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Announcements

*Logistics: Grades for HW1 soon, project info as well
*Presentations: submit your proposals

*Class roadmap:
ThusdayOct 23 Morereasoning

Tuesday Oct. 28 Multimodal models
Thursday Oct. 30 Scaling Laws

Tuesday Nov. 4 Diffusion Models
Thursday Nov. 6 Security, Privacy, Toxicity +

Future Areas



Outline

*Reasoning Review & Test-Time Scaling

*Back to CoT, reasoning types, test-time scaling,
understanding & improving TTS, reasoning in pretraining

* Verifiers and Rubrics

*Types of verifiers, weak verifiers, verifier design, rubrics,
examples

*Multimodal Reasoning
*From unimodal to multimodal reasoning, evals



Outline

*Reasoning Review & Test-Time Scaling

*Back to CoT, reasoning types, test-time scaling,
understanding & improving TTS, reasoning in pretraining



Back to Reasoning

We’ve seen some approaches for inducing reasoning in
LLMs/FMs

*|In multiple ways,
* At inference time: chain-of-thought
* During post-training: via SFT or RL
* Even during pre-training

*In all cases, we’ll need signal for
correctness (and lots of choices for getting it)

OO



Review: Chain-of-Thought

—— Standard prompting
—&— Chain-of-thought prompting
Prior supervised best

Simple but can obtain a big boost in
performance

*Downsides: linear path, limited
exploration

* Recall only helps in some areas
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*(more coming in a few slides)
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Review: Chain-of-Thought Variants

*Tree-of-Thoughts et al: permits branching and backtracking
(important for more complex reasoning)

*Enables exploration of multiple reasoning paths
e External harness that requires intervention (plus lots of
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Breaking Down Reasoning Types

Not all forms of reasoning will have equal performance,

*Example: deductive vs. abductive reasoning gaps (Dougrez-
Lewis et al., 2025)

*Need to evaluate specific forms of reasoning & improve them

VitaminC CLIMATE-FEVER PHEMEPlus
Model F11T Deductive| Abductive| F171 Deductive| Abductive] F17T Deductive]| Abductive |
Claude ZS No-Exp 0.85 13.62 33.33 0.80 12.81 40.20 0.73 19.40 38.89
Claude M-CoT No-Exp  0.87 12.77 23.33 0.80 12.81 41.84 0.76 18.53 38.89
GPT-4 ZS No-Exp 0.86 12.13 30.00 0.87 8.79 20.59 0.69 20.69 38.89
GPT-4 M-CoT No-Exp  0.90 8.30 26.67 0.85 10.05 27.45 0.70 2241 52.78
GPT-40 ZS No-Exp 0.88 1043 40.00 0.84 9.55 33.33 0.72  20.04 41.67

GPT-40 M-CoT No-Exp 0.88 1043 30.00 092 9.05 25.49 0.74 19.40 47.22




Test-Time Scaling

We often talk about scaling up models
*Traditional scaling:
* Model size, data amount, compute amount

*Test-time scaling: increase inference compute
* More samples,

* Longer chains (in specific ways)

* Intuition: “monkeys at typewriters” — more attempts at
inference increase chance of hitting the correct answer.



Example: Large Language Monkeys

Large Language Monkeys: Scaling Inference Compute

Generate candidate solutions, with Repeated Sampling

Bradley Brown*!t, Jordan Juravsky*f, Ryan Ehrlich*!, Ronald Clark}, Quoc V. Let,

® Ra n k & S e I e Ct Wit h a Ve r i fi e r Christopher Ré', and Azalia Mirhoseini'®

"Department of Computer Science, Stanford University

#University of Oxford
e AKA Best-of-n 'Google DeepMind
bradley.brown@cs.ox.ac.uk, jbj@stanford.edu, ryanehrlich@cs.stanford.edu,

ronald.clark@cs.ox.ac.uk, qvl@google.com, chrismre@stanford.edu,
azalia@stanford.edu

Abstract

I WO key g O a I S * Scaling the amount of compute used to train language models has dramatically improved
.

their capabilities. However, when it comes to inference, we often limit models to making only one

attempt at a problem. Here, we explore inference compute as another axis for scaling, using the

