
ENCODER DECODER
\, J \
4 4
') a2)
ENCODER DECODER
. J \. J
[y [
g) [)
ENCODER DECODER
\ J \, J
i p
(A (" "
ENCODER DECODER
\ J \ J
A 4
e 5 s ™)
ENCODER DECODER
. J \. J
4 Y,

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

[\ Feed Forward
Feed Forward Neural Network
\ J - *
1‘ — [Feed Forward] [Encoder-Decoder Attention J
Self-Attention
\) Self-Attention Self-Attention

t t t

Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
* 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head

t t
| . L1
[F ed Forwardj Feed Forwar dj
Neural Network N | Network
t t
m
t t
[Self-Attention j
t 1

Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

4 3
I,-b(Add & Normalize)
: 4 4
: (Feed Forward) (Feed Forward)
P —— A---cccccccccccnnnan A
,-p(Add & Normalize)
:) R

E (Self-Attention)

.

POSITIONAL
ENCODING

x1 [x2 [

Thinking Machines

Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
* 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head

t

Feed Forward J

+

Encoder-Decoder Attention

4

Self-Attention

t

¢ N[N/ N

N

Transformers: Putting it All Together

\What does the full architecture look like?

Softmax
[}
Linear
5, 4
S 4 ¢
i Add & Normalize)

= 4 4
Encoder-Decoder Attention
= Ny vy sl B BT T T e i
\; Add & Normalize

]

'

L} '

' 1]

1 L}

» ’ e e el

POSITIONAL
ENCODING

« T T 1] [[1]

Thinking Machines

Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.

Sl GaC R E S

'l:i'-"‘_;""‘; iy “;—I‘—‘Xf‘
B L -

reak & Questions

Attention Alternatives?

*One annoying thing: if the sequence length is L, we’re doing a
O(L?) operation.

*This can be quite limiting for long
sequences...

l.e., 4000 tokens is fine, but
10° tokens is not.

Attention Alternatives?

Recently, lots of different approaches that attempt to get rid
of this quadratic dependency

*Sometimes called sub-quadratic models.
*We'll briefly study a few.

*Step 1: let’s get inspired by something RNN-like (well, fully
linear for now). Borrow from continuous models:

7' (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

State-Space Model

Step 1: let’s get inspired by something RNN-like (well, fully
linear for now). Borrow from continuous models:
State Input

T’ (t) = A.Ci(t) + qu(t)
output — Y(t) = Cx(t) + Du(t)

*Can ignore the “D” (think of this as a skip connection).
*Inputs, outputs are 1-D, state is higher dimensional.

State-Space Model: Discrete Form

Step 2: let’s make this a discrete function

State Input

! !
Ty, = Azg_1 + Buy

Output — Y — 633’;3

*lgnored D
*Can create approximations of A,B,C through discretizing.
*Looks a lot like an RNN! (or, a linear version of one)

State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

To = E’U,o r1 = ABug + Bu,; To = ZZE’LLQ + ABu; + Bus
yo = C Buy y1 = CABug + CBu, Yo = CA2§'U,0 + CABu; + CBus

Yk = CA Bug + C'Ai!c 1§u1 +.--+CABuj_1 + CBuy

Ingeneral, v=Kxu

*This is a convolution!

State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

yr = CA Bug+ CA" Buy +---+ CABuy_; + CBuy

y = K *u.

* Convolution

*But a weird one. It’s a very long convolution.
e Kernel as long as the input sequence (say, L).

* Naively, is this better than attention?
* Let’s do something else instead.

Interlude: Time & Frequency Domains

Back to Signals and Systems class,

e Convolution in the time-domain is element-wise
multiplication in the frequency domain

*So low-complexity.

*But, need to convert to frequency domain
*Solution: FFT. O(L log L) (and also for iFFT, to invert back).
*So, can compute fast and use during training!

yr = CA Bug + CA" "Buy +---+ CABuy_; + CBuy

y = K *u.

