
CS 839: Foundation Models
Specialization: Fine-Tuning, Adaptation, Editing

Fred Sala

University of Wisconsin-Madison

Oct. 3rd, 2024

Announcements

•Logistics:
•Homework 1 is due tonight!

•Class roadmap:
Thursday Oct. 3 Specialization

Tuesday Oct. 8 Alignment

Thursday Oct. 10 Efficient Training

Tuesday Oct. 15 Efficient Inference

Thursday Oct. 17 Prospective Guest
Lecture

Lan
gu

age &
 Fo

u
n

d
atio

n
 M

o
d

els

Outline

•Fine-Tuning and Adapter Intro
•Fine-tuning vs. prompting, linear probing, etc. Full vs
partial fine tuning vs adapting. Popular adapters

•Cross-Modal Adaptation
•Frozen transformers, ORCA, aligning via optimal transport
dataset distance

•Model Editing
• Idea, MEND

Outline

•Fine-Tuning and Adapter Intro
•Fine-tuning vs. prompting, linear probing, etc. Full vs
partial fine tuning vs adapting. Popular adapters

•Cross-Modal Adaptation
•Frozen transformers, ORCA, aligning via optimal transport
dataset distance

•Model Editing
• Idea, MEND

When Does CoT Actually Help?

A: Not always clear

•Mainly on math and symbolic reasoning?

Sprage et al ‘24

From Last Time: Beyond the Unaided
Language Models

Even when we do CoT, the language model can get things
wrong.

•Often simple things… like arithmetic.

•How else can we help it?

•A: Use external tools

Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text
explanations in CoT steps with
lines of Python code

• LMs can already output code
• Just need to prompt the right

way

Gao et al ‘23

Tools: Programs-aided LMs Prompts

Just need to prompt the right way
•Craft examples that interleave code and text

Tools: Program-of-Thoughts

Similar idea: program-of-thoughts

Chen et al ‘22

Tools: More General Tools

Ideally, use more general external
tools
•Without lots of human annotation
•Model should decide on its own

which tool to use

•Toolformer: introduces API calls into
the model
• But these API calls aren’t already there…

so need to fine-tune

Schick et al ‘23

Before: Prompting

With prompting, we didn’t change the model

•To improve performance, we used few-shot/ICL

•But, this might be worse than changing our model weights

Few-Shot Parameter-Efficient Fine-
Tuning is Better and Cheaper than In-
Context Learning

Liu et al ‘22

Before: Frozen Models/Linear Probing

We previously discussed freezing our model, and using just
some trainable heads

•E.g., a linear model on top (called linear probing)

•Our self-supervised learning example

Stanford CS 231n

Full Fine-Tuning

Performance might still be bottlenecked,

•Frozen representations might not be suitable for task

•Might need lots of capacity on top to adapt

•Change all the weights!

https://huggingface.co/docs/transformers/training

Kumar et al ‘22

Full Fine-Tuning: Downsides

Fine-tuning all parameters is tough:

1. Expensive: just like training a full model

2. Known to cause issues on OOD data…
•Fine-Tuning can Distort Pretrained Features and Underperform Out-

of-Distribution

Partial Fine-Tuning

Full fine-tuning might be expensive

•Partial fine-tuning might be a good choice

•Only some layers change

Shen et al, ‘21

Prefix-Tuning

Recall this soft prompting method.

•Prefixes are trainable parameters

•Train one for each goal task, only store these new
parameters

•Enables cheap adaptation of frozen language model

Li and Liang ‘21

Parameter-Efficient Fine-Tuning (PEFT)

None of these methods were full satisfying

•Have to figure out what layers to train, have to
interpolate with prompts, etc.
• Lots of choices!

