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Announcements

*Logistics:

*Homework 1 is due tonight!

*Class roadmap:

Tuesday Oct. 8
Thursday Oct. 10

Tuesday Oct. 15
Thursday Oct. 17

Alignment

Efficient Training

Efficient Inference

Prospective Guest
Lecture

\

|

S|9POJA uollepuno4 ¥ agengue



Outline

*Fine-Tuning and Adapter Intro
*Fine-tuning vs. prompting, linear probing, etc. Full vs
partial fine tuning vs adapting. Popular adapters

*Cross-Modal Adaptation

*Frozen transformers, ORCA, aligning via optimal transport
dataset distance

*Model Editing
*ldea, MEND
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When Does CoT Actually Help?

A: Not always clear
* Mainly on math and symbolic reasoning?

Meta-analysis of CoT improvements Our experiments on CoT improvements
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From Last Time: Beyond the Unaided
Language Models

Even when we do CoT, the language model can get things
wrong.

*Often simple things... like arithmetic.
*How else can we help it?

*A: Use external tools




Tools: Program-aided LMs

Use external tools:
* Python interpreter

* How? Interleave the text
explanations in CoT steps with
lines of Python code

* LMs can already output code
* Just need to prompt the right

way

rd

A\

Chain-of-Thought (Wei et al., 2022)

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 38 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left?

M
~—{_Model Qutput

" A The bakers started with 200 loaves. They sold 93 in

the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.

The answer is 62.

Y,

Gao et al ‘23

—(_Input )

™\

“ A

Program-aided Language models (this work)

- 1': Input \,
[ Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.
tennis balls = 5

2 cans of 3 tennis balls each is
bought balls = 2 * 3

tennis balls. The answer is

answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
'-\Hdid they have left?

' A: The bakers started with 200 loaves
loaves baked = 200
They sold 93 in the morning and 39 in the afternoon

loaves sold morning = 93
loaves sold afterncon = 39

The grocery store returned 6 loaves.

loaves returned = 6

The answer is

answer = loaves baked - lcaves sold morning

= loaves sold afterncon + lecaves returned

.

o
— Model Output ~
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Tools: Programs-aided LMs Prompts

Just need to prompt the right way
 Craft examples that interleave code and text

|Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left? |

money_initial = 23

bagels = 5

bagel_cost = 3

money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
answer = money_left

Figure 3: Example prompt for the mathematical reasoning tasks, from the GSM8K benchmark.

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball,
a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen|
What is the color of the object directly to the right of the stress ball?

stress_ball_idx = None
for i, object in enumerate (objects):

if object[0] == 'stress ball':
stress_ball_idx = i
break
# Find the directly right object
direct_right = objects[stress_ball_ idx+1]
# Check the directly right object's color

answer = direct_right[1]




Tools: Program-of-Thoughts

Similar idea: program-of-thoughts

Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers.

Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

The first number is 0, the second number is 1, therefore, the
ithird number is 0+1=1. The fourth number is 1+1=2. The fifth
number is 1+2=3. The sixth number is 2+3=5. The seventh
number is 3+5=8. The eighth number is 5+8=13.
..... (Skip 1000 tokens)
The 50th number is 32,432,268,459.

CoT

[
L

32,432,268,459

X

length_of_fibonacci_sequence = 50

fibonacci_sequence = np.zeros(length_of )

fibonacci_sequence[0] = 0

fibonacci_sequence[1] = 1

For i in range(3, length_of_fibonacci_sequence):
fibonacci_sequenceli] = fibonacci_sequence[i-1] +
fibonacci_sequenceli-2]

ans = fibonacci_sequencel[-1]

# python JU

v

12,586,269,025

Question: Ketty saves 20000 dollars to the bank. After three years, the sum with compound interest rate is 1000 dollars more
than the sum with simple interest rate. What is the interest rate of the bank?

