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Announcements

•Logistics: Homework 2 Due Today

•Presentations: Most have signed up---thank you!

•Project information: Coming out this week

•Class roadmap:

Tuesday Oct. 21 Agents

Thursday Oct. 23 More reasoning

Tuesday Oct. 28 Multimodal models

Thursday Oct. 30 Scaling Las



Outline

•Introduction to LLM-Powered Agents
•Motivation, Goals, Differences vs classical agents / 
standard LMs, overall architecture and key components

• Multiagent Systems
•Motivation, simulations, architectures and design, 
communication

•Evaluation and Challenges
•New benchmarks, realism, open problems
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Motivation: From LLMs To Agents

Standard LLMs are static

•But we want interactive systems
•Want systems that can reason, use 

tools, and act autonomously 
•Want FMs that can be actors, not 

just predictors

•Useful survey: Wang et al ‘25 
“Large Language Model Agent: A 
Survey on Methodology"



Pre-LLMs: Classical Agent Models

Much of this work predates FMs/LLMs,

•A common framework: PEAS (Performance, 
Environment, Actuators, Sensors)

•Agent types: 
•Reactive, deliberative, hybrid

•Reinforcement learning is a standard paradigm for 
agents
•Convenient since we already use it for LLMs



Agents vs. Models

Key differences:

•Models: static mappings (i.e., input-output pair)

•Agents: lots of additional possibilities:
•Act, observe, remember, adapt

•The advantage of LLMs to power agents is their
•Flexible interfaces,
•Reasoning capabilities 



Architecture of LLM-Powered Agents

High-level components: input, memory, planner, tools, 

•Input: whatever we have access to

•Memory: as simple as context window, but 

•Planning: reasoning-based decomposition etc

•Tools: similar to our earlier discussion on integrating tool use



Memories

Interactive agents require the use of memory 

•I.e., we need to store state/other useful information

•Simplest approach: use LLM context window as the memory 
• Increasingly tractable with very long-context windows

•Previously, had to create memory systems
•E.g., MemGPT (Packer et al ‘24)



Interlude: Long Context Windows

•Simplest approach: use LLM context window as the memory 
• Increasingly tractable with very long-context windows

•Note that the advertised long context may not be realistic!

•Liu et al ‘23 (“Lost in the Middle: How Language Models Use 
Long Contexts”) 

•Needle-in a haystack benchmarks
•Numerous variants 



Reasoning and Planning

Classic AI problem (decompose 
task, plan)

•Addressable via reasoning 
capabilities of LLMs, 
• Including older methods: chain-of-

thought, tree-of-thoughts, self-
reflection
•Example: ReAct (Reason + Act) 

(Yao et al ‘23)



Tool Use

Standard component in agentic settings

•Where do we get tools? 
•APIs, web search, etc
•Or, in some cases use of physical tools

•Most agent frameworks permit the use of web/code-based 
tools

•Major challenge: tool usage is noisy



Tool Noise/Uncertainty

Lots of sources of error,

•Call the wrong tool, interpret output incorrectly, fail to chain 
together tools in the right way

•Ex: Agentic Insurance Underwriting Benchmark

 “Tool use errors: Across models, including top performers, 
agents made at least one tool call error in 36% of the 
conversations despite access to the metadata required to 
use tools properly.”

https://huggingface.co/datasets/snorkelai/Multi-Turn-Insurance-Underwriting



Creating New Tools

Note that LLMs can both use & create tools

•For example, LATM (Cai ‘24)

•Powerful model

tool creator, less 

powerful is user



Break & Questions
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Multi-Agent Systems

One advantage of agentic approach: can create multiple 
agents that cooperate to perform tasks. Why?

•Scale up workers, permit specialization

•Of course, inspired by earlier work,
•Pre-LLM agent networks called “swarms”,
•And distributed computing more broadly

•Also useful for simulations
•Park et al ‘23



Interlude: Societal Simulations

Popular new area,

•Difficult to perform large-scale studies of human behavior,

•Try to set up a simulation of how humans interact via agents

Park et al ‘23



Interlude: Societal Simulations

Popular new area,

•Try to set up a simulation of how humans interact via agents

•Itself a large multi-agent system: must tackle each of the 
design questions



Multi-Agent Systems: Architectures

Lots of design choices to make!

•For example, centralized vs. decentralized 

•Centralized: typically an “orchestrator” present that can tell 
other agents what to do. 

Microsoft



Architecture Search

Lots of design choices to make!

•Can borrow principles from neural architecture search to 
construct an overall agent architecture 

•Example: Zhang et al ‘25, “Multi-agent Architecture Search 
via Agentic Supernet”



Multi-Agent Systems: Communication

Critical: each agent has access to 
information that is consistent with 
others,

•But communicating everything 
between every pair of users is 
expensive. 

•Nice blog on the challenges: 
“Don’t Build Multi-Agents” (Yan 
’25 / Cognition)
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Evaluation and Benchmarks

As we discussed, lots of complexity to evaluating LLMs/FMs in 
general, and agentic systems in particular

•Typically cannot just compute accuracy on predictions,

•More broadly, static metrics are not informative enough. 
Instead, measure several:
•Task completion, 
•Efficiency, 
•Safety,
•Cost

https://the-agent-company.com/#/leaderboard



Evaluation and Benchmarks

Lots of popular benchmarks from 2023 onwards

•Already talked about: WebArena, SWE-Bench

•AgentBench (Liu et al ‘24):



Benchmark Realism

Increasingly important: how meaningful are the agentic tasks?

•Good performance on trivial/unrealistic tasks is not useful

•Example: “The Agent Company” (Xu et al ‘24)

 



Major Challenges

What’s left to study? Some examples:

•How do we scale up memories?

•Personalization for agents 

•Reliable tool use across environments

•Self-evolving/self-improving systems



Thank You!
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