Back to SSM Picture

Back to the formula zp = Azg—1 + Bug

yr = Czp,

*Just directly making all of these trainable parameters doesn’t
work so well.
 Similar issues as in RNNs: stuff blowing up
* Instead, various models propose approaches

S4 (Structured State Space Models) Gu et al’ 22

* Build A with a special fixed transition matrix that is good at
memorization
* Couple with a particular parametrization to get the discretization.

Using SSMs as Layers

Back to the formula zp = Azg—1 + Bug

yr = Czp,

S4 (Structured State Space Models) Gu et al’ 22

* Special A state transition matrix
* Special parametrization/choice of trainable parameters

*How to actually use these? Need to define a layer,
 Stack H of them together (similar to conv layers, multihead attn)
* Mix with linear layer, place activation function at the end

S4 Results: The Good and the Bad

Models like S4 can address very long sequences

* “S4 solves the Path-X task, an extremely challenging task that
involves reasoning about LRDs over sequences of length ... 16384,
All previous models have failed...”

*But, can struggle with “selective” tasks.

Copying Selective Copying
Output NNN---NMN N H N Outeut [\J [N [N [N SENINE 10

W Il INIEEIEEREIEE |]}] Bl -/ AENN

Solution

S4 Results: The Good and the Bad

Solution: need some type of context-aware approach
*Mamba Model

* Gu and Dao 23, “Mamba: Linear-Time Sequence Modeling with
Selective State Spaces”

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x: (B,L,D) Input: x: (B,L,D)
Output: y: (B,L,D) Output: y: (B,L,D)
1: A: (D,N) « Parameter 1: A: (D,N) <« Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B: (D,N) « Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C: (B,LLN) « sc(x)
4: A: (D) < ra(Parameter) 4: A: (B,L,D) « tp(Parameter+sy(x))
5. A, B: (D,N) « discretize(A, A, B) 5. A,B: (B,L,D,N) < discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A, B,C)(x)

> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: return y 7: return y

Lots of Related Approaches & Variations

*Linear attention. “Transformers are RNNs: Fast
Autoregressive Transformers with Linear Attention”.
Katharopoulos et al, 20

*RWKYV. “RWKV: Reinventing RNNs for the Transformer Era”,
Peng et al 23

We'll see more as we go!

	Slide 1: CS 839: Foundation Models Transformers, Attention, Subquadratic Architectures
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Self-Attention: Retrieval Intuition
	Slide 5: Self-Attention: Query, Key, Value Vectors
	Slide 6: Self-Attention: Score Functions
	Slide 7: Self-Attention: Scoring and Scaling
	Slide 8: Self-Attention: Putting it Together
	Slide 9: Self-Attention: Matrix Formulas
	Slide 10: Self-Attention: Multi-head
	Slide 11: Self-Attention: Position Encodings
	Slide 12: Break & Questions
	Slide 13: Transformers: Model Architecture
	Slide 14: Transformers: Architecture
	Slide 15: Transformers: Architecture
	Slide 16: Transformers: Inside an Encoder
	Slide 17: Transformers: More Tricks
	Slide 18: Transformers: Inside a Decoder
	Slide 19: Transformers: Putting it All Together
	Slide 20: Transformers: The Rest
	Slide 21: Break & Questions
	Slide 22: Attention Alternatives?
	Slide 23: Attention Alternatives?
	Slide 24: State-Space Model
	Slide 25: State-Space Model: Discrete Form
	Slide 26: State-Space Model: Convolutional Form
	Slide 27: State-Space Model: Convolutional Form
	Slide 28: Interlude: Time & Frequency Domains
	Slide 29: Back to SSM Picture
	Slide 30: Using SSMs as Layers
	Slide 31: S4 Results: The Good and the Bad
	Slide 32: S4 Results: The Good and the Bad
	Slide 33: Lots of Related Approaches & Variations

