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Announcements

•Logistics:
•Homework 1 is due tonight!

•Class roadmap:
Thursday Oct. 3 Specialization

Tuesday Oct. 8 Alignment

Thursday Oct. 10 Efficient Training

Tuesday Oct. 15 Efficient Inference

Thursday Oct. 17 Prospective Guest 
Lecture
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Outline

•Fine-Tuning and Adapter Intro
•Fine-tuning vs. prompting, linear probing, etc. Full vs 
partial fine tuning vs adapting. Popular adapters

•Cross-Modal Adaptation
•Frozen transformers, ORCA, aligning via optimal transport 
dataset distance

•Model Editing
• Idea, MEND
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When Does CoT Actually Help?

A: Not always clear

•Mainly on math and symbolic reasoning?

Sprage et al ‘24



From Last Time: Beyond the Unaided 
Language Models

Even when we do CoT, the language model can get things 
wrong. 

•Often simple things… like arithmetic.

•How else can we help it?

•A: Use external tools



Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text 
explanations in CoT steps with 
lines of Python code

• LMs can already output code
• Just need to prompt the right 

way

Gao et al ‘23



Tools: Programs-aided LMs Prompts

Just need to prompt the right way
•Craft examples that interleave code and text



Tools: Program-of-Thoughts 

Similar idea: program-of-thoughts

Chen et al ‘22



Tools: More General Tools

Ideally, use more general external 
tools
•Without lots of human annotation
•Model should decide on its own 

which tool to use

•Toolformer: introduces API calls into 
the model
• But these API calls aren’t already there… 

so need to fine-tune

Schick et al ‘23



Before: Prompting

With prompting, we didn’t change the model

•To improve performance, we used few-shot/ICL

•But, this might be worse than changing our model weights

Few-Shot Parameter-Efficient Fine-
Tuning is Better and Cheaper than In-
Context Learning

Liu et al ‘22



Before: Frozen Models/Linear Probing

We previously discussed freezing our model, and using just 
some trainable heads

•E.g., a linear model on top (called linear probing)

•Our self-supervised learning example

Stanford CS 231n



Full Fine-Tuning

Performance might still be bottlenecked,

•Frozen representations might not be suitable for task

•Might need lots of capacity on top to adapt

•Change all the weights!

https://huggingface.co/docs/transformers/training



Kumar et al ‘22

Full Fine-Tuning: Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data…
•Fine-Tuning can Distort Pretrained Features and Underperform Out-

of-Distribution



Partial Fine-Tuning

Full fine-tuning might be expensive

•Partial fine-tuning might be a good choice

•Only some layers change

Shen et al, ‘21



Prefix-Tuning 

Recall this soft prompting method. 

•Prefixes are trainable parameters

•Train one for each goal task, only store these new 
parameters

•Enables cheap adaptation of frozen language model

Li and Liang ‘21



Parameter-Efficient Fine-Tuning (PEFT)

None of these methods were full satisfying

•Have to figure out what layers to train, have to 
interpolate with prompts, etc.
• Lots of choices!

•If we fine-tune too many parameters, that gets 
expensive… 
•But top only, performance isn’t great

•Houlsby et al ‘19:



PEFT: Adapters

Want two things in PEFT
•Good performance (accuracy, etc.)
•Parameter efficiency

•Solution: Adapters
•Small modules, inserted 
in between model and trained

Another advantage: no change
to model, new modules for tasks

Houlsby et al ‘19



PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

•LoRA suggests adding directly to pretrained weights
• Instead of placing in a new module
•The matrix to be added should be low-rank
• Intuition: the weight matrices already live close to a low-rank 

manifold

•Transformers, initially applied only to a

Attention weight matrices

•  Now everywhere

Hu et al ‘22



Break & Questions
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What About Other Modalities?

So far, mostly talked about language models.

•Suppose we want tasks that are not directly language-based

•Could just train a new model… but harder 

Can we adapt language models? Lots of challenges:

•Must change data types

•How do we know modalities are usable together?



Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al ‘21)

Basic idea:

•Change the input/output layers (here, linear)

•Layer norm parameters

•Everything else frozen

Lu et al, 21



Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al ‘23)

•Adds: distribution alignment step (align then refine)



ORCA: Stage 1

Let’s understand each stage of ORCA

•Stage 1: compatibility for inputs and 
outputs

•Custom input and output embedders 
that depend on the task

• Input example: convolutional layers for 
image settings
•Output example: average pooling+linear 

layer for classification



ORCA: Stage 2

Let’s understand each stage of ORCA

•Stage 2: distribution alignment

•Intuition:
•Change embeddings so target features 

resemble source features

•Learn the function ft that minimizes 
distance between

 (ft(xt),yt) and (fs(xs),ys) 



ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys) 

•How?

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)



In optimal transport, we solve

•Want to “move” distribution on x to one on y
•Output is a joint distribution with the original source and target

•But there’s a cost to moving x to y, given by c(x,y)  

Interlude: Optimal Transport

Cost or distance 
of moving x to y

The two marginals we care 
about, i.e., on x and y



In optimal transport, we solve

Interlude: Optimal Transport

Cost or distance 
of moving x to y

The two marginals we care 
about, i.e., on x and y

Applegate et al ‘11



In optimal transport, we solve

•Cost given by distance: Wasserstein distance

•Gives a distance on distributions, i.e., 

Interlude: Optimal Transport



What should this cost/distance c(x,y) be for us?

•For inputs x, pretty easy: feature vectors in spaces that have 
distances, e.g., ||x-x’||

•For outputs y, not so easy

•A clever idea:
•Replace y with P(X|y)

•Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’)) 
•Approximate this with a Gaussian: closed form too!

Interlude: Dataset Distance

-



ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys) 

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)

i.e., Euclidean 
distance

p-Wasserstein distance on 
P(x|y)



ORCA: Stage 3

Let’s understand each stage of ORCA

•Stage 3: fine-tune the input and 
output network weights 

•For particular tasks
•Or, could do any other variant of what 

we’ve talked about…



ORCA: Results

Extremely good, even against state-of-the-art results

•Compare to Neural Architecture Search (NAS)
•Produces custom architectures that hit sota for various tasks
•Same procedure on many types of tasks works well:



Break & Questions
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Model Editing

So far, adapting to new tasks

•But what if we just want to change the model?

Why?

•Models have outdated (or wrong!) information in them

•Need to update these facts… but fine-tuning on just one 
point can be hard
•Overfit to the point
•May change other aspects



Model Editing: MEND

Fast editing with Model Editor Networks with Gradient 
Decomposition (MEND)

•Mitchell et al ‘22
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Thank You!
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