

CS 839: Foundation Models Models II + Prompting Start

Fred Sala

University of Wisconsin-Madison

Sept. 24, 2024

Announcements

•Logistics:

•Homework 1 is ongoing!

•Class roadmap:

Tuesday Sept. 24	Models II	
Thursday Sept. 26	Prompting I	
Tuesday Oct. 1	Prompting II	
Thursday Oct. 3	Specialization	
Thursday Oct. 8	Alignment	

Mostly Language Models

Outline

Decoder-only Models

•Example: GPT, architecture, basic functionality, properties of new models

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Improving Prompting

 Searching for good prompts, techniques for continuous/soft prompts, ensembling

Outline

Decoder-only Models

•Example: GPT, architecture, basic functionality, properties of new models

Intro to Prompting

 Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Improving Prompting

 Searching for good prompts, techniques for continuous/soft prompts, ensembling

Decoder-Only Models: GPT

Let's get rid of the second requirement we had before,

• 1) **Outputs** in natural language

• 2) Tight alignment with **input**

- Rip away encoders
 - Just stack decoders

Model Dimensionality: 768

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

Decoder-Only Models: GPT

Rip away encoders

- Just stack decoders
- Use causal masking! NB: not a mask token like in BERT

Decoder-Only Models: GPT

Rip away encoders

- Just stack decoders
- Decoders: get rid of **encoder** aspects (masked self-attention only)

From GPT2 to GPT3

Mainly make things larger!

- •96 decoder blocks (getting very tall)
- Context size: 2048
- •175 billion parameters in total (800GB!)

Training data:

GPT-3 training data^{[1]:9}

Dataset	# tokens	Proportion within training
Common Crawl	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

Brown et al '20

Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

	8B	70B	405B
Layers	32	80	126
Model Dimension	4,096	8192	$16,\!384$
FFN Dimension	$14,\!336$	$28,\!672$	$53,\!248$
Attention Heads	32	64	128
Key/Value Heads	8	8	8
Peak Learning Rate	$3 imes 10^{-4}$	$1.5 imes 10^{-4}$	8×10^{-5}
Activation Function	SwiGLU		
Vocabulary Size		128,000	
Positional Embeddings	RoPE ($\theta = 500,000$)		

Dubey et al '24

Open Source: Llama 3.1

Some improvements for Llama 3.1:

- "We use an attention mask that **prevents self-attention between different documents** within the same sequence"
- "grouped query attention (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed..."
- "We use a vocabulary with 128K tokens. Our token vocabulary combines 100K tokens from the tiktoken3 tokenizer with 28K additional tokens to better support non-English languages"

Zhao et al '21

Break & Questions

Outline

Decoder-only Models

•Example: GPT, architecture, basic functionality, properties of new models

Intro to Prompting

•Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Improving Prompting

 Searching for good prompts, techniques for continuous/soft prompts, ensembling

Prompting: Ask Your Model

Essentially, ask your model to perform your goal task **Example**: sentiment analysis task

• Prompt: "Text: The visuals were lacking and the characters felt flat. Sentiment:"

• Result: "Negative"

Default (GPT-3.5)

Text: The visuals were lacking and the characters felt flat. Sentiment:

Negative

Prompting: Zero-shot vs Few-shot

Terminology:

- •Zero-shot: No "examples" provided to the model.
- •Few-shot/in-context learning: Provide "examples"

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment:

Zhao et al '21

Prompting: Few-shot vs. In-context learning

Terminology conflicts! Note: we have a set of labeled examples. Could **fine-tune**!

Few-shot: *sometimes* means finetune on this dataset, then prompt

In-context learning: do not finetune. Model weights unchanged. Text: (lawrence bounces) all over the stage, dancing, Sentiment: positive

Text: despite all evidence to the contrary, this clun Sentiment: negative

Text: for the first time in years, de niro digs deep Sentiment: positive

Weng / SST

Dong et al, '23

Few-Shot Choices

Examples/structure affect performance:

- 1. Prompt format (affects everything)
- 2. Choice of examples
- 3. Order of examples (permutation)

Zhao et al '21

1. Prompt Formats

The choice of model affects the prompt format

Note: eval datasets have pre-created prompts. • LAMA (LAnguage Model Analysis): Cloze prompts

1. Prompt Formats: Recent Models

Modern instruction-tuned models have more complex instructions/formats

- •The good: more natural way to tell the model what to do
- •The bad: searching over formats/templates increasingly challenging
 - Example: (White et al, '23): "From now on, I would like you to ask me questions to deploy a Python application to AWS. When you have enough information to deploy the application, create a Python script to automate the deployment."

2. Choice of Examples

How to pick appropriate examples in few-shot?

•Note: only a "small' number of examples can be shown, unlike in supervised learning.

Many options. Sampling:

- Liu et al, '21: kNN in embedding space (semantic similarity)
- Su et al, '22: Encourage diversity in embeddings
- Diao et al, '23: "Active prompting"

Diao et al '23

3. Order of Examples

What order to show them to the model?

Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity

Yao Lu[†] Max Bartolo[†] Alastair Moore[‡] Sebastian Riedel[†] Pontus Stenetorp[†] [†]University College London [‡]Mishcon de Reya LLP {yao.lu,m.bartolo,s.riedel,p.stenetorp}@cs.ucl.ac.uk alastair.moore@mishcon.com

• Findings:

- Model size doesn't guarantee low-variance
- Adding more examples doesn't reduce variance
- Good prompts don't transfer from one model to another 😕
- Good orders don't transfer

Break & Questions

Outline

Decoder-only Models

•Example: GPT, architecture, basic functionality, properties of new models

Intro to Prompting

 Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

Improving Prompting

 Searching for good prompts, techniques for continuous/soft prompts, ensembling

Hard Prompting

Also called **zero-shot**.