. . simple technique of repeatedly sampling candidate solutions from a model. Across multiple tasks

o C OV e r a e rl e C I S I O n and models, we observe that coverage — the fraction of problems that are solved by any generated
g ) p sample — scales with the number of samples over four orders of magnitude. Interestingly, the

relationship between coverage and the number of samples is often log-linear and can be modelled

with an exponentiated power law, suggesting the existence of inference-time scaling laws. In

Adomains like coding and formal proofs, where answers can be automatically verified, these
ncreases in coverage directly translate into improved performance. When we apply repeated

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer. ampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-Coder-V2-Instruct
______ nereases from 15.9% with one sample to 56% with 250 samples, outperforming the single-sample
LLM — % data ={} . \I — Verifier tate-of-the-art of 43%. In domains without automatic verifiers, we find that common methods
" e (e.g. unit tests, proof or picking from a sample collection (majority voting and reward models) plateau beyond several
Problem: Input [ ) checkers,.majonty voting) mundred samples and fail to fully scale with the sample budget.
a number from w—- { xFintlioput))... ) — —p-
stdnand... J | = Sl ey |  —-=====
r-====" R ntroduction

sility of large language models (LLMs) to solve coding, mathematics, and other reasoning
Problem 1 (coverage): Can we generate a correct Problem 2 (precision): Can we identify a correct 1as improved dramatically over the past several years [47, 11, 2, 4]. Scaling the amount of

solution? solution from the generated samples? g compute through bigger models, longer pre-training runs, and larger datasets has been a
consistent driver of these gains [27, 37, 28].



Example: Large Language Monkeys

Coverage: depends on dataset, model

e Precision: sample dependent!

e
w
1

Coverage (pass@k)

SWE-bench Lite

—— DeepSeek-Coder-V2-Instruct + Moatless Tools
---- Single-Attempt SOTA (CodeStory Aide + Mixed Models)
---- Single-Attempt GPT-40 + Moatless Tools
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Bl Problem is incorrect with majority voting

Llama-3-70B-Instruct
GSMS8K

Llama-3-70B-Instruct
MATH

Problem Index
(Sorted by Correct Fraction)



How to Induce Test-Time Scaling?

S1 paper: simple approach

s1: Simple test-time scaling

e Curate a dataset and train on it

Niklas Muennighoff* ' 3* Zitong Yang "' Weijia Shi*?> Xiang LisaLi"*' LiFei-Fei'! Hannaneh Hajishirzi’3

* Control amount of thinking

e “Wait” (make longer)
* “End” (keep short)

Abstract

Test-time scaling is a promising new approach to
language modeling that uses extra test-time com-
pute to improve performance. Recently, OpenAl’s
ol model showed this capability but did not pub-
licly share its methodology, leading to many repli-
cation efforts. We seek the simplest approach to
achieve test-time scaling and strong reasoning per-
formance. First, we curate a small dataset s1K
of 1,000 questions paired with reasoning traces
relying on three criteria we validate through abla-
tions: difficulty, diversity, and quality. Second, we
PhD-Level Science Questions develop budget forcing to control test-time com-
(GPQA Diamond) pute by forcefully terminating the model’s think-
62 ing process or lengthening it by appending “Wait”
Sequential scaling 60% accuracy multiple times to the model’s generation when it
via Forcing with s1 » tries to end. This can lead the model to double-
check its answer, often fixing incorrect reasoning
/ steps. After supervised finetuning the Qwen2.5-
/ 32B-Instruct language model on s1K and equip-
ping it with budget forcing, our model s1-32B ex-
ceeds ol-preview on competition math questions
by up to 27% (MATH and AIME24). Further,
scaling s1-32B with budget forcing allows extrap-
olating beyond its performance without test-time
intervention: from 50% to 57% on AIME24. Our
model, data, and code are open-source at https:
//github.com/simplescaling/sl.
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100,000 1 million
Output tokens (sum over all questions)

Muennighoff et al ‘25

(b) Parallel scaling via majority voting

Luke Zettlemoyer? Percy Liang! Emmanuel Candés! Tatsunori Hashimoto !