Assuming the interest rate is x. The sum after two years with
simple interest rate is 20000 + x * 20000 * 3 = 20000 +
60000x. The sum after two years with compoud interest rate
is 20000 * (1 + x) A 3 = 200000 + 60000 * x + 60000xA2 +
20000xA3. The difference can be written as 60000x/2 +
20000xA3 = 1000. In order to solve x, we can use the
quadratic formula. x = (-b +- sqrt(b/A2 - 4ac)) / 2a, .... , x =
(-20000 +- 6160) / 120000, x = -0.051333. CoT
I

X

-0.051333

interest_rate = Symbol(‘x’)
sum_in_two_years_with_simple_interest= 20000 +
interest_rate * 20000 * 3
sum_in_two_years_with_compound_interest = 20000 * (1 +
interest_rate)**3

# Since compound interest is 1000 more than simple interest.

ans = solve(sum_after_in_yeras_with_compound_interest -
sum_after_two_years_in_compound_interest - 1000,

PoT |

P pgthOﬂ i. *H
Y =0.24814

interest_rate)

Figure 1: Comparison between Chain of Thoughts and Program of Thoughts.

Chen et al ‘22



Tools: More General Tools

ldeally, use more general external
tools
e Without lots of human annotation

* Model should decide on its own
which tool to use

e Toolformer: introduces API calls into
the model

* But these API calls aren’t already there...
so need to fine-tune

Your task is to add calls to a Question Answering APl to a
piece of text. The questions should help you get
information required to complete the text. You can call the
API by writing "[QA(question)]" where "question” is the
question you want to ask. Here are some examples of API
calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe
Biden born?")] Scranton, [QA("In which state is
Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink
manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is
Coca-Cola known by?")] Coke, is a carbonated soft drink
manufactured by [QA("Who manufactures Coca-Cola?")]
the Coca-Cola Company.

Input: X
Output:

Schick et al 23



Before: Prompting

With prompting, we didn’t change the model
*To improve performance, we used few-shot/ICL
*But, this might be worse than changing our model weights

w
701
Few-Shot Parameter-Efficient Fine- o5l ]
Tuning is Better and Cheaper than In- %60 0
Context Learning < .
. ( S M. S
Liu et al ‘22 107 107 107 10™

FLOPs per example

S’ T-Few B GPT-36.7B
@ To B GPT-313B
% T15+im ] cGPT-3175B



Before: Frozen Models/Linear Probing

We previously discussed freezing our model, and using just
some trainable heads

*E.g., a linear model on top (called linear probing)
*Our self-supervised learning example

Ve ~ 4 / ™
feature - p
:> self-supervised [ > extractor = supervised — evaluate on the ‘
learning ' (e.g., a learning target task _

\ Y, _ convnet) )\

e.g. classification, detection
lots of

unlabeled

= M- 5wl

— labeled data on o
conv fc the target task conv linear

Stanford CS 231n classifier



Full Fine-Tuning

Performance might still be bottlenecked,

*Frozen representations might not be suitable for task
* Might need lots of capacity on top to adapt

*Change all the weights!

>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.®rom_pretrained("bert-base-cased", num_labels=5)

>>> trainer.train()

https://huggingface.co/docs/transformers/training



Full Fine-Tuning: Downsides

Fine-tuning all parameters is tough:
1. Expensive: just like training a full model

2. Known to cause issues on OOD data...
* Fine-Tuning can Distort Pretrained Features and Underperform Out-
of-Distribution

Pretraining (a) Fine-tuning (b) Linear probing (c) LP-FT
e O > ey O = e, Q)
% =00 \ =00 O
Inputs OOO OOO OQO
ID test | 85.1% 82.9% 85.7%
OOD test 59.3% 66.2% 68.9%

Average accuracies (10 distribution shifts)

Kumar et al ‘122



Partial Fine-Tuning

Full fine-tuning might be expensive
*Partial fine-tuning might be a good choice
*Only some layers change
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Prefix-Tuning

Recall this soft prompting method.
*Prefixes are trainable parameters

*Train one for each goal task, only store these new
parameters

*Enables cheap adaptation of frozen language model

Prefix-tuning

Transformer (Pretrained)

L LR LR

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Li and Liang ‘21



Parameter-Efficient Fine-Tuning (PEFT)

None of these methods were full satisfying
*Have to figure out what layers to train, have to

interpolate with prompts, etc.
* Lots of choices!

