

CS 839: Foundation Models Diffusion Models

Fred Sala

University of Wisconsin-Madison

Oct. 30, 2025

Announcements

- **Logistics:**

- Project info out
- Come chat about presentation/project proposals.
- Class roadmap:

Thursday Oct. 30	Diffusion Models
Tuesday Nov. 4	Scaling & Scaling Laws
Thursday Nov. 6	Security, Privacy, Toxicity + Future Areas

Outline

- **Generative Models Overview**
 - Basic idea, complexity challenges, overview of major image generation techniques, intuitions
- **Normalizing Flows & GANs**
 - Normalizing flow transformations, training, sampling, GAN generators, discriminators, training
- **Diffusion Models**
 - Overall intuition, score-based training, controlling and latent space formulations, extensions

Outline

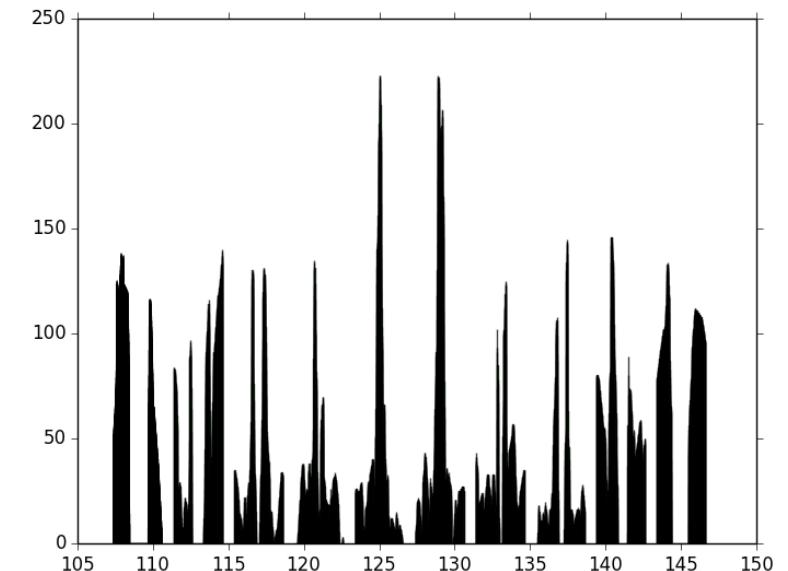
- **Generative Models Overview**
 - Basic idea, complexity challenges, overview of major image generation techniques, intuitions
- **Normalizing Flows & GANs**
 - Normalizing flow transformations, training, sampling, GAN generators, discriminators, training
- **Diffusion Models**
 - Overall intuition, score-based training, controlling and latent space formulations, extensions

Goal: Learn a Distribution

- Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- Useful abilities to have:
 - **Inference**: compute $p(x)$ for some x
 - **Sampling**: obtain a sample from $p(x)$
- As always need efficiency for this too...



Directly Modeling the Distribution

- Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- One straightforward idea: **parametrize the pdf of the distribution**. To train, maximize the log likelihood

$$\max_{\theta} \sum_{i=1}^N \log p_{\theta}(x_i).$$

- However, we'll face some challenges...
 - Why? Both training and inference can be complex