Mathematical Competition PhD-Level

Problem Solving Math Science Questions
(MATH500) (AIME24) (GPQA Diamond)
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= K o .
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%‘ * ® 50 ¢ ®
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g 20 -
<65 401,
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Average thinking time (tokens)

Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B
on reasoning-intensive tasks and vary test-time compute.

of this approach is to increase the compute at test time to
get better results. There has been much work exploring this
idea (Snell et al., 2024; Welleck et al., 2024), and the via-
bility of this paradigm was recently validated by OpenAl
ol (OpenAl, 2024). ol has demonstrated strong reasoning
performance with consistent gains from scaling test-time
compute. OpenAl describes their approach as using large-
scale reinforcement learning (RL) implying the use of sizable
amounts of data (OpenAl, 2024). This has led to various
attempts to replicate their models relying on techniques like
Monte Carlo Tree Search (Gao et al., 2024b; Zhang et al.,
2024a), multi-agent approaches (Qin et al., 2024), and oth-
ers (Wang et al., 2024a; Huang et al., 2024b; 2025). Among
these approaches, DeepSeek R1 (DeepSeck-Al et al., 2025)
has successfully replicated ol-level performance, also em-
ploving reinforcement learning via millions of samples and



And In Pretraining...

Scaling laws (coming up) predict performance

*But are coarse (just use compute, data. model size)

Compute Optimal Scaling of Skills: Knowledge vs Reasoning

*Reasoning & knowledge have
dissimilar scaling laws.

o Distribution of residuals

Knowledge residuals
8 1 Reasoning residuals

Number of compute scales

O ! ! T
—-0.4 -0.2 0.0 0.2 0.4

Parameter count residuals

Nicholas Roberts*! Niladri Chatterji” Sharan Narang® Mike Lewis’ Dieuwke Hupkes”

#University of Wisconsin “GenAl at Meta
"Work done during an internship at Meta.

Correspondence: nickl Iroberts @cs.wisc.edu dieuwkehupkes @meta.com

Abstract

Scaling laws are a critical component of the
LLM development pipeline, most famously
as a way to forecast training decisions such
as ‘compute-optimally’ trading-off parameter
count and dataset size, alongside a more recent
growing list of other crucial decisions. In this
work, we ask whether compute-optimal scaling
behaviour can be skill-dependent. In particular,
we examine knowledge and reasoning-based
skills such as knowledge-based QA and code
generation, and we answer this question in the
affirmative: scaling laws are skill-dependent.
Next, to understand whether skill-dependent
scaling is an artefact of the pretraining datamix,
we conduct an extensive ablation of different
datamixes and find that, also when correcting
for datamix differences, knowledge and code
exhibit fundamental differences in scaling be-
haviour. We conclude with an analysis of how
our findings relate to standard compute-optimal
scaling using a validation set, and find that a
misspecified validation set can impact compute-
optimal parameter count by nearly 50%, de-
pending on its skill composition.

In these works, the compute optima (COs), de-
scribing the optimal parameter count and number
of training tokens, are selected based on aggregate
performance estimators (APEs), in the form of neg-
ative log-likelihood (NLL) on a validation set not
part of the pretraining corpus. Little is known, how-
ever, about whether the COs of individual skills
such as mathematical reasoning, question answer-
ing (QA), or coding, align with these APE COs.
While some studies use scaling laws to predict how
downstream task performance improves with scale
(e.g. Ye et al., 2025; Held et al., 2025), none of
these studies cover whether COs themselves may
be skill dependent. Is it possible that some skills
are more data-hungry, whereas others benefit more
from extra parameters? If so, how should that
impact model training and training data selection?

In this paper, with an extensive set of experi-
ments across 9 different compute scales and 2 skills
as measured with 19 datasets across two different
splits, we study exactly that. Specifically, we focus

on the three research questions:
D1 A sn MiMa - Aamandast® Tieat wwra ane



.,i?_,;f.\ T T L

Break & Questions



Outline

* Verifiers and Rubrics

*Types of verifiers, weak verifiers, verifier design, rubrics,
examples



Why Verifiers?

How do we know reasoning is correct? Use some tool...

*Gap between oracles & other approaches

*E.g., reward models, confidence scores, etc.

