S 839: Foundation Models
Efficient Training

Fred Sala

University of Wisconsin-Madison

Oct. 9, 2025

Announcements

*Logistics:
*Homework 2 in progress.
*Sign up for presentations!
*Project information coming out shortly.

S T o

Tuesday Oct. 14 Efficient Inference
Thursday Oct. 16 Evaluation
Tuesday Oct. 21 Agents

Tuesday Oct. 23 More Reasoning

Outline

*Finish Up Last Time
*RL training, RLVR, GRPO, reasoning tasks

*Efficient Training
*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training
eStart Efficient Inference

*Speculative decoding, early-exit strategies, Flash
decoding

Outline

*Finish Up Last Time
*RL training, RLVR, GRPO, datasets
*Efficient Training
*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training
*Start Efficient Inference

*Speculative decoding, early-exit strategies, Flash
decoding

RL Outside of Alighment

*Let’s get back to building a good model-doesn’t need to be

within the context of alignment

* This means we don’t have human preference data, but potentially
something else

Where does RL fit in here?
* And what are the new reward models going to look like?

*One simple approach: “rewards” for just the correct answers
* But, unlike in the supervised case, not just one solution

Back to RL: PPO Details

*Note that we could directly apply PPO to train

*We would integrate some notion of verifier correctness into
the reward

*|Let’s dive a bit deeper into PPO

- Told S - §
nzt[o(a4 | 5t) At—.sﬁKL[md(-|st)..w(—|sf)]]

T O1a (Ot | st)
*Two forms 1
(that we can combine) Advantage A:= Q(st,ar) — V{(s:)

E, {min(?‘t(ﬂ)ﬁt, clip(r¢(0),1 — e, 1 + F)}L‘,)]

PPO to GRPO

*GRPO (Group Relative Policy Optimization)
*Shao et al, DeepSeekMath

Jereo(0) = E[q ~ P(Q), {0}, ~ mp,,(0lq)]

1 | |q} s G§|q}
el ﬂifl 1- 1]]:i
GZ((au..dtnflq:» ip | o (o] - PDxu (o [7rer) |

* Most elements are the same compared to PPO, but note that
we sample a group of G responses.

*Advantage: o _ Ti=mean({ry,r,-- ,rc})
Std{{rlrrl- e rr{r'}}

GRPO/DeepSeek R1 Rewards

* How to use verifiers in rewards? r; —mean({ry,r2,--- ,rc})

T T std({ri,ra, -, 16}

Very simple: DeepSeek R1 uses:

* Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

* Format rewards: In addition to the accuracy reward model, we employ a format reward

model that enforces the model to put its thinking process between ‘<think>" and ‘</think>’
tags.

Note the thinking tokens!

Strong Performance on Math

AIME Results:

Overall AIME 20251
Model
gemini-2.5-pro !
03-mini (high)
o1 (medium)
03-mini (medium)
DeepSeek-R1
QwQ-32B !
DeepSeek-V3-03-24 !
03-mini (low)
DeepSeek-R1-Distill-32B
gemini-2.0-flash-thinking
DeepSeek-R1-Distill-14B

DeepSeek-R1-Distill-70B

Claude-3.7-Sonnet (Think) !

QwQ-32B-Preview

gemini-2.0-flash

AIME 2025 1l

HMMT February 2025

Acc

83.33%

80.00%

78.33%

73.33%

65.00%

60.00%

53.33%

53.33%

53.33%

51.67%

50.00%

50.00%

46.67%

36.67%

30.00%

Cost
N/A
$3.19
$44.40
$1.67
$4.91
$1.24
$0.25
$0.62
N/A
N/A
$1.15
$1.35
$2217
$0.58

$0.06

USAMO 2025

10

https://matharena.ai/

And Physics

Theoretical Physics Benchmark (TPBench) - a Dataset and Study
of Al Reasoning Capabilities in Theoretical Physics

Daniel J.H. Chung', Zhigi Gao®, Yurii Kvasiuk', Tianyi Li', Moritz Miinchmever"®, Maja
Rudolph?. Frederic Sala®, and Sai Chaitanya Tadepalli®

