

CS 839: Foundation Models **Efficient Inference**

Fred Sala

University of Wisconsin-Madison

Oct. 14, 2025

Announcements

- **Logistics:**

- Homework 2 in progress.
- **Sign up for presentations!**
- Project information coming out shortly.

- **Class roadmap:**

Tuesday Oct. 14	Efficient Inference
Thursday Oct. 16	Evaluation
Tuesday Oct. 21	Agents
Thursday Oct. 23	More Reasoning
Tuesday Oct. 28	Multimodal Models

Outline

- **Efficient Training Review**
 - Scale, memory optimization (FlashAttention), parallelism, heterogenous training
- **Efficient Inference**
 - Speculative decoding, early-exit strategies, Medusa decoding

Training Foundation Models: Scale

Llama family of models,

- “*we estimate that we used 2048 A100-80GB for a period of approximately 5 months to develop our models*”

OPT (Open Pre-trained Transformers),

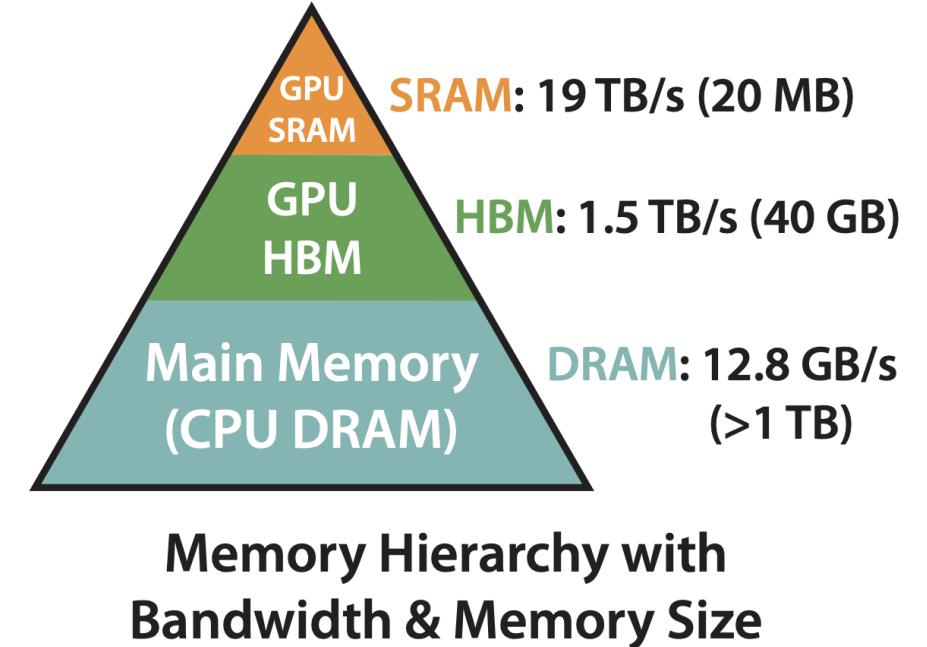
- “*training OPT-175B on 992 80GB A100 GPUs*”

	GPU Type	GPU Power consumption	GPU-hours	Total power consumption	Carbon emitted (tCO ₂ eq)
OPT-175B	A100-80GB	400W	809,472	356 MWh	137
BLOOM-175B	A100-80GB	400W	1,082,880	475 MWh	183
LLaMA-7B	A100-80GB	400W	82,432	36 MWh	14
LLaMA-13B	A100-80GB	400W	135,168	59 MWh	23
LLaMA-33B	A100-80GB	400W	530,432	233 MWh	90
LLaMA-65B	A100-80GB	400W	1,022,362	449 MWh	173

Flash Attention

Idea for FlashAttention

- Different kinds of GPU memory



- Fast: on-chip SRAM
 - But very little of this: 192KB for each of ~100 processors for an A100 (20MB)
- Slow(er): HBM
 - But lots: 40-80GB for an A100
- **Goal:** use fast as much as possible, avoid moving to HBM

Flash Attention: Tradeoffs?