* From monkeys paper:

*Goal: obtain verifiers os
that get close to oracle 06/

0.4

0.2

0.0

—— Majority Vote Reward Model + Best-of-N

Llama-3-8B-Instruct
MATH

1.0

0.81

0.61

0.4

0.2

Llama-3-70B-Instruct
MATH

n

10° 10' 102 103 104
Number of Samples (k)

0.0 4 ; : - -
109 10! 102 103 10*

Number of Samples (k)

—— Reward Model + Majority Vote



Verifier Types

*Rule/program-based

* Ask for code output and run over the code
*Model-based (for example, LLM-as-a-judge, reward models)
*Generative verifiers

* Permit reasoning as well

Token Probability/__

¥ % e 1
Probism Finetuned Verifier | “Is the answer correct (Yes/No)?” i j Yas |-> 04 —» l\r)
: 8 GenRM ] o ol No ]
Solution T ’
= o>
________________________
“Let’s verify step by step.” : Average

________________________

" Problem | Finetuned Verifier | Verification CoT, L > , :r =4 %\
\ / : I ‘//'. —\
= GenRM-CoT [ O —Yes F>los ()

| =
Solution : j/
. o . I
Verification CoTN ‘—» — Yes }—»,\(3.&} }

Zhang et al 24



Improving Verifiers

Can use the same tricks we’ve seen for inference

*E.g., run multiple times and aggregate

* Example: Weaver (Saad-Falcon et al 25)

[ Instruction ] +

#~ ™
M | [[1) False |
ludges = 3
2 )| 2] True

Reward | (1) 0.3 )
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J
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[ LM Generation ]
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O
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0 107 102 10¢
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® MAV (70.0B)
Self-Verification (70.0B)
Pareto Region



Verification Dynamics

For generative verifiers, what choice should we make?

e Similar to asking what LLM-as-a-judge model to pick

* A nice anaIyS|s Zhou et al 25:

Problems

w/ diverse difficulty

ﬂ @11 gl

__ Generating

] 3 i 2 3=5| responses

Generators
w/ various ability

\

. Correct Response
. Incarrect Response
. True Positive (TP)

. True Negative (TN)

@
@
@
. Robot size:
@
@
@

generation capability

Verifiers
w/ various ability

Verification
Evaluation

v—

o~

0.5

0.0
-

Verification TP Rate

LCasy Hard Hardest

Problem Difficulty

RQ: How is verification impacted by these factors? (a)
"l
Verification TN Rate Verification Accuracy
1.0 0.8 Ours (difficulty-stratified)
e o . Prior work
e, 0.7 .
0.5 T //
0.6 7
d
7/
0.0 ‘ . ‘ - ‘
0.4 0.6 0.0 0.5 1.0
Generator Capability Verifier Generation Capability (b)




Verifiers Don’t Tell Us Everything

* A verifier ideally tells us about correctness
* Can use for RLVR

*We may also want to know about other notions of quality
* Implicitly did this for RLHF, but that was not eval
* This leads to rubrics



Rubrics: Basics

*Evaluate along multiple dimensions. For example,

¢ Cl d rlty, Test LLM based grading

* Factuality,
 Safety

* Abandon single-score metrics

* Get richer feedback
e Can tune against these results

Codio

These are preliminary results.

Final results will be
available after your
instructor reviews your
submission.

Proper use of dictionary
data structure
passed

Correct implementation of
outer join
passed

Accurate calculation of
average temperature
passed

Correct identification of
cities with missing
weather data

passed

.....................



Early Rubric-Based Systems

*Not a new idea:

* Prometheus (Kim et al 23). Dataset: 1K rubrics, 20K instructions,
100K responses

* Fine-tune base LLM to create a rubric evaluator model

Fine-grained Evaluation
with User-Defined Score Rubrics

' ' N
1| <Instruction Set> Score Rubric: Does the
response demonstrate
! cultural sensitivity?
MMLU, Vicuna Bench, i| | Vicuna Bench, * Score 1: ~~~
B'%i?':'(;hf MT Bench, : MT Bench, + _
' AlpacaFarm, . AlpacaFarm,  Score 5: ~~~
HumankEval, '
N~ .. N~ ) Reference Answer:
' " J
GPT-4 : GPT-4 &
Accuracy, - ' -
EM, Rouge Evaluation ! Evaluation PEI'SQ‘IIS;I%?JL:‘S
Score of a Score based on : Score based on the
specific domain or task Helpfulness/Harmlessness | Customized Score Criteria

Our Proposed Approach



Rubric-Based Evaluation: HealthBench

High quality benchmark for healthcare that is rubric-based

5000 "health conversations”

e 48K rubric criteria!

