

CS 839: Foundation Models Specialization: Fine-Tuning, Adaptation, Editing

Fred Sala

University of Wisconsin-Madison

Oct. 3rd, 2024

Announcements

•Logistics:

•Homework 1 is due tonight!

•Class roadmap:

Thursday Oct. 3	Specialization	
Tuesday Oct. 8	Alignment	
Thursday Oct. 10	Efficient Training	
Tuesday Oct. 15	Efficient Inference	
Thursday Oct. 17	Prospective Guest Lecture	

Language \bigotimes Foundation Models

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

Model Editing

•Idea, MEND

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

- Frozen transformers, ORCA, aligning via optimal transport dataset distance
- •Model Editing
 - •Idea, MEND

When Does CoT Actually Help?

A: Not always clear

Mainly on math and symbolic reasoning?

To CoT or not to CoT? Chai math and symbolic reasoni

Zayne Sprague, Fangcong Yin, Juan Diego I Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Ma

Sprage et al '24

From Last Time: Beyond the Unaided Language Models

- Even when we do CoT, the language model can get things wrong.
- •Often simple things... like arithmetic.
- •How else can we help it?
- •A: Use external tools

Tools: Program-aided LMs

Use external tools:

• Python interpreter

- How? Interleave the text explanations in CoT steps with lines of Python code
- LMs can already output code
 - Just need to *prompt* the right way

Chain-of-Thought (Wei et al., 2022)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

A: The bakers started with 200 loaves. They sold 93 in the morning and 39 in the afternoon. So they sold 93 + 39 = 132 loaves. The grocery store returned 6 loaves. So they had 200 - 132 - 6 = 62 loaves left. The answer is 62.

Gao et al '23

Program-aided Language models (this work)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. tennis_balls = 5 2 cans of 3 tennis balls each is bought_balls = 2 * 3 tennis balls. The answer is answer = tennis_balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

Model Output

A: The bakers started with 200 loaves loaves_baked = 200 They sold 93 in the morning and 39 in the afternoon loaves_sold_morning = 93 loaves_sold_afternoon = 39 The grocery store returned 6 loaves. loaves_returned = 6 The answer is answer = loaves_baked - loaves_sold_morning - loaves_sold_afternoon + loaves_returned >>> print(answer)

Tools: Programs-aided LMs Prompts

Just need to *prompt* the right way

• Craft examples that interleave code and text

Q: Olivia has \$23. She bought five bagels for \$3 each. How much money does she have left?

```
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
answer = money_left
```

Figure 3: Example prompt for the mathematical reasoning tasks, from the GSM8K benchmark.

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of the object directly to the right of the stress ball?

```
...
stress_ball_idx = None
for i, object in enumerate(objects):
    if object[0] == 'stress ball':
        stress_ball_idx = i
        break
# Find the directly right object
direct_right = objects[stress_ball_idx+1]
# Check the directly right object's color
answer = direct_right[1]
```

Tools: Program-of-Thoughts

Similar idea: program-of-thoughts

Chen et al '22

Tools: More General Tools

Ideally, use more general external tools

- Without lots of human annotation
- Model should decide on its own which tool to use
- **Toolformer**: introduces API calls into the model
 - But these API calls aren't already there... so need to fine-tune

Your task is to add calls to a Question Answering API to a piece of text. The questions should help you get information required to complete the text. You can call the API by writing "[QA(question)]" where "question" is the question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")] Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")] Coke, is a carbonated soft drink manufactured by [QA("Who manufactures Coca-Cola?")] the Coca-Cola Company.

Input: x

Output:

Schick et al '23

Before: Prompting

With prompting, we didn't change the model

- •To improve performance, we used few-shot/ICL
- •But, this might be **worse** than changing our model weights

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning

Liu et al '22

Before: Frozen Models/Linear Probing

We previously discussed freezing our model, and using just some trainable heads

- •E.g., a linear model on top (called linear probing)
- •Our self-supervised learning example

Full Fine-Tuning

Performance might still be bottlenecked,

- Frozen representations might not be suitable for task
- Might need lots of capacity on top to adapt
- •Change all the weights!