Goal: Learn a Distribution

- Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

Energy function

- Let's set

$$p_{\theta}(x) = \frac{1}{Z} \exp(f_{\theta}(x))$$

- Have to deal with the normalizing **partition function Z**,

$$Z_{\theta} = \int \exp(f_{\theta}(x)) dx$$

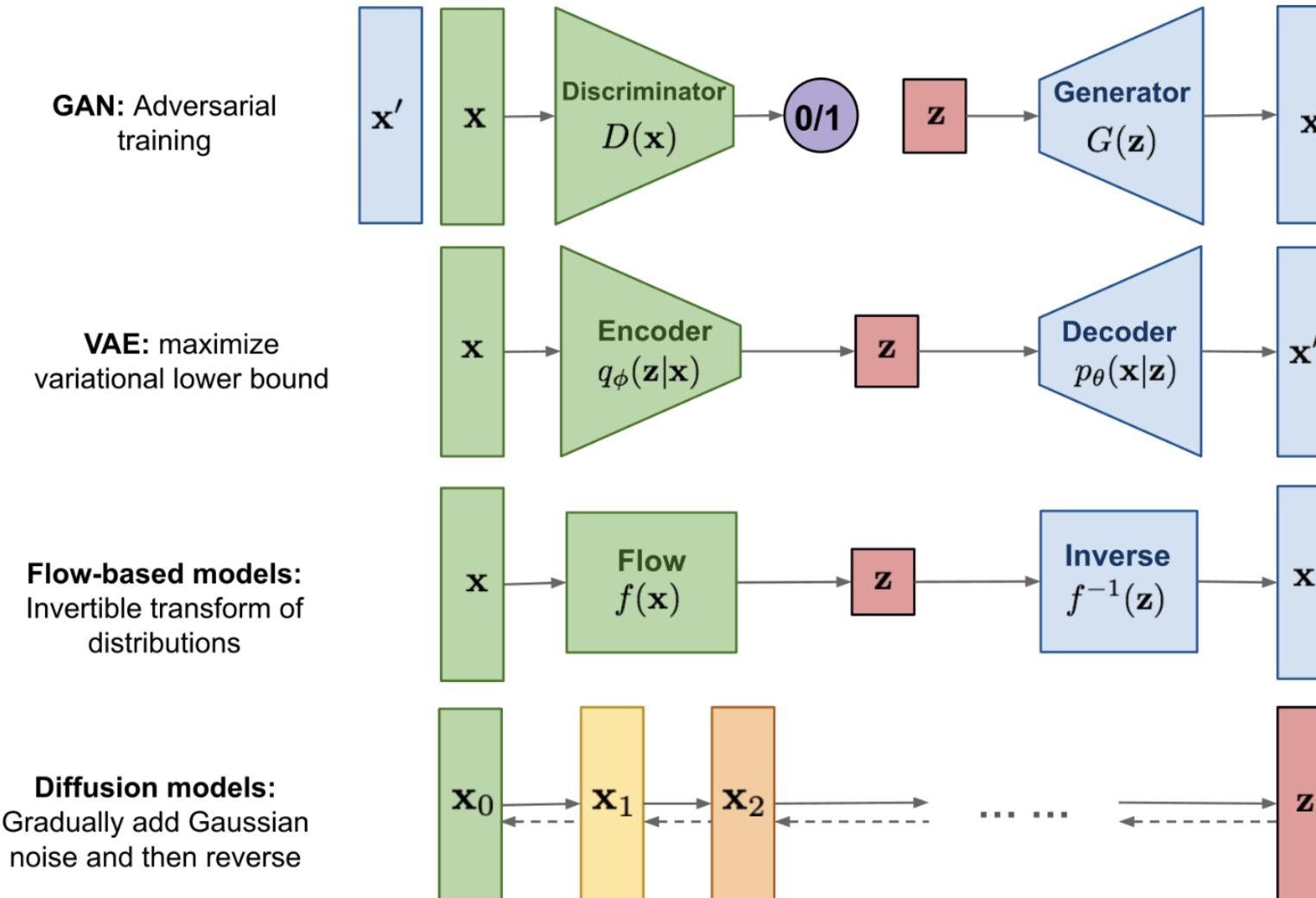
Usually intractable!

Getting Around the Partition Function

All gen. modeling techniques must deal with this. How?

- Avoid modeling the pdf explicitly
 - → **GANs**
- Choose special choices of p/f that keeps Z tractable
 - → Certain **normalizing flows**
- Use approximations
 - → **VAEs**, using ELBO-style bounds
- Obtain training objectives that sidestep maximum likelihood
 - → **GANs, score-based diffusion models**

Generative Modeling Approaches

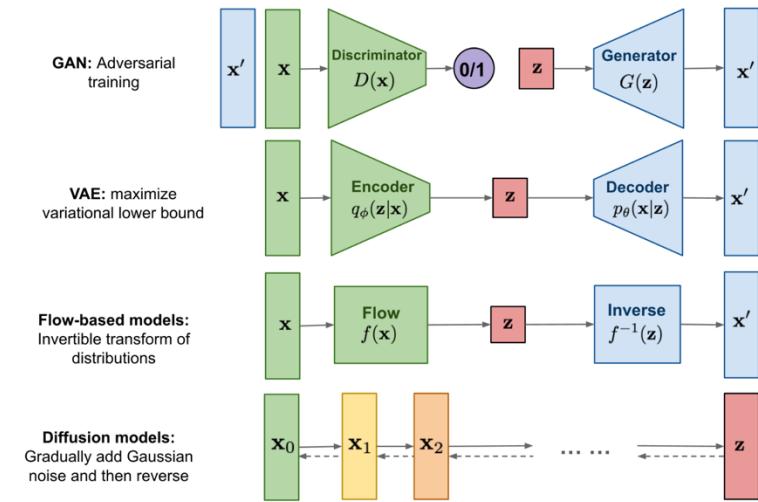


Generative Modeling Intuitions

We can think of GMs as doing two things:

- “**Mapping**” a **simple** (fake) distribution into a **complex** (real) distribution
 - Why? Sample from simple distribution, then transform with learned map
 - “**Latent space**” interpretation
- Learning to undo noise or undo a particular transformation
 - Related to self-supervised learning

Combine with previous training considerations to get various techniques



Lilian Weng

Break & Questions

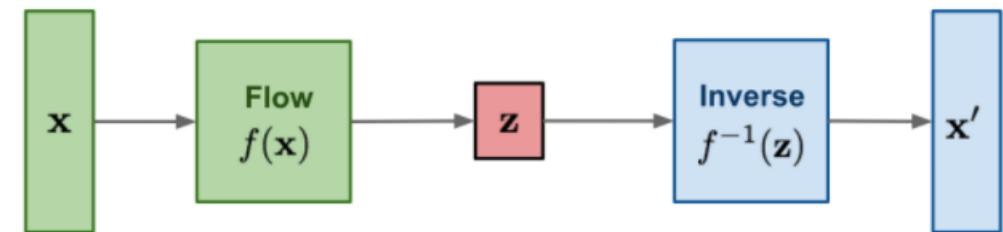
Outline

- **Generative Models Overview**
 - Basic idea, complexity challenges, overview of major image generation techniques, intuitions
- **Normalizing Flows & GANs**
 - Normalizing flow transformations, training, sampling, GAN generators, discriminators, training
- **Diffusion Models**
 - Overall intuition, score-based training, controlling and latent space formulations, extensions

Flow Models

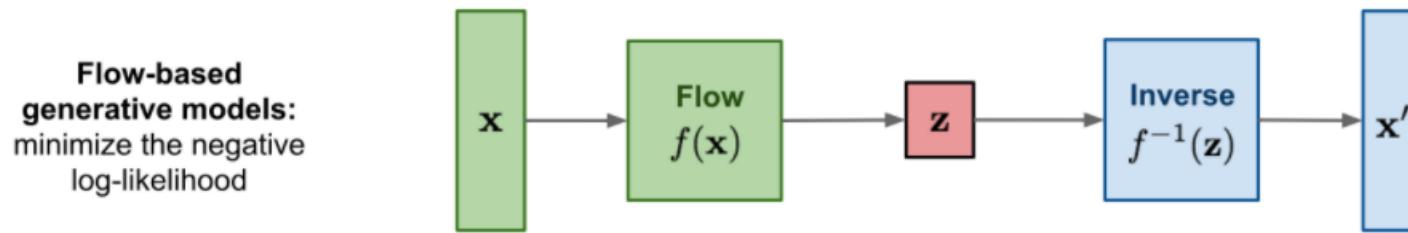
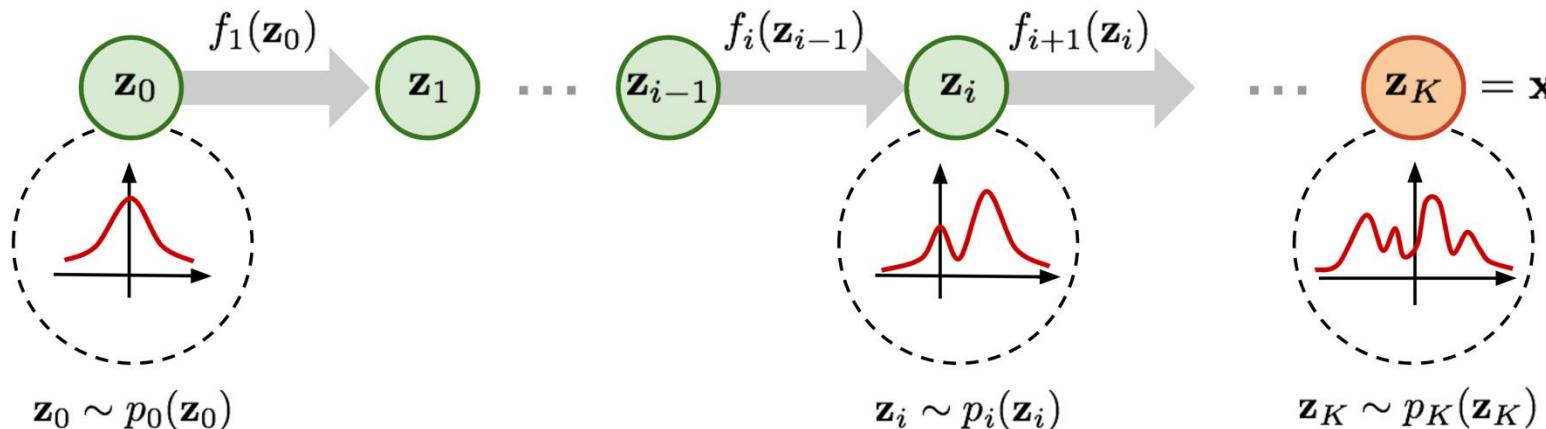
- Want to fit $p_{\theta}(x)$, as we described
- Some goals:
 - Good fit for the data
 - Computing a probability: the actual value of $p_{\theta}(x)$ for some x
 - Ability to sample
 - Also: a **latent representation**
- Won't model $p_{\theta}(x)$ directly... instead we'll get some latent variable z