•If we fine-tune too many parameters, that gets
expensive…
•But top only, performance isn’t great

•Houlsby et al ‘19:

PEFT: Adapters

Want two things in PEFT
•Good performance (accuracy, etc.)
•Parameter efficiency

•Solution: Adapters
•Small modules, inserted
in between model and trained

Another advantage: no change
to model, new modules for tasks

Houlsby et al ‘19

PEFT: Low-Rank Adapters (LoRA)

Perhaps the most popular variant

•LoRA suggests adding directly to pretrained weights
• Instead of placing in a new module
•The matrix to be added should be low-rank
• Intuition: the weight matrices already live close to a low-rank

manifold

•Transformers, initially applied only to a

Attention weight matrices

• Now everywhere

Hu et al ‘22

Break & Questions

Outline

•Fine-Tuning and Adapter Intro
•Fine-tuning vs. prompting, linear probing, etc. Full vs
partial fine tuning vs adapting. Popular adapters

•Cross-Modal Adaptation
•Frozen transformers, ORCA, aligning via optimal transport
dataset distance

•Model Editing
• Idea, MEND

What About Other Modalities?

So far, mostly talked about language models.

•Suppose we want tasks that are not directly language-based

•Could just train a new model… but harder

Can we adapt language models? Lots of challenges:

•Must change data types

•How do we know modalities are usable together?

Cross-Modal: FPTs

Frozen language-pretrained transformers (Lu et al ‘21)

Basic idea:

•Change the input/output layers (here, linear)

•Layer norm parameters

•Everything else frozen

Lu et al, 21

Cross-Modal: ORCA

Performance bottleneck in FPTs

A more powerful approach: ORCA (Shen et al ‘23)

•Adds: distribution alignment step (align then refine)

ORCA: Stage 1

Let’s understand each stage of ORCA

•Stage 1: compatibility for inputs and
outputs

•Custom input and output embedders
that depend on the task

• Input example: convolutional layers for
image settings
•Output example: average pooling+linear

layer for classification

ORCA: Stage 2

Let’s understand each stage of ORCA

•Stage 2: distribution alignment

•Intuition:
•Change embeddings so target features

resemble source features

•Learn the function ft that minimizes
distance between

 (ft(xt),yt) and (fs(xs),ys)

ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys)

•How?

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)

In optimal transport, we solve

•Want to “move” distribution on x to one on y
•Output is a joint distribution with the original source and target

•But there’s a cost to moving x to y, given by c(x,y)

Interlude: Optimal Transport

Cost or distance
of moving x to y

The two marginals we care
about, i.e., on x and y

In optimal transport, we solve

Interlude: Optimal Transport

Cost or distance
of moving x to y

The two marginals we care
about, i.e., on x and y

Applegate et al ‘11

In optimal transport, we solve

•Cost given by distance: Wasserstein distance

•Gives a distance on distributions, i.e.,

Interlude: Optimal Transport

What should this cost/distance c(x,y) be for us?

•For inputs x, pretty easy: feature vectors in spaces that have
distances, e.g., ||x-x’||

•For outputs y, not so easy

•A clever idea:
•Replace y with P(X|y)

•Even harder? No, just use Wasserstein: W(P(X|y),P(X|y’))
•Approximate this with a Gaussian: closed form too!

Interlude: Dataset Distance

-

ORCA: Distributional Distances

Want: learn the function ft that minimizes distance between

 (ft(xt),yt) and (fs(xs),ys)

•Need a distance function on these distributions

•Here, optimal transport dataset distance (OTDD)

i.e., Euclidean
distance

p-Wasserstein distance on
P(x|y)

ORCA: Stage 3

Let’s understand each stage of ORCA

•Stage 3: fine-tune the input and
output network weights

•For particular tasks
•Or, could do any other variant of what

we’ve talked about…

ORCA: Results

Extremely good, even against state-of-the-art results

•Compare to Neural Architecture Search (NAS)
•Produces custom architectures that hit sota for various tasks
•Same procedure on many types of tasks works well:

Break & Questions

Outline

•Fine-Tuning and Adapter Intro
•Fine-tuning vs. prompting, linear probing, etc. Full vs
partial fine tuning vs adapting. Popular adapters

•Cross-Modal Adaptation
•Frozen transformers, ORCA, aligning via optimal transport
dataset distance

•Model Editing
• Idea, MEND

Model Editing

So far, adapting to new tasks

•But what if we just want to change the model?