Will use two tricks for higher efficiency

- Tiling and re-computing.

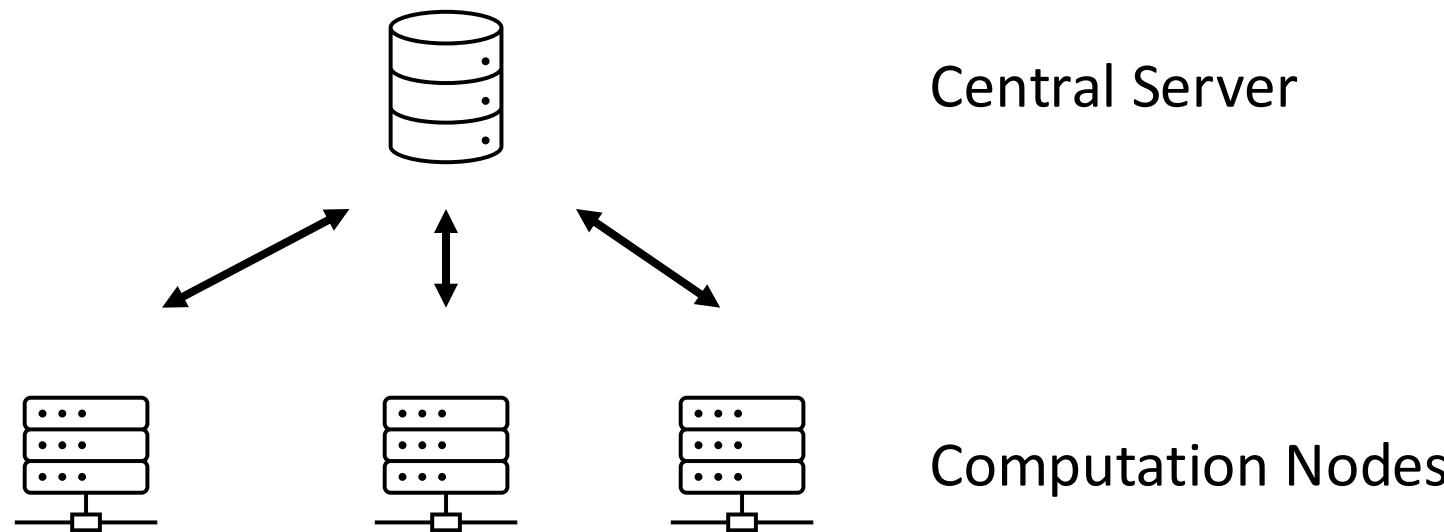
Results:

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	9.5 days (1.0x)
GPT-2 small - Megatron-LM [77]	18.2	4.7 days (2.0x)
GPT-2 small - FLASHATTENTION	18.2	2.7 days (3.5x)
GPT-2 medium - Huggingface [87]	14.2	21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77]	14.3	11.5 days (1.8x)
GPT-2 medium - FLASHATTENTION	14.3	6.9 days (3.0x)

Training Foundation Models: Parallelization

Traditional approach is to **distribute** training loads

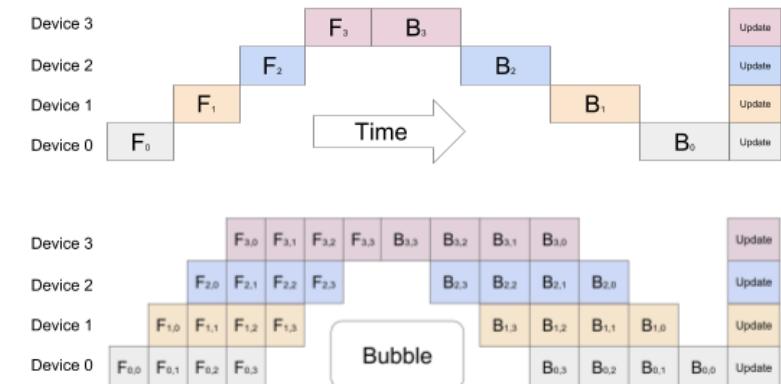
- Classic centralized distributed training
 - Synchronize each local gradient update
 - Send synchronized vector back to each node (lots of communication!)