Flow-based
generative models:
minimize the negative
log-likelihood



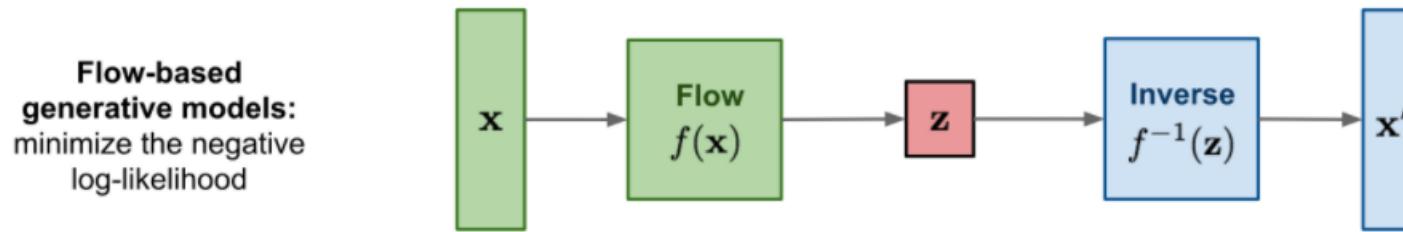
Flow Models

- **Key idea:** transform a simple distribution to complex
 - Use a chain of transformations (the “flow”)



Flow Models

- **Key idea:** transform a simple distribution to complex
 - Use a chain of invertible transformations (the “flow”)



- How to sample?
 - Sample from Z (the latent variable)---has a simple distribution that lets us do it: Gaussian, uniform, etc.
 - Then run the sample z through the inverse flow to get a sample x
- How to train? Let's see...

Flow Models: Density Relationships

- **Key idea:** transform a simple distribution to complex
 - Use a chain of transformations (the “flow”)
- How does each transformation affect the density p ?

$$z = f_{\theta}(x)$$

Latent variable Transformation

$$p_{\theta}(x) dx = p(z) dz$$
$$p_{\theta}(x) = p(f_{\theta}(x)) \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$$

Determinant of Jacobian matrix

Flow Models: Training

- **Key idea:** transform a simple distribution to complex
 - Use a chain of transformations (the “flow”)
- How does training change?
 - **Idea:** might be easier to optimize p_z

$$\max_{\theta} \sum_i \log p_{\theta}(x^{(i)}) = \max_{\theta} \sum_i \log p_Z(f_{\theta}(x^{(i)})) + \log \left| \frac{\partial f_{\theta}}{\partial x}(x^{(i)}) \right|$$