• Note: terminology conflict with another area called zero-shot learning

"Hard prompt discovery is a specialized alchemy, with many good prompts being discovered by trial and error, or sheer intuition

(Wen et al '23)

• Note: not just for language models!

Zero-shot Generalization

Most exciting aspect of zero-shot: don't need to have been explicitly trained or fine-tuned.

•Example: Multitask Prompted Training Enables Zero-Shot Task Generalization

Recipe

- Pretrain
- Fine-tune
 - Multitask

Sanh et al '22

Hard Prompting: Discrete Optimization

Sometimes, can avoid gradients

- Random search
- Greedy

Soft Prompting

Also called **continuous prompting**

Basic idea: insert some (non-language) parameters into prompt

- Train these parameters
- Do not directly correspond to words in prompt

Prefix-Tuning	Optimizing	Continuous	Prompts for	Generation
----------------------	-------------------	------------	--------------------	------------

GPT Understands, Too

Xiang Lisa Li Stanford University xlisali@stanford.edu Percy Liang Stanford University pliang@cs.stanford.edu

 $\textbf{Xiao Liu}^{*12} \textbf{ Yanan Zheng}^{*12} \textbf{ Zhengxiao Du}^{12} \textbf{ Ming Ding}^{12} \textbf{ Yujie Qian}^{3} \textbf{ Zhilin Yang}^{42} \textbf{ Jie Tang}^{12}$

Soft Prompting: Prefix-Tuning

Goal: create prefixes that *steer* models

- Prefixes are trainable parameters
- •Train one for each goal task, only store these new parameters
- Enables cheap adaptation of frozen language model

Li and Liang '21

Soft Prompting: Composing

What about multimodal models?

- Vision-language models like CLIP
- •Not great composed concepts like *old tiger*
- •Tune on [attribute] [object] pairs

Ensembling Prompts

One prompt can give you an answer... but might be wrong

- •One simple approach: get multiple samples
- •From?
 - Change temperature parameter
 - Vary your prompts

Then, run majority vote

Chain-of-Thought

A form of prompting that helps break down the problem (more in a week!)

• Produces more answers to run majority vote on

Wang et al '23

Ensembling Prompts: Weighted Version

Downside of majority vote... most responses might be wrong

• Should weight them by how accurate they are

AMA PROMPTING

Run a collection of prompt()-chains where the LLM will generate inputs to question and answer

2 Combine the noisy answers using weak supervision

Input Example Prompt Chain 1 Prompt Chain 2 Is the following claim True or map to Prompt Chain 3 False given the context? output space Answer the question from context Write the claim as a yes/no question. **Context:** John and his **Context:** Joe's birthday was yesterday **Claim:** Jack camped with Mark Question: Was Joe's birthday yesterday? friends went to the theater **Question:** Did Jack camp with Mark? and saw Jurassic Park. Answer: yes ✓ True Claim: the test was not hard Claim: John went to the park. **Context:** John and his friends went to **Question:** Was the test hard? False Answer: the theater and saw Jurassic Park Claim: John went to the park. **Question:** Did John go to the park? Question: False Model Input Answer: final prediction **Prompt Chain** Did John go to the park? no Model Output answer() prompt question() prompt

Bibliography

- Brown et al '20: Brown+many others, "Language Models are Few-Shot Learners" (https://arxiv.org/abs/2005.14165)
- Dubey et al '24: Dubey+many others, "The Llama 3 Herd of Models" (https://arxiv.org/abs/2407.21783)
- Zhao et al '21: Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, Sameer Singh, "Calibrate Before Use: Improving Few-Shot Performance of Language Models" (<u>https://arxiv.org/abs/2102.09690</u>)
- Dong et al '23: Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui, "A Survey on In-context Learning" (<u>https://arxiv.org/abs/2301.00234</u>)
- Zhou et al '23: Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, Jimmy Ba, "Large Language Models Are Human-Level Prompt Engineers" (<u>https://arxiv.org/abs/2211.01910</u>)
- Yang et al '23: Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen, "Large Language Models as Optimizers" (https://arxiv.org/abs/2309.03409)
- Menon and Vondrick '23, "Visual Classification via Description from Large Language Models" (https://arxiv.org/abs/2210.07183)
- Adila '23: Dyah Adila, Changho Shin, Linrong Cai, Frederic Sala, "Zero-Shot Robustification of Zero-Shot Models With Foundation Models" (<u>https://arxiv.org/pdf/2309.04344.pdf</u>)
- Gal et al '22: Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or, "An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion" (<u>https://arxiv.org/abs/2208.01618</u>)
- Zhang et al '23: Yuanhan Zhang, Kaiyang Zhou, Ziwei Liu, "What Makes Good Examples for Visual In-Context Learning?" (<u>https://arxiv.org/abs/2301.13670</u>)
- Wei et al '22: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models" (<u>https://arxiv.org/abs/2201.11903</u>)
- Kojima et al '23: Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa, "Large Language Models are Zero-Shot Reasoners" (<u>https://arxiv.org/abs/2205.11916</u>)
- Fu et al '23: Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, Tushar Khot, "Complexity-Based Prompting for Multi-Step Reasoning" (<u>https://arxiv.org/abs/2210.00720</u>)
- Yao et al '23: Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan, "Tree of Thoughts: Deliberate Problem Solving with Large Language Models" (https://arxiv.org/abs/2305.10601)

Thank You!