Training Foundation Models: Parallelization

Traditional approach is to **distribute** training loads

- This is by itself impossible (each node *can't* handle full model for large models)
- Need further parallelism:
 - **Data**: each node sees a different slice of data
 - **Weights/tensors**: chunks so no GPU sees whole model
 - **Pipeline**: only a few layers per GPU
- **Great resource**:
<https://huggingface.co/blog/bloom-megatron-deepspeed>



Top: The naive model parallelism strategy leads to severe underutilization due to the sequential nature of the network. Only one accelerator is active at a time. Bottom: GPipe divides the input mini-batch into smaller micro-batches, enabling different accelerators to work on separate micro-batches at the same time.

Break & Questions

Outline

- **Finish Up Last Time**

- RL training, RLVR, GRPO, datasets

- **Efficient Training**

- Scale, memory optimization (FlashAttention), parallelism, heterogenous training

- **Start Efficient Inference**

- Speculative decoding, early-exit strategies, Flash decoding

Efficient Inference

Similar goal to training

- Gains are more visible

TASK	M_q	TEMP	γ	α	SPEED
ENDe	T5-SMALL ★	0	7	0.75	3.4X
ENDe	T5-BASE	0	7	0.8	2.8X

Leviathan et al '23

Many different approaches. We'll talk about two:

- **Speculative decoding**
 - Inspired by speculative execution in computer architecture
- **Adaptive language modeling**
 - Inspired by early termination methods in ML

Speculative Decoding: Idea

What's slow in autoregressive generation?

- Have to wait for a token to be generated before generating the next token

If we're not *generating*, not slow---can compute probabilities quickly

- Processing the fixed prompt can be reasonably fast

Idea: what if we use a more efficient model for token generation, and then check to see it's OK with original model?

Speculative Decoding: Idea

Idea: what if we use a more efficient model for token generation, and then check to see it's OK with original model?

Problem: what if the generated tokens have different probabilities?

- Can reject new ones
- Can run multiple of these in parallel, increase the chances we'll find something we want.

Speculative Decoding: Example

Idea: what if we use a more efficient model for token generation, and then check to see it's OK with original model?

- Green: accepted, red: rejected, blue: original LM.
 - Each line is one iteration of speculative decoding.

```
[START] japan ' s benchmark bond n
[START] japan ' s benchmark nikkei 22 75
[START] japan ' s benchmark nikkei 225 index rose 22 76
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 7 points
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 0 1
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 9859
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 7 in
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in tokyo late
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in late morning trading . [END]
```

Speculative Decoding: Algorithm

Algorithm:

- M_p original model, M_q small model (efficient)
- Generate γ tokens with M_q
- Check what was accepted
 - Adjust if needed (i.e., if there was a rejection)
 - Sample from “adjusted” distribution
- Generate one more token from M_p

Algorithm 1 SpeculativeDecodingStep

Inputs: $M_p, M_q, prefix$.

▷ Sample γ guesses $x_{1,\dots,\gamma}$ from M_q autoregressively.

for $i = 1$ **to** γ **do**

$q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])$

$x_i \sim q_i(x)$

end for

▷ Run M_p in parallel.

$p_1(x), \dots, p_{\gamma+1}(x) \leftarrow$

$M_p(prefix), \dots, M_p(prefix + [x_1, \dots, x_\gamma])$

▷ Determine the number of accepted guesses n .

$r_1 \sim U(0, 1), \dots, r_\gamma \sim U(0, 1)$

$n \leftarrow \min(\{i - 1 \mid 1 \leq i \leq \gamma, r_i > \frac{p_i(x)}{q_i(x)}\} \cup \{\gamma\})$

▷ Adjust the distribution from M_p if needed.