Maximum Likelihood

Latent variable version

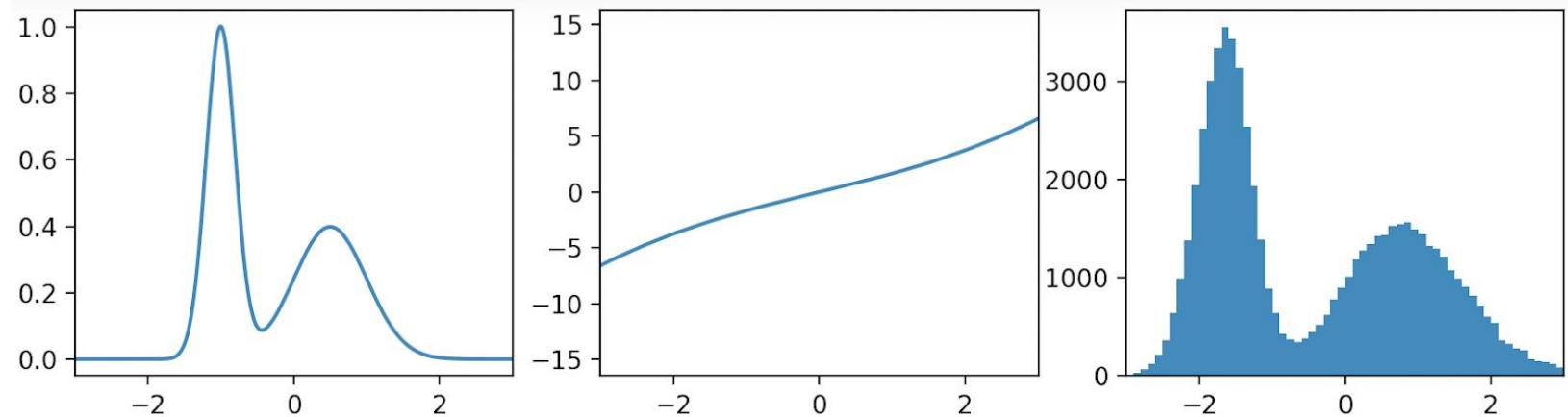
Determinant of Jacobian matrix

Can extend to many chained transformations...

Flows: Example

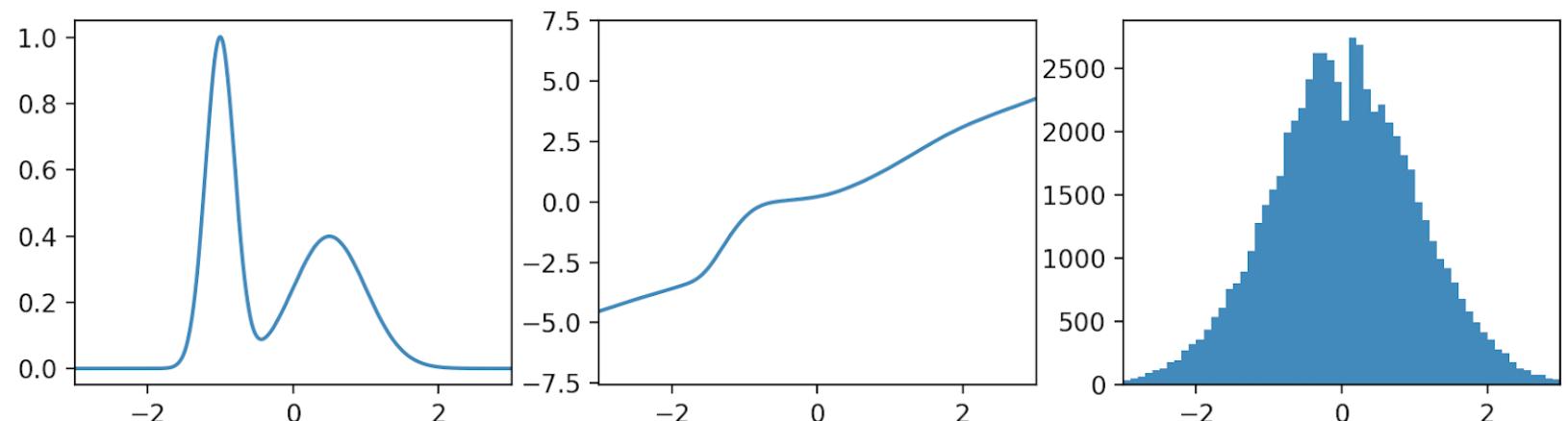
- Flow to a Gaussian (right)

