S 839: Foundation Models
Efficient Inference

Fred Sala

University of Wisconsin-Madison

Oct. 14, 2025

Announcements

*Logistics:
*Homework 2 in progress.
*Sign up for presentations!
*Project information coming out shortly.

s T

Thursday Oct. 16 Evaluation
Tuesday Oct. 21 Agents
Thursday Oct. 23 More Reasoning

Tuesday Oct. 28 Multimodal Models

Outline

*Efficient Training Review

*Scale, memory optimization (FlashAttention),
parallelism, heterogenous training

*Efficient Inference

*Speculative decoding, early-exit strategies, Medusa
decoding

Training Foundation Models: Scale

Llama family of models,

*“we estimate that we used 2048 A100-80G8B for a period of
approximately 5 months to develop our models”

OPT (Open Pre-trained Transformers),
*“training OPT-175B on 992 80GB A100 GPUs”

GPU Type GPU th.i'er GPU-hours Total pmai'&r Carbon emitted
consumption consumption (tCO2eq)
OPT-175B A100-B80GB 400W 809,472 356 MWh 137
BLOOM-175B A100-830GB 400W 1,082,880 475 MWh 183
LLaMA-7B A100-830GB 400W 82,432 36 MWh 14
LLaMA-13B A100-830GB 400W 135,168 539 MWh 23
LLaMA-33B A100-80GB 400W 530,432 233 MWh 90
LLaMA-65B A100-830GB 400W 1,022,362 449 MWh 173

Touvron et al, 23

Flash Attention

: 19 TB/s (20 MB)

Idea for FlashAttention
Different kinds of GPU memory

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

* Fast: on-chip SRAM

e But very little of this: 192KB for each of ~100 processors for an A100 (20MB)
Slow(er): HBM

* But lots: 40-80GB for an A100

*Goal: use fast as much as possible, avoid moving to HBM

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency
*Tiling and re-computing.

Results:
Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface [87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0%)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*Classic centralized distributed training

* Synchronize each local gradient update
* Send synchronized vector back to each node (lots of

communication!)
@ Central Server

PR TN

Computation Nodes

Training Foundation Models: Parallelization

Traditional approach is to distribute training loads

*This is by itself impossible (each node can’t handle full model
for large models)

*Need further parallelism:
* Data: each node sees a different slice of data
* Weights/tensors: chunks so no GPU sees whole model

* Pipeline: only a few layers per GPU EZIQZ; e -
*Great resource: A T

https://huggingface.co/blog/bloom-megatron-deepspeed

time. Bottom: GPipe

.,i?_,;f.\ T T L

Break & Questions

Outline

eStart Efficient Inference

*Speculative decoding, early-exit strategies, Flash
decoding

Efficient Inference

Sj | | . . TASK M, TEMP v o SPEED
Imilar goa tO tralnlng ENDE T5-SMALL % 0 7 0.75 3.4X
*(Gains are more visible ENDE T5-BASE 0 7 08 28X

Leviathan et al ‘23

Many different approaches. We'll talk about two:

*Speculative decoding
* Inspired by speculative execution in computer architecture

* Adaptive language modeling
* Inspired by early termination methods in ML

Speculative Decoding: Idea

What's slow in autoregressive generation?

*Have to wait for a token to be generated before generating
the next token

If we're not generating, not slow---can compute probabilities
quickly
*Processing the fixed prompt can be reasonably fast

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Speculative Decoding: Idea

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

Problem: what if the generated tokens have different
probabilities?

*Can reject new ones

*Can run multiple of these in parallel, increase the chances
we’ll find something we want.

Speculative Decoding: Example

Idea: what if we use a more efficient model for token
generation, and then check to see it’s OK with original model?

*Green: accepted, red: rejected, blue: original LM.
* Each line is one iteration of speculative decoding.