'Department of Physics, University of Wisconsin-Madison
?Department of Computer Science, University of Wisconsin-Madison
“Data Science Institute (DSI), University of Wisconsin-Madison
Department of Physics, Indiana University, Bloomington
SNSF-Simons Al Institute for the Sky (SkAI). Chicago

February 25, 2025

Ahstract

We introduce a benchmark to evaluate the capability of Al to solve problems in theoretical physics,
focusing on high-energy theory and cosmoelogy. The first iteration of our benchmark consists of 57
problems of varying difficulty, om undergraduate to research level. These problems are novel in the
sense that they do not come from public problem collections. We evaluate our data set on various
open and closed language models, ineluding o3-mini, ol, DeepSeek-R1, GPT-4o and versions of Llama
and Qwen. While we find impressive progress in model performance with the most recent models, our
research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and
grading, and discuss common failure modes. While currently state-of-the art models are still of limited
use for researchers, our resulis show that Al assisted theoretical physics research may become possible
in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome
them. The public problems and solutions, results for various models, and updates to the data set and
seore distribution, are available on the website of the dataset tpbench. org.

TP Bench - Theoretical Physics Benchmark for Al

TPBench is a curated dataset and evaluation suite designed to measure the reasoning capabilities of Al
models in theoretical physics. Our test problems span multiple difficulty levels—from undergraduate to
frontier research—and cover topics such as cosmology, high-energy theory, general relativity, and more.
By providing a unified framework for problem-solving and auto-verifiable answers, TPBench aims to drive

progress in Al-based research assistance for theoretical physics.

Read the TPBench Paper on arxiv
Access Public Dataset on Huqgingface

Current Model Performance

I‘dlodle0 IUPE rformance (Average of 5 shots)

100% qes 97 98
89 & s Gemini-2.0 Flash
2 = Gemini-2.0 Pro
80% s GPT-40
mm Claude-3.7
60% 56
> 49
E 40%
g 3
20% 20 20 21
0% g o e
e A vy
P T B R PR s i

0

mam 01 (high)
mam Deepseek-R1
s o3-mini (high)

4 4
\ﬁ‘_'%j %%, ,\\“q%.‘)
S R

10

.,i?_,;f.\ T T L

Break & Questions

Outline

*Efficient Training

*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

Training Foundation Models: Scale

Llama family of models,

*“we estimate that we used 2048 A100-80G8B for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),
*“training OPT-175B on 992 80GB A100 GPUs”

GPU Type GPU th.i'er GPU-hours Total pmai'&r Carbon emitted
consumption consumption (tCO2eq)
OPT-175B A100-B80GB 400W 809,472 356 MWh 137
BLOOM-175B A100-830GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-830GB 400W 82,432 36 MWh 14
LLaMA-13B A100-830GB 400W 135,168 539 MWh 23
LLaMA-33B A100-80GB 400W 530,432 233 MWh 90
LLaMA-65B A100-830GB 400W 1,022,362 449 MWh 173

Touvron et al, 23

Training Foundation Models: GPU Usage

Even for each GPU, there’s additional considerations
* A little bit of fast memory, lots of slower memory

* Avoid using slow memory when possible
* FlashAttention: Tiling + computing tricks

Attention on GPT-2

:| Matmul

-
i
1

:19TB/s (20 MB) Dropout

HEM: 1.5TB/s (40GB) 2 £10-
= o Softmax
= E
QU —
:12.8GB/s = = 5. Fused
(>1TB) Mask Kernel

1

Memory Hierarchy with] Matmul

Bandwidth & Memory Size

o
1

Qutput to HEM

sm(QKV: N xd PyTorch FlashAttention

Inner Loop

FlashAttention

Dao et al ‘22

Flash Attention

: 19 TB/s (20 MB)

Idea for FlashAttention
Different kinds of GPU memory

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

* Fast: on-chip SRAM

e But very little of this: 192KB for each of ~100 processors for an A100 (20MB)
Slow(er): HBM

* But lots: 40-80GB for an A100

*Goal: use fast as much as possible, avoid moving to HBM

Flash Attention: Basic Idea

Will use two tricks for higher efficiency
*Tiling and re-computing.