Flow



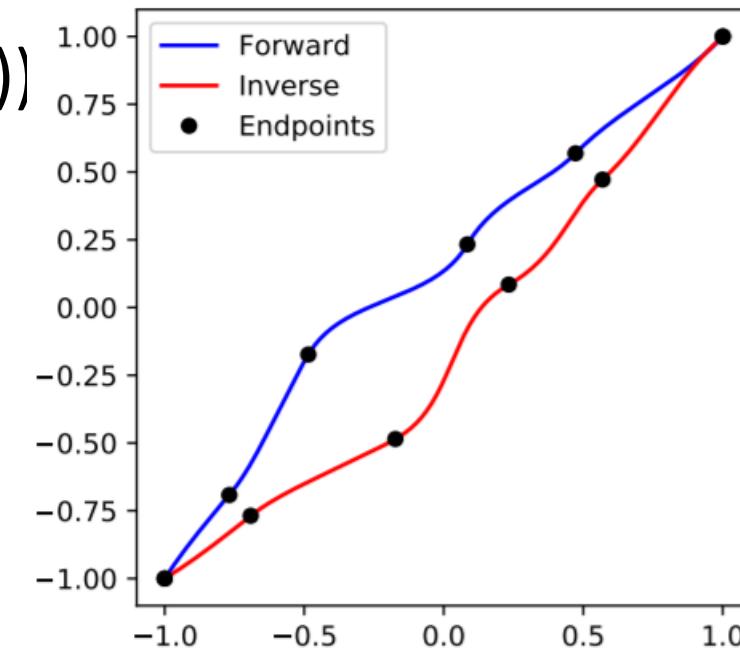
- Before training:

- After training:



Flows: Transformations

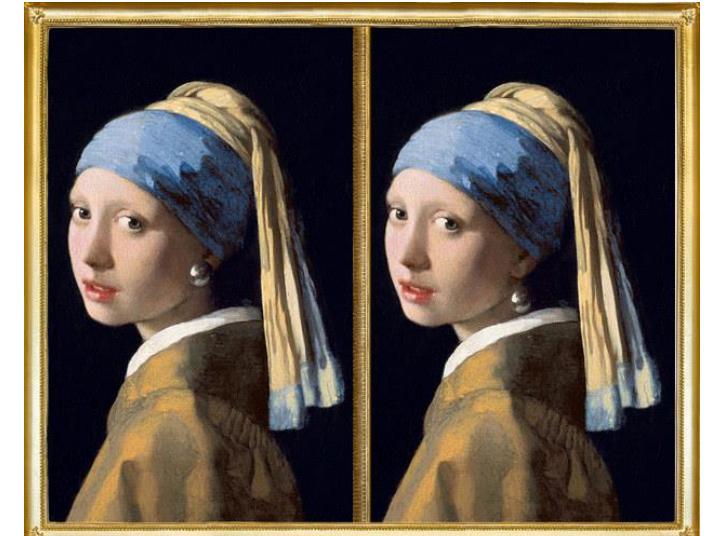
- What kind of f transformations should we use?
- Many choices:
 - Affine: $f(x) = A^{-1}(x - b)$
 - Elementwise: $f(x_1, \dots, x_d) = (f(x_1), \dots, f(x_d))$
 - Splines:
- Desirable properties:
 - Invertible
 - Differentiable (forward and inverse)