$p'(x) \leftarrow p_{n+1}(x)$

if $n < \gamma$ **then**

$p'(x) \leftarrow \text{norm}(\max(0, p_{n+1}(x) - q_{n+1}(x)))$

end if

▷ Return one token from M_p , and n tokens from M_q .

$t \sim p'(x)$

return $prefix + [x_1, \dots, x_n, t]$

Speculative Decoding: Results

Some sample results:

TASK	M_q	TEMP	γ	α	SPEED
ENDE	T5-SMALL ★	0	7	0.75	3.4X
ENDE	T5-BASE	0	7	0.8	2.8X
ENDE	T5-LARGE	0	7	0.82	1.7X
ENDE	T5-SMALL ★	1	7	0.62	2.6X
ENDE	T5-BASE	1	5	0.68	2.4X
ENDE	T5-LARGE	1	3	0.71	1.4X

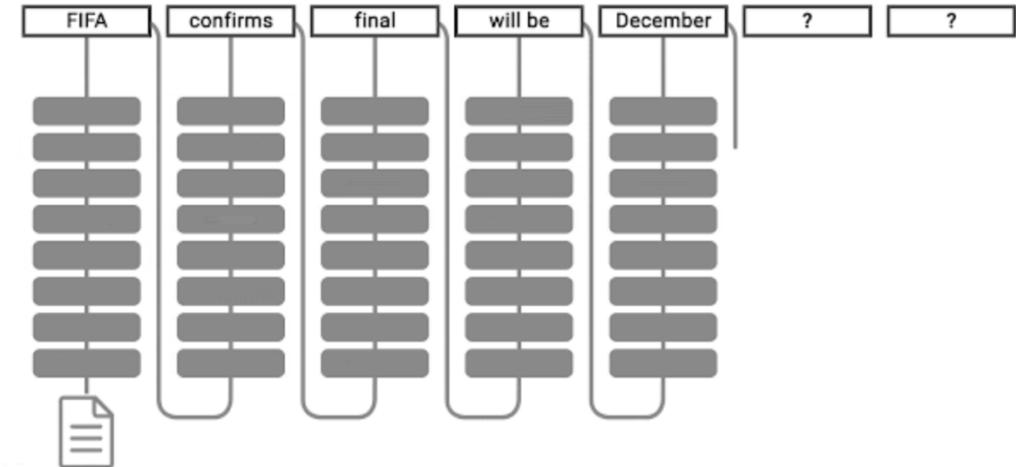
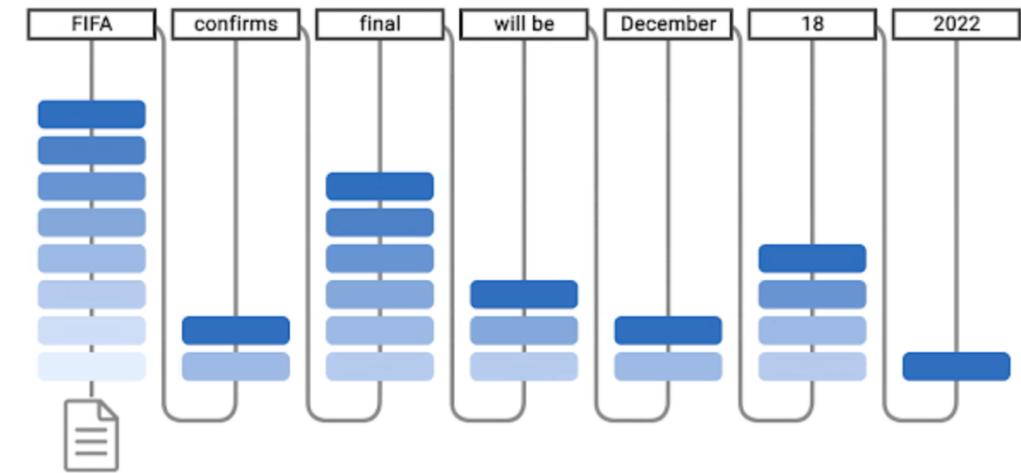
Note: lots of extensions!