First, recall standard attention

* Will use HBM memory repeatedly
 Lots of reads and writes:

Algorithm 0 Standard Attention Implementation

Require: Matrices Q,K,V € RV*? in HBM.
1: Load Q, K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4

. Return O.

Flash Attention: Tiling

Will use two tricks for higher efficiency
*Tiling and re-computing.

How do we avoid writing and reading from HBM?

* A: don’t load the whole thing, use custom tiling and save the pieces
(small). Standard version

f(x)

m(x) :==max x;, f(x):= [exl_m(x) exB_m(x)] , L(x):= Zf(x);-, softmax(x) := 1G)

*Tiling version: two components (can extend)

m(x) = m([x® x@]) = max(m(x), m(x@)), f(x) = [N fx D) D) f(x2) |

t(x) =£([x(l) x(Z)]) — em(x(ﬂ)—m(x)g(x(l)) + em(x@))—m(x){)(x(Z)), softmax(x) =);((x)) |
X

Flash Attention: Recomputing

Will use two tricks for higher efficiency
*Tiling and re-computing.

How do we avoid writing and reading from HBM?
* A: don’t load the whole thing, use custom tiling and save the pieces

“Tiling enables us to implement our algorithm in one CUDA kernel,
loading input from HBM, performing all the computation steps
(matrix multiply, softmax, optionally masking and dropout, matrix
multiply), then write the result back to HBM (masking and dropout in
Appendix B). This avoids repeatedly reading and writing of inputs and
outputs from and to HBM.”

Don’t we need to store full S, P for backwards pass, anyway?
* A: No! Can recompute on the fly S, P on the fly

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
*Tiling and re-computing.

What’s the tradeoff?

*Using tiling and computing/re-computing things normally
trades off memory consumption for speed

*But... by reducing memory consumption, we can stick to fast
memory only

* And this makes us much faster
* So no tradeoff at all (except for needing custom CUDA kernels ©)

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
*Tiling and re-computing.

Results:
Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0%)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*Classic centralized distributed training

* Synchronize each local gradient update
* Send synchronized vector back to each node (lots of

communication!)
@ Central Server

PR TN

Computation Nodes

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*This is by itself impossible (each node can’t handle full model
for large models)

*Need further parallelism:
* Data: each node sees a different slice of data
* Weights/tensors: chunks so no GPU sees whole model

* Pipeline: only a few layers per GPU EZIQZ; e -
*Great resource: A T

https://huggingface.co/blog/bloom-megatron-deepspeed

time. Bottom: GPipe

.,i?_,;f.\ T T L

Break & Questions

Outline

eStart Efficient Inference

*Speculative decoding, early-exit strategies, Flash
decoding

Efficient Inference

Sj | | . . TASK M, TEMP v o SPEED
Imilar goa tO tralnlng ENDE T5-SMALL % 0 7 0.75 3.4X
*(Gains are more visible ENDE T5-BASE 0 7 08 28X

Leviathan et al ‘23

Many different approaches. We'll talk about two:

*Speculative decoding
* Inspired by speculative execution in computer architecture

* Adaptive language modeling
* Inspired by early termination methods in ML

Speculative Decoding: Idea

What's slow in autoregressive generation?

*Have to wait for a token to be generated before generating
the next token

If we're not generating, not slow---can compute probabilities
quickly
*Processing the fixed prompt can be reasonably fast

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Speculative Decoding: Idea

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Problem: what if the generated tokens have different
probabilities?

*Can reject new ones

*Can run multiple of these in parallel, increase the chances
we’ll find something we want.

Speculative Decoding: Example

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

*Green: accepted, red: rejected, blue: original LM.
* Each line is one iteration of speculative decoding.

