CS 839: Foundation Models
Diffusion Models

Fred Sala

University of Wisconsin-Madison

Oct. 30, 2025

Announcements

*Logistics:
*Project info out
*Come chat about presentation/project proposals.

*Class roadmap:

Tuesday Nov. 4 Scaling & Scaling Laws

Thursday Nov. 6 Security, Privacy, Toxicity +
Future Areas

Outline

*Generative Models Overview
*Basic idea, complexity challenges, overview of major
image generation techniques, intuitions
*Normalizing Flows & GANs

*Normalizing flow transformations, training, sampling,
GAN generators, discriminators, training

Diffusion Models

*Overall intuition, score-based training, controlling and
latent space formulations, extensions

Outline

*Generative Models Overview

*Basic idea, complexity challenges, overview of major
image generation techniques, intuitions

Goal: Learn a Distribution

*Want to estimate p,.,, from samples

x(l),x(z), == ,x(”) ~ Pdata ()

e Useful abilities to have:

* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)

*As always need efficiency for this too...

Directly Modeling the Distribution
* Want to estimate pg,., from samples

x(l),x(z), . ,x(n) ~ Pdata ()

*One straightforward idea: parametrize the pdf of the
distribution. To train, maximize the log likelihood

N
max ; log pe (xs).

*However, we’ll face some challenges...
* Why? Both training and inference can be complex

Goal: Learn a Distribution

*Want to estimate p,.,, from samples

CU(l) , 55(2)7 o ’Qj'(n) ~ pdata(m) Energy function
*Let’s set 1 ,

*Have to deal with the normalizing partition function Z,

Zy = /exp(fa(ﬁ))dx Usually intractable!

Getting Around the Partition Function

All gen. modeling techniques must deal with this. How?

* Avoid modeling the pdf explicitly
> GANs

*Choose special choices of p/f that keeps Z tractable
e = Certain normalizing flows

*Use approximations
* = VAEs, using ELBO-style bounds

*Obtain training objectives that sidestep maximum likelihood
* = GANs, score-based diffusion models

Generative Modeling Approaches

GAN: Adversarial < || x 7 Generator o
. X
training G(z)

VAE: maximize - N Encoder 7 Decoder o x!
variational lower bound q4(2[x) po(x|z)
Flow-based models: X > Flow > Z - Inlnierse X
Invertible transform of f(x) [(2)

distributions
Diffusion models:_ X0 Xy . Xo - 7z

Gradually add Gaussian - - - - - - - - —- - +-------
noise and then reverse

Lilian Weng

Generative Modeling Intuitions

We can think of GMs as doing two things:

*“Mapping” a simple (fake) distribution
into a complex (real) distribution e I W

distributions

*Why? Sample from simple distribution, then - - =

Gradually add Gaussian | Qo LTI e Y

transform with learned map ==
*”Latent space” interpretation Hifan Weng

*Learning to undo noise or undo a
particular transformation
* Related to self-supervised learning
Combine with previous training considerations to get various
techniques

.,i?_,;f.\ T T L

Break & Questions

Outline

*Normalizing Flows & GANs

*Normalizing flow transformations, training, sampling,
GAN generators, discriminators, training

Flow Models

*Want to fit pg(x), as we described

*Some goals:

* Good fit for the data
* Computing a probability: the actual value of py(x) for some x

* Ability to sample
* Also: a latent representation

*Won't model pg(x) directly... instead we’ll get some latent
variable z

Flow-based

Flow Inverse

generative models: X > > z > >

| f (=)

minimize the negative f(x)
log-likelihood

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

Flow-based
generative models: X > Flow > z > Inverse - x/
minimize the negative f(x) f(2)
log-likelihood

e ~ - ~ -

Zg ~ Po(zo) z; ~ pi(zi) Zg ~ PK(ZK)

Lilian Weng

Flow Models

*Key idea: transform a simple distribution to complex
* Use a chain of invertible transformations (the “flow”)

Flow-based

generative models: x . Flow 2 N Inverse o
minimize the negative f(x) f—l () -
log-likelihood

* How to sample?