*|f we fine-tune too many parameters, that gets

expensive...
* But top only, performance isn’t great

Accuracy delta (%)

*Houlsby et al ‘19:

I
()
o

Mj

—e Adapters (ours)

=—=a Fine-tune top layers

LB | T —rrrrrr T LRI | T
10° 10’ 108
Num trainable parameters / task

10°



PEFT: Adapters

Want two things in PEFT
*Good performance (accuracy, etc.)
*Parameter efficiency

e = N\ P ~.
K [ Layer Norm ] Y /" Adapter N
X ! | Layer '
Transformer ! ;
1
1

*Solution: Adapters | Loy .| [000000
- : L — L
* Small modules, inserted 5 [Meed_mam ] 5 i Feedionvard
in between model and trained | i i | |
Nonlinearity
: [ Layer Norm ] ! ! I
. ! © i : OO
Another advantage: no change ; L [ I }
to model, new modules for tasks | (Eeewee) | | S
: [ Multtti—h?_a\ded J i i‘ OO OAO OO

e e

Houlsby et al ‘19



PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

*LoRA suggests adding directly to pretrained weights
* Instead of placing in a new module
* The matrix to be added should be low-rank

* Intuition: the weight matrices already live close to a low-rank
manifold

h | J
AT R

*Transformers, initially applied only to a

Attention weight matrices /—\
A

* Now everywhere N d

X |

Hu et al ‘22
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Outline

*Cross-Modal Adaptation

*Frozen transformers, ORCA, aligning via optimal transport
dataset distance



What About Other Modalities?

So far, mostly talked about language models.
*Suppose we want tasks that are not directly language-based
*Could just train a new model... but harder

Can we adapt language models? Lots of challenges:
* Must change data types
*How do we know modalities are usable together?



Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al ‘21)
Basic idea:

*Change the input/output layers (here, linear)

*Layer norm parameters

*Everything else frozen

Positional L frozen self-attention blocks
Embeddings « L
v v
Input Multi-Head Add & Feed Add & Output
Embedding Attention Layer Norm Forward Layer Norm Layer

Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

S

Lu et al, 21



Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al 23)
* Adds: distribution alignment step (align then refine)

Inputs Stage 1: Dimensionality Stage 2: Distribution Alignment Stage 3: Refine
Pretrained Transformer ! Alignment : - Model Weights
. f°!  Embedder ! Yt z* y" z’ Yy’ x! y'
e L o A o
"""""""" : ft ht : f E f ; = f
Target Dataset : : v =
ﬁ% (ef,yt) | SR i Embedded Finzzeaie B !
N Y Embedder  Predictor ; Target & Source %° g°
S | \4
v

S et H f_) t ; x - E t Fine-Tune for
( z°, yS) AT R 5 ’.‘ Learn f* to Align Target & Source Distributions :: h Task Loss



ORCA: Stage 1

Let’s understand each stage of ORCA

*Stage 1: compatibility for inputs and
outputs

e Custom input and output embedders
that depend on the task

* Input example: convolutional layers for
Image settings

e Qutput example: average pooling+linear
layer for classification

Stage 1: Dimensionality

Alignment
! y'
v )
ft ht

Task-Specific Task-Specific
Embedder Predictor



ORCA: Stage 2

Let’s understand each stage of ORCA

*Stage 2: distribution alighment

*Intuition:

* Change embeddings so target features
resemble source features

*Learn the function f' that minimizes
distance between

(ff(x),y") and (£(x°), y°)

(I:t yt T s ys
ff 7
- ;— -
Embeddecg Embedded
Target T Source z°
t Yy ¢ A J

| Learn f*to Align Target & Source Distributions |




ORCA: Distributional Distances

Want: learn the function ffthat minimizes distance between

(f1(x),y") and (£(x°), y°)

How?
*Need a distance function on these distributions
*Here, optimal transport dataset distance (OTDD)

iples and Optimal Couplin Optimal Coupling #*

]“ ﬁh}? f : .0'\%:“ . " j
| B W= %\ - Sl TR
101 :.\@ 0?‘ B = {J



Interlude: Optimal Transport

In optimal transport, we solve

inf{/XxY c(z,y)dy(z,y)|v € T'(k, V)},

| |

Cost or distance The two marginals we care
of moving xtoy about, i.e.,onxandy

*Want to “move” distribution on x to one on y
* Qutput is a joint distribution with the original source and target