- Q: what kind of smaller models should we use?
Tradeoffs!
 - Smaller is faster, but reject more often. Bigger, less rejections, but smaller gains.

Adaptive Language Modeling

Basic idea: make predictions based on earlier layers

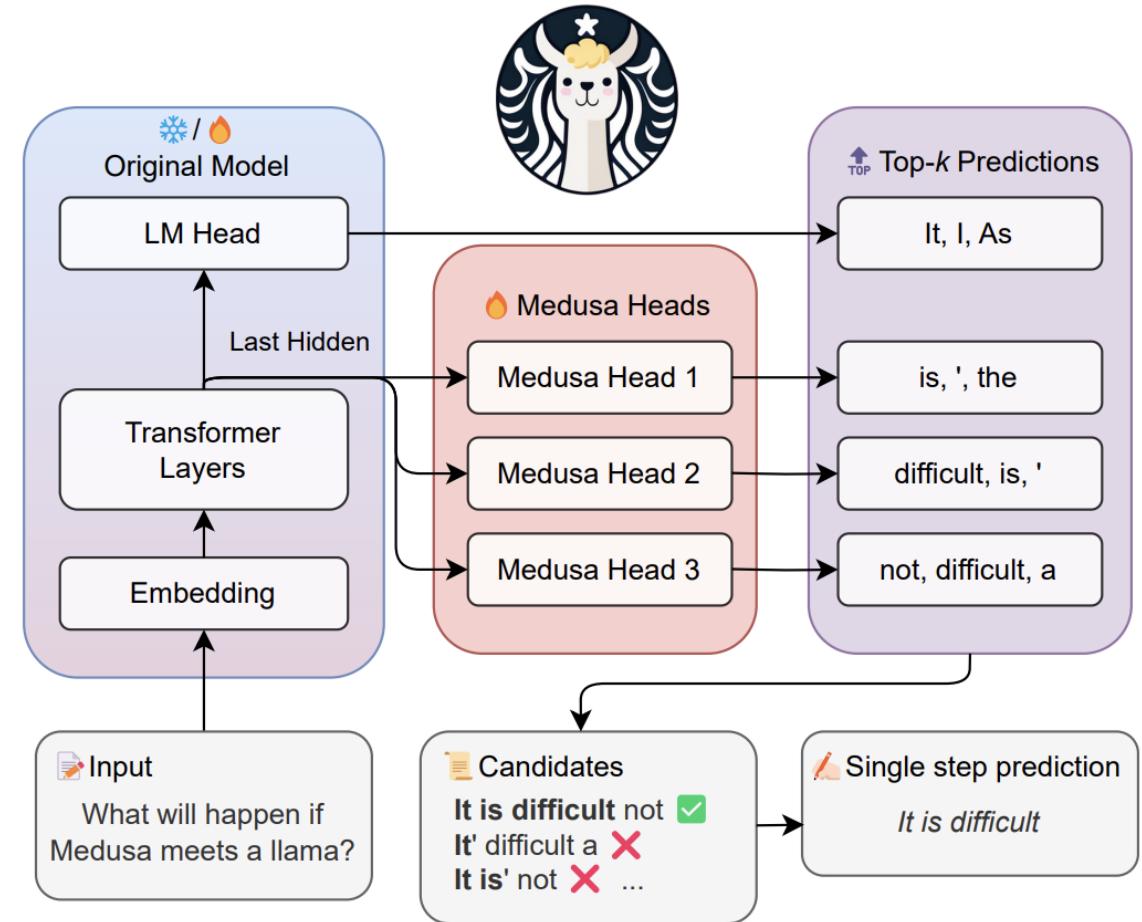
- When it is safe to do so.
- Goal: introduce constraints and ensure these are satisfied,
 - Textual consistency
 - Risk consistency



Parallelizing Decoding

“Medusa Decoding”

- Multiple heads, run in parallel
- Goal: Get around the fact that we have to wait for each token to be generated
 - Instead, each extra head guesses a future token set
 - Then assemble into a full sequence -> decode multiple tokens at once



Thank You!