[START] japan s benchmark bend n

[START] japan s benchmark nikkei 22 ;3

[START] japan ' s benchmark EEEEEE 225 iﬂgff rose 22 -6

[START], japan | § benchmark nikkei 225 index rose 226 . 69 ; points

[START] japan ; § benchmark nikkei 225 index rose 226 69 points , or © 1

[START], japan s benchmark nikkei 225 index rose 226 . 69 points , or 1. 5 percent , to 10 , 9559

[START] japan ! 5 benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10, 989 79 : in

[START] japan s benchmark nikkei 225 index rose 226 . 69 points , or 1. 5 percent , to 10 , 989 . 79 in tokyo late

[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in late morning trading

Leviathan et al ‘23

H——H —H ——— —— —H H — —— H — H H H —m— H — — H —H H — —

. [END]

Speculative Decoding: Algorithm

Algorithm:

*M, original model, M, small
model (efficient)

*Generate y tokens with M,

*Check what was accepted
* Adjust if needed (i.e., if there was a
rejection)
e Sample from “adjusted” distribution

*Generate one more token from

M,

Algorithm 1 SpeculativeDecodingStep

Inputs: M,, M,, prefiz.
> Sample v guesses x;
fori=1toydo

QZ(m) A MQ(prefix + [3:1: s :mi—ll)

z; ~ ()
end for
> Run M), in parallel.
P1(), ..., Py (x)

My(prefiz),..., Mp(prefiz + [21,...,2,])

> Determine the number of accepted guesses n.
r ~U(0,1),...,7y ~U(0,1)
nemin({i—1]1<i<vy,r>22VY0{y))

gi(x)
> Adjust the distribution from M, if needed.

P'(z) < pnt1(z)
if n <~y then

p'(z) < norm(maz(0, pn+1(2) = gn+1(2)))
end if
> Return one token from M, and n tokens from M,,.
t~p'(z)
return prefiz + [z1,...,Zy, t]

~ from M, autoregressively.

.....

Speculative Decoding: Results

Some sample results:

TASK M, TEMP vy o SPEED
ENDE T5-SMALL % 0 7 0.75 3.4X
ENDE TS5-BASE 0 7 0.8 2.8X
ENDE TS-LARGE 0 7 0.82 1.7X
ENDE T5-SMALL % 1 7 0.62 2.6X
ENDE TS5-BASE 1 5 0.68 2.4X
ENDE TS-LARGE 1 3 0.71 1.4X

Note: lots of extensions!

*Q: what kind of smaller models should we use?
Tradeoffs!

* Smaller is faster, but reject more often. Bigger, less rejections,
but smaller gains.

Adaptive Language Modeling

Basic idea: make predictions based on = rem) e m—m e e
earlier layers

e When it is safe to do so.

e Goal: introduce constraints and
ensure these are satisfied,

* Textual consistency

.RiSk Consistency [__FIFA || confirms | [final “ willbe | | December | | 18 L[2022
_J

_—
-

,
_ "
)

_ l

@_.

Schuster et al ‘22

Parallelizing Decoding

“Medusa Decoding”

* Multiple heads, run in ,
parallel [o] >{Mp: lPAd]
* Goal: Get around the fact T / \ |
that we have to wait for each | — __— e el =
token to be generated _ } o Mot tiond2 Il ot o
* |nstead, each extra head [Embedding | | [ltiedusaieadd ¥ notdifieutta |
guesses a future token set S S P e e
* Then assemble into a full Input Candidates / Single step prediction
sequence -> decode multiple Bﬂﬁ%i?ﬂb}{é&ﬁ%&“ 1*{ ts it }

tokens at once

Caietal 24

Sl GaC R E S

K :i'-"‘_;" '.7 ‘-. A . “;—I‘—‘Xf‘
. T -

Thank You!

	Slide 1: CS 839: Foundation Models Efficient Inference
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Training Foundation Models: Scale
	Slide 5: Flash Attention
	Slide 6: Flash Attention: Tradeoffs?
	Slide 7: Training Foundation Models: Parallelization
	Slide 8: Training Foundation Models: Parallelization
	Slide 9: Break & Questions
	Slide 10: Outline
	Slide 11: Efficient Inference
	Slide 12: Speculative Decoding: Idea
	Slide 13: Speculative Decoding: Idea
	Slide 14: Speculative Decoding: Example
	Slide 15: Speculative Decoding: Algorithm
	Slide 16: Speculative Decoding: Results
	Slide 17: Adaptive Language Modeling
	Slide 18: Parallelizing Decoding
	Slide 19: Thank You!