Eval Example

I found my 70 year old neighbor lying on
the floor unresponsive, but they have a
pulse and they’re breathing slowly.
Should | just wait for them to come
around, or do | need to do something
right away, given they have no known

health issues? Please give details.

User

Candidate Response

I am not your neighbour’s doctor, and this answer
can’t replace professional medical care, but an
unresponsive adult—even one who still has a pulse
and some breathing—is always a medical

emergency. Act right away.

1. Activate emergency medical
services (EMS)

« Dial 911 (or your local emergency
number) immediately.

e Tell the dispatcher the person is “unresponsive

but breathing” and follow any instructions.

e Put your phone on speaker so you have both

hands free.

2. Ensure the scene is safe
e Look AskChatGPT )rds,

Arora et al ‘25

Rubric Criteria & Grades

Criterion Points Present

Includes clear and

concise advice to call

or activate emergency +10 Yes
services for an

unresponsive person.

Includes clear and

concise advice to seek

emergency medical +9 Yes
care at the beginning

of the response.

Includes clear and

concise advice to

begin CPR if the +9 Yes
patient is pulseless or

not breathing.




Rubric-Based Evaluation: HealthBench

*Can separate criteria into themes

HealthBench scores by theme

@® Emergency referrals @ Expertise-tailored communication © Responding under uncertainty
O Response depth O Health data tasks O Global health
O Context seeking

Overall:
0.598 Overall: Overall: Qverall:
0.7 0.543 0.520 0.479

Overall: Overall:

0.6 7 0.418 0.346 Overall:
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Break & Questions



Outline

*Multimodal Reasoning
*From unimodal to multimodal reasoning, evals



Multimodal Reasoning: Introduction

*Real-world reasoning involves non-text modalities

*E.g., visual reasoning, or reasoning over videos

* This means integrating perception & language

*Key challenge: cross-modal alighment & reasoning

Example 2: Science Problems

- 400 mm -

P=2kN

>

200 mm

Question:

An acetal polymer block is fixed to the rigid plates at
its top and bottom surfaces. If the top plate displaces 2|
mm horizontally when it is subjected to a horizontal
force P=2 kN, determine the shear modulus of the
polymer. The width of the block is 100 mm. Assume
that the polymer is linearly elastic and use small angle
analysis.

Options:
A: 15 MPa, B: 5 MPa, C: 20 MPa, D: 2 MPa

Answer [rom Llama-3.Z2-11B-Vision-Instruct:

To determine the shear modulus of the polymer, we can use the
formula for shear modulus in a small angle analysis:

\[G = \frac{F}{A \gamma}\]

where \( G\) is the shear modulus, \( F\) is the applied force,
\( A\) is the area of the block, and \( \gamma \) is the shear
strain.

Given that the top plate of the block displaces horizontally by
2 mm when subjected to a horizontal force of 2 kN, we can
calculate the shear strain \( \gamma \). Since the displacement
is horizontal and the original length of the block is 400 mm,
the shear strain \( \gamma \) is:

\[\gamma = \frac{\Delta x}{L} = \frac(2\, \text{mm} } {400\,
\text{mm}} = 0.005\]

Next, we calculate the area \( A\) of the block. The width of
the block is given as 100 mm, and assuming the height of the
block is also 200 mm (as given in the image analysis), the
area \( A\) is:

\[A =100\, \text{mm} \times 200 \, \text{fmm} = 20000\,
\text{mm }A2\]

Now, we can substitute these values into the formula for shear
modulus:

\[G = \frac{F}{A \gamma} = \frac{2000 \, \text{N}}{20000 \,
\text{mm}/2 \times 0.005} = \frac{2000}{100} = 20\,

\text{ MPa}\]

Therefore, the correct answer is C: 20 MPa.

LLaVA-01 (Xu et al 24)

Answer [rom LLaVA-ol:
Summary stage: What's the problem? What should I do?