* Sample from Z (the latent variable)---has a simple distribution that lets us do
it: Gaussian, uniform, etc.

* Then run the sample z through the inverse flow to get a sample x

e How to train? Let’s see...

Flow Models: Density Relationships

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does each transformation affect the density p?

Latent variable Transformation
/

Yz = fo(x)
po(z) dz = p(z) dz

pe(z) = p(fo(z))

Ofo(x)

ox

Determinant of
Jacobian matrix

~

Flow Models: Training

*Key idea: transform a simple distribution to complex
* Use a chain of transformations (the “flow”)

*How does training change?
*ldea: might be easier to optimize p,

Ofo ,

1 (1)) — 1 (4) I (.(i)
max }_logpo(¢")) = max } logpz(fo(+')) +log | = (1)
S r 1
Y Latent variable Determinant of
I\{Iax!mum version Jacobian matrix

Likelihood

Can extend to many chained transformations...

Flows: Example

*Flow to a Gaussian (right)

Flow
1.0 A 15 -
0.8 1 104 3000 -
*Before training: .. 5
0_
0.4 N
0.2 1 1o
0.0 A [. . —15 A . | |
-2 0 2 -2 0 ’
1.0- 7.5
50 - 2500 ~
0.8 1 '
2.5 - 2000 -
[[0.6 4
After training: |
' ~2.5 1 1000
> —5.07 500 -
e [. ~7.5 ‘ , , 0
-2 0 2 -2 0 >

UC Berkeley: Deep Unsupervised Training

Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
o Affine: f(x) = AY(x - b)

— Forward

* Elementwise: f(x4, ..., Xg) = (f(x4), ..., f(xy)) ;:: — Inverse

® Endpoints

*Splines: 0.50
*Desirable properties:

* |Invertible ~0.501
* Differentiable (forward and inverse) o

—-1.00 -
-1.0 -0.5 0.0 0.5 1.0

(a) Forward and inverse transformer

Papamakarios et al’ 21

GANSs: Generative Adversarial Networks

*So far, we’ve been modeling the density...
* What if we just want to get high-quality samples?

*GANSs do this. Based on a clever idea:
* Art forgery: very common through history
e Left: original

* Right: forged version

* Two-player game. Forger wants to pass off the
forgery as an original; investigator wants to
distinguish forgery from original

GANSs: Basic Setup

*|Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Fake Images
(from generator)

Real or Fake

Dlscnmmator Network

Real Images
(from training set)

Generator Network

Random noise

t

Vs

Stanford CS231n / Emily Denton

GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

Irbax Ewdiata lOg DQd (:U) + EZNP(Z) log(l B ng (GQQ (Z)))
f I

Real data, want Fake data, want
to classify 1 to classify 0

GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: 6, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:

* Minimax game! Train jointly.

min max
0, 04

Hj‘xwpdafca, log DQd (I) T

I

Real data, want
to classify 1

j‘zwp(z) 10g(1 o DQd (GQQ (Z)))

I

Fake data, want
to classify 0

GAN Training: Alternating Training

*So we have an optimization goal:

min max

{:xr\"pdata log ng (aj) —I_

0, 0Og

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

max K wpy... 108 Do, () + E,op(z) log(l — Do, (G, (2)))

04

{"zrvp(Z) log(l — DQd (GQQ (Z)))

* Gradient descent: fix discriminator, make the generator better

minlE, ;) log(1 — Dy, (G, (2)))

Og

GAN Training: Issues

*Training often not stable

* Many tricks to help with this:
* Replace the generator training with

wmax . . p(z) log(Do, (Go, (2)))

* Better gradient shape |
* Choose number of alt. steps carefully /‘

/ ﬂ
. . High gradient signal
*Can still be challenging. |

4 0.6 . Tos . 10
Cow gradient signal

Stanford CS231n

GAN Architectures

*So far we haven’t commented on what the networks are
*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
height)
* Can just reverse our CNN pattern...