>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

>>> trainer.<mark>train()</mark>

https://huggingface.co/docs/transformers/training

Full Fine-Tuning: Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data...

• Fine-Tuning can Distort Pretrained Features and Underperform Outof-Distribution

Average accuracies (10 distribution shifts)

Kumar et al '22

Partial Fine-Tuning

Full fine-tuning might be expensive

- Partial fine-tuning might be a good choice
- •Only some layers change

Prefix-Tuning

Recall this soft prompting method.

- Prefixes are trainable parameters
- •Train one for each goal task, only store these new parameters
- •Enables cheap adaptation of frozen language model

Li and Liang '21

Parameter-Efficient Fine-Tuning (PEFT)

None of these methods were full satisfying

- Have to figure out what layers to train, have to interpolate with prompts, etc.
 - Lots of choices!
- •If we fine-tune too many parameters, that gets expensive...
 - But top only, performance isn't great

•Houlsby et al '19:

PEFT: Adapters

Want two things in PEFT

- •Good performance (accuracy, etc.)
- Parameter efficiency

•Solution: Adapters

• Small modules, inserted in between model and trained

Another **advantage:** no change to model, new modules for tasks

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

- •LoRA suggests adding directly to pretrained weights
 - Instead of placing in a new module
 - The matrix to be added should be low-rank
 - Intuition: the weight matrices already live close to a low-rank manifold
- •Transformers, initially applied only to a Attention weight matrices
- Now everywhere

Break & Questions

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

•Model Editing •Idea, MEND

What About Other Modalities?

So far, mostly talked about language models.

- Suppose we want tasks that are not directly language-based
- •Could just train a new model... but harder

Can we adapt language models? Lots of challenges:

- Must change data types
- How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al '21) Basic idea:

- Change the **input/output layers** (here, linear)
- •Layer norm parameters
- Everything else frozen

Figure 2: Frozen Pretrained Transformer (FPT). The self-attention & feedforward layers are frozen.

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al '23) •Adds: distribution alignment step (align then refine)

ORCA: Stage 1

Let's understand each stage of ORCA

- •Stage 1: compatibility for inputs and outputs
- •Custom input and output embedders that depend on the task
 - Input example: convolutional layers for image settings
 - Output example: average pooling+linear layer for classification

ORCA: Stage 2

Let's understand each stage of ORCA

- Stage 2: distribution alignment
- •Intuition:
 - Change embeddings so target features **resemble** source features
- Learn the function *f^t* that minimizes
 distance between

 $(f^{t}(x^{t}), y^{t})$ and $(f^{s}(x^{s}), y^{s})$

ORCA: Distributional Distances

Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- •How?
- Need a distance function on these distributions
- •Here, optimal transport dataset distance (OTDD)

Interlude: Optimal Transport

In optimal transport, we solve

$$\inf \left\{ \int_{X \times Y} c(x, y) \, \mathrm{d}\gamma(x, y) \, \middle| \, \gamma \in \Gamma(\mu, \nu) \right\},$$

$$f$$
Cost or distance
of moving x to y
The two marginals we care
about, i.e., on x and y

•Want to "move" distribution on x to one on y

- Output is a joint distribution with the original source and target
- •But there's a cost to moving x to y, given by c(x,y)

Interlude: Optimal Transport

In optimal transport, we solve

Interlude: Optimal Transport

In optimal transport, we solve

$$\inf\left\{\int_{X imes Y} c(x,y) \,\mathrm{d}\gamma(x,y) \,\middle|\, \gamma\in\Gamma(\mu,
u)
ight\},$$

Cost given by distance: Wasserstein distance
Gives a distance on distributions, i.e.,

$$W_p(\mu,
u) = \left(\inf_{\gamma\in\Gamma(\mu,
u)} {f E}_{(x,y)\sim\gamma} d(x,y)^p
ight)^{1/p}$$

Interlude: Dataset Distance

What should this cost/distance c(x,y) be for us?