Why?

•Models have outdated (or wrong!) information in them

•Need to update these facts… but fine-tuning on just one
point can be hard
•Overfit to the point
•May change other aspects

Model Editing: MEND

Fast editing with Model Editor Networks with Gradient
Decomposition (MEND)

•Mitchell et al ‘22

Bibliography

• Sprague et al ‘24: Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle
Mahowald, Greg Durrett “To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning” (https://arxiv.org/abs/2409.12183)

• Gao et al ’23: Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, Graham Neubig, “PAL: Program-aided Language
Models” (https://arxiv.org/abs/2211.10435)

• Chen et al ‘22: Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen, “Program of Thoughts Prompting: Disentangling Computation from
Reasoning for Numerical Reasoning Tasks” (https://arxiv.org/abs/2211.12588)

• Schick et al ’23: Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom,
“Toolformer: Language Models Can Teach Themselves to Use Tools” (https://arxiv.org/abs/2302.04761)

• Liu et al ‘22, Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel, “Few-Shot Parameter-Efficient Fine-
Tuning is Better and Cheaper than In-Context Learning”. (https://openreview.net/forum?id=rBCvMG-JsPd)

• Kumar et al ’22, Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, Percy Liang, “Fine-Tuning can Distort Pretrained Features and
Underperform Out-of-Distribution” (https://openreview.net/pdf?id=UYneFzXSJWh)

• Shen et al ’21, Zhiqiang Shen1, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng, “Partial Is Better Than All: Revisiting Fine-tuning Strategy
for Few-shot Learning”. (https://arxiv.org/pdf/2102.03983.pdf)

• Li and Liang ‘21, Lisa Li and Percy Liang, “Prefix-Tuning: Optimizing Continuous Prompts for Generation” (https://arxiv.org/abs/2101.00190)

• Houlsby et al ’19, Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan,
Sylvain Gelly, “Parameter-Efficient Transfer Learning for NLP” (https://arxiv.org/abs/1902.00751)

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2302.04761
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/pdf?id=UYneFzXSJWh
https://arxiv.org/pdf/2102.03983.pdf
https://arxiv.org/abs/2101.00190

Thank You!

	Slide 1: CS 839: Foundation Models Specialization: Fine-Tuning, Adaptation, Editing
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: When Does CoT Actually Help?
	Slide 6: From Last Time: Beyond the Unaided Language Models
	Slide 7: Tools: Program-aided LMs
	Slide 8: Tools: Programs-aided LMs Prompts
	Slide 9: Tools: Program-of-Thoughts
	Slide 10: Tools: More General Tools
	Slide 11: Before: Prompting
	Slide 12: Before: Frozen Models/Linear Probing
	Slide 13: Full Fine-Tuning
	Slide 14: Full Fine-Tuning: Downsides
	Slide 15: Partial Fine-Tuning
	Slide 16: Prefix-Tuning
	Slide 17: Parameter-Efficient Fine-Tuning (PEFT)
	Slide 18: PEFT: Adapters
	Slide 19: PEFT: Low-Rank Adapters (LoRA)
	Slide 20: Break & Questions
	Slide 21: Outline
	Slide 22: What About Other Modalities?
	Slide 23: Cross-Modal: FPTs
	Slide 24: Cross-Modal: ORCA
	Slide 25: ORCA: Stage 1
	Slide 26: ORCA: Stage 2
	Slide 27: ORCA: Distributional Distances
	Slide 28: Interlude: Optimal Transport
	Slide 29: Interlude: Optimal Transport
	Slide 30: Interlude: Optimal Transport
	Slide 31: Interlude: Dataset Distance
	Slide 32: ORCA: Distributional Distances
	Slide 33: ORCA: Stage 3
	Slide 34: ORCA: Results
	Slide 35: Break & Questions
	Slide 36: Outline
	Slide 37: Model Editing
	Slide 38: Model Editing: MEND
	Slide 39: Bibliography
	Slide 40: Thank You!