GANSs: Example

*From Radford’s paper, with 5 epochs of training:

:n ‘ [" i :
{ M LTS

] Lo
"«'.‘ -

.,i?_,;f.\ T T L

Break & Questions

Outline

Diffusion Models

*Overall intuition, score-based training, controlling and
latent space formulations, extensions

Diffusion Models Idea

*Let’s return to something that looks like a normalizing flow,

Diffusion models: X0 X1 - Xo > -l Z

Gradually add Gaussian - - - - - - - «-—— - “«-——m =
noise and then reverse

Lilian Weng

*Really a large family of techniques that share some common
properties

* But have been derived from different starting principles / desired
properties

Score-Based Generative Models

*How do we avoid running into the partition function?
*Let’s not model the pdf
*|nstead, model the “score”

Vx log p(x)

*Score: gradient of the log likelihood with respect to the data.

e Goal: train s such that
sg(x) = Vxlogps(x)

Score-Based Generative Models

Instead, model the “score” Y/ log p(x)
Goal: train s such that

sg(x) = Vxlogpg(x) :

*Why does this avoid the partition function?
*Let’s plug in our energy-based function from earlier. We get:

Gradient w.r.t. x, not ©

so(x) = Vxlogps(x) = —Vx[fo(x) — Vxlog Zg = —V fo(x).

=0

Training & Inference for Score-Based Models

*Training: can directly run M.S.E. as a loss,

E) [|| Vx log p(x) — sp(x)]]3]

*We usually can’t access the left hand term, but techniques
for training despite this

*Inference: special methods that can sample, like Langevin
dynamics

Xii1 < X; + €Vylogp(x) + Vv 2€ z;

1

T 1

Sample Learned Noise
lterates score function

Training & Inference for Score-Based Models

H...;'-H_H"ﬁ-‘ T | Mg TS T Tagl N " N

*Visual example S T
* Distribution: mixture of o e e L L AR O R
two Gaussians =SS AW

“ 11 1 J AT A AN S SR Fo
» Arrows: given by our o Bt BRSNS
score function, point to T AR AR A
high density regions A T AT A APRE Sy S S P

I S RSN T A s e
*Source: https://yang- A et =
song.net/blog/2021/sc OISR AN AN ===
ore/ oo o oo bololelo bldle \\§

...... LAY S

Score-Based - Denoising Diffusion Models

*Our story so far is s
Pl
S My — fmr-{
SCOre +vvv.osslala d1AENAN Langevin Z
matching - ©ozzzzze N dynamics
femardi e
BRI e
Data samples Scores New samples
{X1,X2,"',XN} I}\Si p(x) So(x) v logp(x)
*But, this leads to inaccurate modeling in low-prob regions:
Data scores Estimated scores

Data density

Yang Song

Score-Based - Denoising Diffusion Models

*Solution: perturb the density with noise
* To ensure accurate modeling in more regions
* In particular, noise at multiple scales

."oon'
o ¢
T
0l
l~_
=
T U
T 00 e
. . ‘‘‘‘‘‘
- 0 Iz

.. il
.......... »
............... A
44444444444444444
LI T B Y
4444444 B B L
AAAAAA i, B T

Score-Based - Denoising Diffusion Models

*So far, “noise” showed up in a few places, but not in a strictly
connected way
* Train model with score matching
e Sample with Lagenvin dynamics (which includes noise)
* Use noise perturbation to train better

*Denoising diffusion models directly use noise in both training
and inference

p@(Xt1|Xt
@H — @ @H = (%)

"--_._.-’

Ho et al ‘20

Diffusion Models

*Basic graphical model

pO(xt1|Xt
G — @) @H — (%)

S ==

Ho et aI 20

*Can easily set up the noising process,
T
q(x¢|x¢—1) = N(xt; V1= B8x¢1,60) q(x1.7|%0) = HQ(Xt|Xt—1)
t=1

To sample, directly compute from reverse, i.e., q(X¢—1[%¢)
e Simple, nice parametrizations in Ho et al ‘20.