[START] japan s benchmark bend n

[START] japan s benchmark nikkei 22 ;3

[START] japan ' s benchmark EEEEEE 225 iﬂgff rose 22 -6

[START], japan | § benchmark nikkei 225 index rose 226 . 69 ; points

[START] japan ; § benchmark nikkei 225 index rose 226 69 points , or © 1

[START], japan s benchmark nikkei 225 index rose 226 . 69 points , or 1. 5 percent , to 10 , 9559

[START] japan ! 5 benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10, 989 79 : in

[START] japan s benchmark nikkei 225 index rose 226 . 69 points , or 1. 5 percent , to 10 , 989 . 79 in tokyo late

[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in late morning trading

Leviathan et al ‘23

H——H —H ——— —— —H H — —— H — H H H —m— H — — H —H H — —

. [END]

Speculative Decoding: Algorithm

Algorithm:

*M, original model, M, small
model (efficient)

*Generate y parallel paths with M,

*Check what was accepted
* Adjust if needed
e Sample from “adjusted” distribution

*Generate one more token from

M,

Algorithm 1 SpeculativeDecodingStep

Inputs: M,, M,, prefiz.
> Sample v guesses x;
fori=1toydo

QZ(m) A MQ(prefix + [3:1: s :mi—ll)

z; ~ ()
end for
> Run M), in parallel.
P1(), ..., Py (x)

My(prefiz),..., Mp(prefiz + [21,...,2,])

> Determine the number of accepted guesses n.
r ~U(0,1),...,7y ~U(0,1)
nemin({i—1]1<i<vy,r>22VY0{y))

gi(x)
> Adjust the distribution from M, if needed.

P'(z) < pnt1(z)
if n <~y then

p'(z) < norm(maz(0, pn+1(2) = gn+1(2)))
end if
> Return one token from M, and n tokens from M,,.
t~p'(z)
return prefiz + [z1,...,Zy, t]

~ from M, autoregressively.

.....

Speculative Decoding: Results

Some sample results:

TASK M, TEMP vy o SPEED
ENDE T5-SMALL % 0 7 0.75 3.4X
ENDE TS5-BASE 0 7 0.8 2.8X
ENDE TS-LARGE 0 7 0.82 1.7X
ENDE T5-SMALL % 1 7 0.62 2.6X
ENDE TS5-BASE 1 5 0.68 2.4X
ENDE TS-LARGE 1 3 0.71 1.4X

Note: lots of extensions!
 What kind of generation "paths” should we use?

Adaptive Language Modeling

Basic idea: make predictions based on = rem) e m—m e e
earlier layers

e When it is safe to do so.

e Goal: introduce constraints and
ensure these are satisfied,

* Textual consistency

.RiSk Consistency [__FIFA || confirms | [final “ willbe | | December | | 18 L[2022
_J

_—
-

,
_ "
)

_ l

@_.

Schuster et al ‘22

Sl GaC R E S

K :i'-"‘_;" '.7 ‘-. A . “;—I‘—‘Xf‘
. T -

Thank You!

	Slide 1: CS 839: Foundation Models Efficient Training
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: RL Outside of Alignment
	Slide 6: Back to RL: PPO Details
	Slide 7: PPO to GRPO
	Slide 8: GRPO/DeepSeek R1 Rewards
	Slide 9: Strong Performance on Math
	Slide 10: And Physics
	Slide 11: Break & Questions
	Slide 12: Outline
	Slide 13: Training Foundation Models: Scale
	Slide 14: Training Foundation Models: GPU Usage
	Slide 15: Flash Attention
	Slide 16: Flash Attention: Basic Idea
	Slide 17: Flash Attention: Tiling
	Slide 18: Flash Attention: Recomputing
	Slide 19: Flash Attention: Tradeoffs?
	Slide 20: Flash Attention: Tradeoffs?
	Slide 21: Training Foundation Models: Parallelization
	Slide 22: Training Foundation Models: Parallelization
	Slide 23: Break & Questions
	Slide 24: Outline
	Slide 25: Efficient Inference
	Slide 26: Speculative Decoding: Idea
	Slide 27: Speculative Decoding: Idea
	Slide 28: Speculative Decoding: Example
	Slide 29: Speculative Decoding: Algorithm
	Slide 30: Speculative Decoding: Results
	Slide 31: Adaptive Language Modeling
	Slide 32: Thank You!