*But there’s a cost to moving x to y, given by c(x,y)



Interlude: Optimal Transport

In optimal transport, we solve

inf{/Xxy c(z,y)dv(z,y)|v € T'(k, V)},

| |

Cost or distance The two marginals we care
of moving xtoy about, i.e.,onxandy

EMDI

Applegate et al ‘11



Interlude: Optimal Transport

In optimal transport, we solve

inf{fXxY c(z,y)dy(z,y)|v € T'(k, V)},

*Cost given by distance: Wasserstein distance
*Gives a distance on distributions, i.e.,

1/p
W, (u,v) = ( inf E(xjy)m,}.d(a:,y)p)
vET ()



Interlude; Dataset Distance

What should this cost/distance c(x,y) be for us?

*For inputs x, pretty easy: feature vectors in spaces that have
distances, e.g., | | x-x"] |

*For outputs y, not so easy M
® ®

»

*A clever idea: ey -

* Replace y with P(X]|y) 5
‘ ’

*Even harder? No, just use Wasserstein: W(P(X]|y),P(X|y’))

* Approximate this with a Gaussian: closed form too!




ORCA: Distributional Distances

Want: learn the function ffthat minimizes distance between

(f1(x),y") and (£(x°), y°)

*Need a distance function on these distributions
*Here, optimal transport dataset distance (OTDD)

dz ((2,y), (@',3) 2 (da(r,2')" + Wh(ay, ) "

| 1

i.e., Euclidean p-Wasserstein distance on
distance P(x|y)



ORCA: Stage 3

Let’s understand each stage of ORCA

Stage 3: Refine
Model Weights

*Stage 3: fine-tune the input and t ,
output network weights ili Y
* For particular tasks ft
* Or, could do any other variant of what l
we’ve talked about... g°

Y

:t Fine-lune for
lask Loss




ORCA: Results

Extremely good, even against state-of-the-art results

Compare to Neural Architecture Search (NAS)

* Produces custom architectures that hit sota for various tasks
e Same procedure on many types of tasks works well:

wr

CIFAR-100 Spherical ~ Darcy Flow PSICOV  Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) O-1 error (%) relative /5 MAEg 1-AUROC O0-1error (%) 1-mAP 1-Fl1score O-1error(%) 1-AUROC
Hand-designed 19.39 67.41 8E-3 3.35 0.127 8.73 0.62 0.28 19.80 0.30
NAS-Bench-360 23.39 48.23 2.6E-2 2.94 0.229 7.34 0.60 0.34 12.51 0.32
DASH 24.37 71.28 7.9E-3 3.30 0.19 6.60 0.60 0.32 12.28 0.28
Perceiver 10 70.04 82.57 2.4E-2 8.06 0.485 22.22 0.72 0.66 15.93 0.38
FPT 10.11 76.38 2.1E-2 4.66 0.233 15.69 0.67 0.50 20.83 0.37

ORCA 6.53 29.85 7.28E-3 1.91 0.152 7.54 0.56 0.28 11.59 0.29
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Outline

*Model Editing
*ldea, MEND



Model Editing

So far, adapting to new tasks

*But what if we just want to change the model?

Why?

*Models have outdated (or wrong!) information in them

*Need to update these facts... but fine-tuning on just one
point can be hard
e Qverfit to the point
* May change other aspects




Model Editing: MEND

Fast editing with Model Editor Networks with Gradient
Decomposition (MEND)

 Mitchell et al ‘122

Editing a Pre-Trained Model with MEND

x, = “Who is the prime y, = “Boris Johnson” x, = “Who is the
minister of the UK?” \ UK PM?”
— —— ~——
\ V, MEND V, \

f = N > a 3 N
Pre-trained model (p,) po(- %) VW1 e @; N VW1 Edited model (p,_g,) Po_v,( - |%)

O 038 ; O 08
O 0.6 Ea &2 £ O 06
a2 |- - J . QR |~
see O 0.2 ' E : S cee O 0.2
Q ° O I
O O Boris Theresa , {2 O Boris Theresa
Johnson May = 8k @ s O Johnson May

\. 7 \———/ N . J
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