- •For inputs x, pretty easy: feature vectors in spaces that have distances, e.g., ||x-x'||
- •For outputs y, not so easy
- •A clever idea:
 - Replace y with P(X|y)

- •Even harder? No, just use Wasserstein: W(P(X|y),P(X|y'))
 - Approximate this with a Gaussian: closed form too!

ORCA: Distributional Distances

Want: learn the function f^t that minimizes distance between $(f^t(x^t), y^t)$ and $(f^s(x^s), y^s)$

- •Need a distance function on these distributions
- •Here, optimal transport dataset distance (OTDD)

ORCA: Stage 3

Let's understand each stage of ORCA

- Stage 3: fine-tune the input and output network weights
 - For particular tasks
 - Or, could do any other variant of what we've talked about...

ORCA: Results

Extremely good, even against state-of-the-art results

- •Compare to Neural Architecture Search (NAS)
 - Produces custom architectures that hit sota for various tasks
 - Same procedure on many types of tasks works well:

	-				U	•				
	CIFAR-100 0-1 error (%)	Spherical 0-1 error (%)	Darcy Flow relative ℓ_2	PSICOV MAE ₈	Cosmic 1-AUROC	NinaPro 0-1 error (%)	FSD50K 1- mAP	ECG 1 - F1 score	Satellite 0-1 error (%)	DeepSEA 1- AUROC
Hand-designed	19.39	67.41	8E-3	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360 DASH	23.39 24.37	48.23 71.28	2.6E-2 7.9E-3	2.94 3.30	0.229 0.19	7.34 6.60	0.60 0.60	0.34 0.32	12.51 12.28	0.32 0.28
Perceiver IO FPT	70.04 10.11	82.57 76.38	2.4E-2 2.1E-2	8.06 4.66	0.485 0.233	22.22 15.69	0.72 0.67	0.66 0.50	15.93 20.83	0.38 0.37
ORCA	6.53	29.85	7.28E-3	1.91	0.152	7.54	0.56	0.28	11.59	0.29

Break & Questions

Outline

•Fine-Tuning and Adapter Intro

•Fine-tuning vs. prompting, linear probing, etc. Full vs partial fine tuning vs adapting. Popular adapters

Cross-Modal Adaptation

• Frozen transformers, ORCA, aligning via optimal transport dataset distance

Model Editing

•Idea, MEND

Model Editing

So far, adapting to new tasks

•But what if we just want to change the model? Why?

- •Models have outdated (or wrong!) information in them
- Need to update these facts... but fine-tuning on just one point can be hard
 - Overfit to the point
 - May change other aspects

Model Editing: MEND

Fast editing with Model Editor Networks with Gradient Decomposition (MEND)

• Mitchell et al '22

Bibliography

- Sprague et al '24: Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, Greg Durrett "To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning" (https://arxiv.org/abs/2409.12183)
- Gao et al '23: Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, Graham Neubig, "PAL: Program-aided Language Models" (<u>https://arxiv.org/abs/2211.10435</u>)
- Chen et al '22: Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen, "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks" (<u>https://arxiv.org/abs/2211.12588</u>)
- Schick et al '23: Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom, "Toolformer: Language Models Can Teach Themselves to Use Tools" (<u>https://arxiv.org/abs/2302.04761</u>)
- Liu et al '22, Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel, "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning". (<u>https://openreview.net/forum?id=rBCvMG-JsPd</u>)
- Kumar et al '22, Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, "Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution" (<u>https://openreview.net/pdf?id=UYneFzXSJWh</u>)
- Shen et al '21, Zhiqiang Shen1, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng, "Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot Learning". (<u>https://arxiv.org/pdf/2102.03983.pdf</u>)
- Li and Liang '21, Lisa Li and Percy Liang, "Prefix-Tuning: Optimizing Continuous Prompts for Generation" (https://arxiv.org/abs/2101.00190)
- Houlsby et al '19, Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly, "Parameter-Efficient Transfer Learning for NLP" (https://arxiv.org/abs/1902.00751)

Thank You!