Latent Diffusion Models

Latents are really just the noised images in pixel space

*No “latent space” so far at |

east

*But, can add by using an autoencoder

S
e

0

z
El
Z |*FT-1

Pixel Space,

pq

denoising step crossattention

Rombach et al ‘22

{

Latent Space
Diffusion Process)I

Denoising U-Net €g 2T

6onditionina
emanti
‘ Ma; \
Text

Repres
entations

Images

o
KV

switch skip connection concat

-

- J

Text-to-Image Generation + Conditional DMs

Lots of approaches! In particular, for text-to-image generation
*All based on similar principles from multimodal training

*Example: for latent diffusion (Rombach et al ’22)

* “Process y from various modalities (such as language prompts) we
introduce a domain specific encoder ... that projects y to an
intermediate representation ... which is then mapped to the
intermediate layers of the UNet via a cross-attention layer

Bibliography

* https://lilianweng.github.io/tags/generative-model/

e https://lilianweng.github.io/posts/2018-10-13-flow-models/

» https://lilianweng.github.io/posts/2021-07-11-diffusion-models
* https://cs231n.stanford.edu/slides/2019/cs231n 2019 lecturell.pdf

* Radford et al ‘16: Alec Radford, Luke Metz, Soumith Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks” (https://arxiv.org/abs/1511.06434)

» https://vang-song.net/blog/2021/score/

* Song et al 20: Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole , “Score-Based Generative Modeling
through Stochastic Differential Equations” (https://arxiv.org/abs/2011.13456)

* Ho et al 20: Jonathan Ho, Ajay Jain, Pieter Abbeel, “Denoising Diffusion Probabilistic Models”, (https://arxiv.org/abs/2006.11239)

* Rombach et al ‘22: Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer “High-Resolution Image Synthesis with Latent
Diffusion Models” (https://arxiv.org/abs/2112.10752)

https://lilianweng.github.io/tags/generative-model/
https://lilianweng.github.io/tags/generative-model/
https://lilianweng.github.io/tags/generative-model/
https://lilianweng.github.io/tags/generative-model/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://lilianweng.github.io/posts/2021-07-11-diffusion-models
https://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture11.pdf
https://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture11.pdf
https://arxiv.org/abs/1511.06434
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2006.11239

Sl GaC R E S

K :i'-"‘_;" '.7 ‘-. A . “;—I‘—‘Xf‘
. T -

Thank You!

	Slide 1: CS 839: Foundation Models Diffusion Models
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Goal: Learn a Distribution
	Slide 6: Directly Modeling the Distribution
	Slide 7: Goal: Learn a Distribution
	Slide 8: Getting Around the Partition Function
	Slide 9: Generative Modeling Approaches
	Slide 10: Generative Modeling Intuitions
	Slide 11: Break & Questions
	Slide 12: Outline
	Slide 13: Flow Models
	Slide 14: Flow Models
	Slide 15: Flow Models
	Slide 16: Flow Models: Density Relationships
	Slide 17: Flow Models: Training
	Slide 18: Flows: Example
	Slide 19: Flows: Transformations
	Slide 20: GANs: Generative Adversarial Networks
	Slide 21: GANs: Basic Setup
	Slide 22: GAN Training: Discriminator
	Slide 23: GAN Training: Generator & Discriminator
	Slide 24: GAN Training: Alternating Training
	Slide 25: GAN Training: Issues
	Slide 26: GAN Architectures
	Slide 27: GANs: Example
	Slide 28: Break & Questions
	Slide 29: Outline
	Slide 30: Diffusion Models Idea
	Slide 31: Score-Based Generative Models
	Slide 32: Score-Based Generative Models
	Slide 33: Training & Inference for Score-Based Models
	Slide 34: Training & Inference for Score-Based Models
	Slide 35: Score-Based → Denoising Diffusion Models
	Slide 36: Score-Based → Denoising Diffusion Models
	Slide 37: Score-Based → Denoising Diffusion Models
	Slide 38: Diffusion Models
	Slide 39: Latent Diffusion Models
	Slide 40: Text-to-Image Generation + Conditional DMs
	Slide 41: Bibliography
	Slide 42: Thank You!