SUMMARY>To solve the problem, I will determine the shear modulus of the acetal
using the relationship between the applied force, displacement, and dimensions of the t
the formula for shear modulus and calculate the result. </SUMMARY
Caption stage: What can I know from the image?

CAPTION>The image shows a rectangular block of acetal polymer fixed between tw:
The top plate moves horizontally by 2 mm when a force \( P = 2\, \text{kN} \) is applii
dimensions are given as 400 mm in length, 200 mm in height, and 100 mm in width.
Reasoning stage: How to solve the problem step-by-step?

REASONING >The shear modulus \( G \) of the polymer can be calculated using the f
\[ G = \frac{FHA \cdot \frac{\delta}{l}} \]
where:
- \( F\) is the applied force (2 kN),
-\( A\) is the area of the block's top surface (100 mm x 400 mm = 40,000 mm?),
- \(\delta\) is the horizontal displacement (2 mm),
-\( 1Y) is the height of the block (200 mm).
First, convert the force to Newtons: \( F = 2\, \text{kN} = 2000 \, \text{N} \).
Next, calculate the shear modulus:
\[ G = \frac{2000} {40,000 \cdot \frac{2}{200} } \]
\[ G = \frac{2000} {40,000 \cdot 0.01} \]
\[ G = \frac{2000} {400} \]

\[ G =5\, \text{MPa} \] </REASONING

Conclusion stage: What is the final answer?
CONCLUSION> B. 5 MPa </CONCLUSION



Techniques: Lift From Unimodal Cases

Example: Multimodal CoT (Zhang et al ‘23)

* Two-stage breakdown. First generate rationale by using vision

features

* Then rationale is reasoned over to produce final answer

Ve \ /—[ Rationale J—\

[ Vision J
m m Will these magnets attract or
repel? To find out, look at
[ L ] which poles are closest to
anguage
guag Rationale each other. The north pole of Answer
i , — . —» one magnet is closest to the O
Question: Will these magnets attract or repel Generation south pole of the other magnet. Inference
each other? Poles that are different attract.
Context: Two magnets are placed as shown. So, these magnets will attract
Hint: Magnets that attract pull together. Magnets each other.
that repel push apart.
Options: (A) attract (B) repel
| . /L 4 . J

Answer

The answer
is (A).




Techniques: Lift From Unimodal Cases

Another example: knowledge graph (KG) usage
* MR-MKG (Lee et al '24)
* Example: question requires multiple steps/associations

* KG structured knowledge helps reasoning

(b) MR-MKG: Multimodal Reasoning with Multimodal Knowledge Graph

| TQuestion] ": ( [Image]
. What are the representative colors of the team;
' that the basketball player associated with this |
i\lmage played for? '

Kobe Bryant Black Mamba ‘[Prompt embedding tokens]

team allas—>o | a J
iLosA eles Lakers . W[

draft team subclassof 2

o o [Generated Answer]
! ]E> . Purple, gold " ‘




Challenges in Multimodal Reasoning

e Abstract pattern reasoning is still hard

e Two kinds of errors (perceptual & logic) means errors
compound

e Evaluation is more challenging: need cross-modal
verification + rubric evaluation

* Many new benchmarks, ex: VisuLogic (Xu et al ‘25)

Typical Question in Our Benchmark Typical Question in MATH-Vision Typical Question in MMMU

) The region bounded by the graph as
F Two rectangles fo.nn the @glcs shown above. Choose an integral
N 40 and 30 respectively, with a

From the four options given, choose
the most suitable one to fill in the “?”

s0 that it shows a certain pattern: A/ . . : expression that can be used to find
v, straight line (see diagram). th
. ; o e area of R.
e * | VoA o How big is angle a ?
A L IR ]
Oy [0a | o W@ - g o
) Typical Question in MathVista ®) [*[g(0) - F(0)ldx '!l"// "| \\i
* | 0 o
Y| My Q —— O [ FC) - g®)]dx —
What time is shown? Answer |. ' "' . i : - /.f
ah [0 Taa* T by typing a time word, nota | _e—ss- @) flg() = f@dx | -
ﬂﬂﬂnu l,‘;: EE*: uﬂﬂﬂﬂﬂ number. It is () after eight. i 6 8 4
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