(a) Forward and inverse transformer
Papamakarios et al' 21

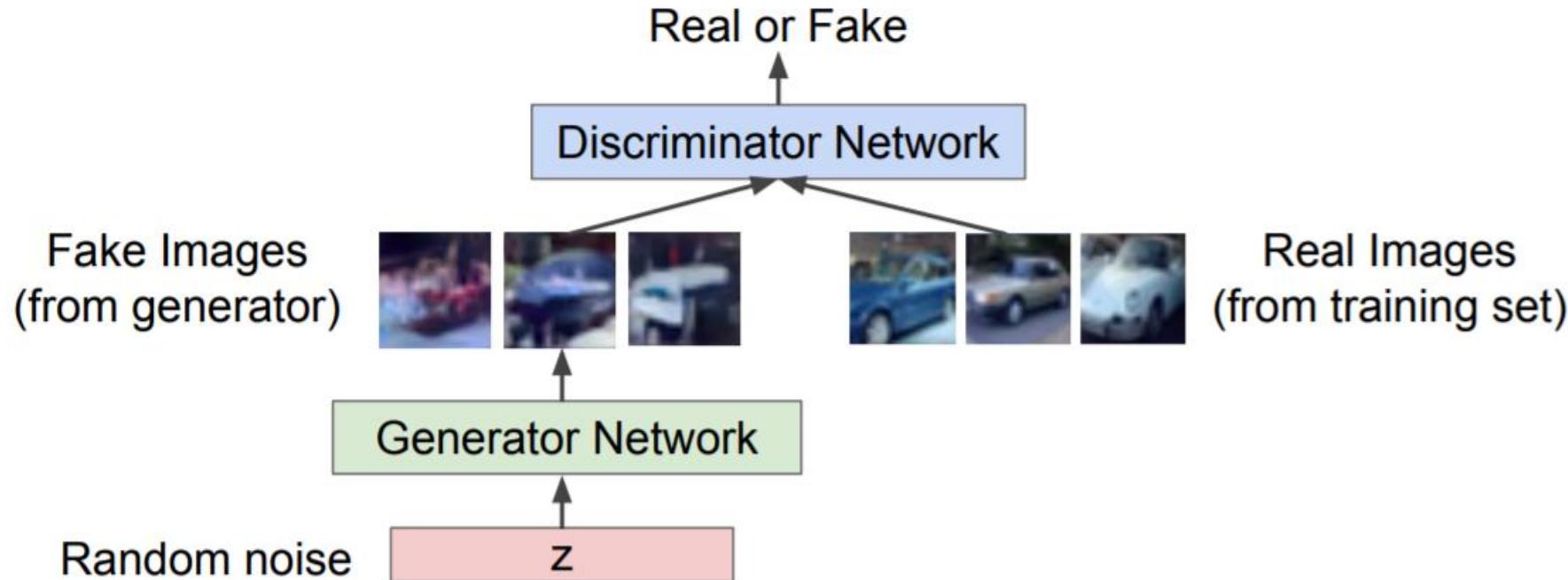
GANs: Generative Adversarial Networks

- So far, we've been modeling the density...
 - What if we just want to get high-quality samples?
- GANs do this. Based on a clever idea:
 - Art forgery: very common through history
 - Left: original
 - Right: forged version
 - Two-player game. **Forger** wants to pass off the forgery as an original; **investigator** wants to distinguish forgery from original



GANs: Basic Setup

- Let's set up networks that implement this idea:
 - Discriminator network: like the **investigator**
 - Generator network: like the **forger**



GAN Training: Discriminator

- How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- Let's fix the generator. What should the discriminator do?
 - Distinguish fake and real data: binary classification.
 - Use the cross entropy loss, we get

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Real data, want
to classify 1

Fake data, want
to classify 0

GAN Training: Generator & Discriminator

- How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- This makes the discriminator better, but also want to make the generator more capable of fooling it:
 - Minimax game! Train jointly.

$$\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Real data, want
to classify 1

Fake data, want
to classify 0

GAN Training: Alternating Training

- So we have an optimization goal:

$$\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

- Alternate training:
 - **Gradient ascent**: fix generator, make the discriminator better:

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

- **Gradient descent**: fix discriminator, make the generator better

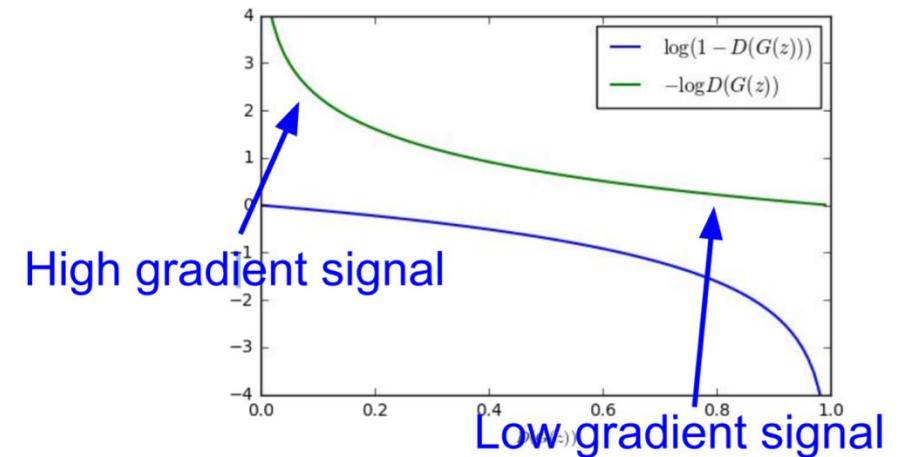
$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

GAN Training: Issues

- Training often not stable
- Many tricks to help with this:
 - Replace the generator training with

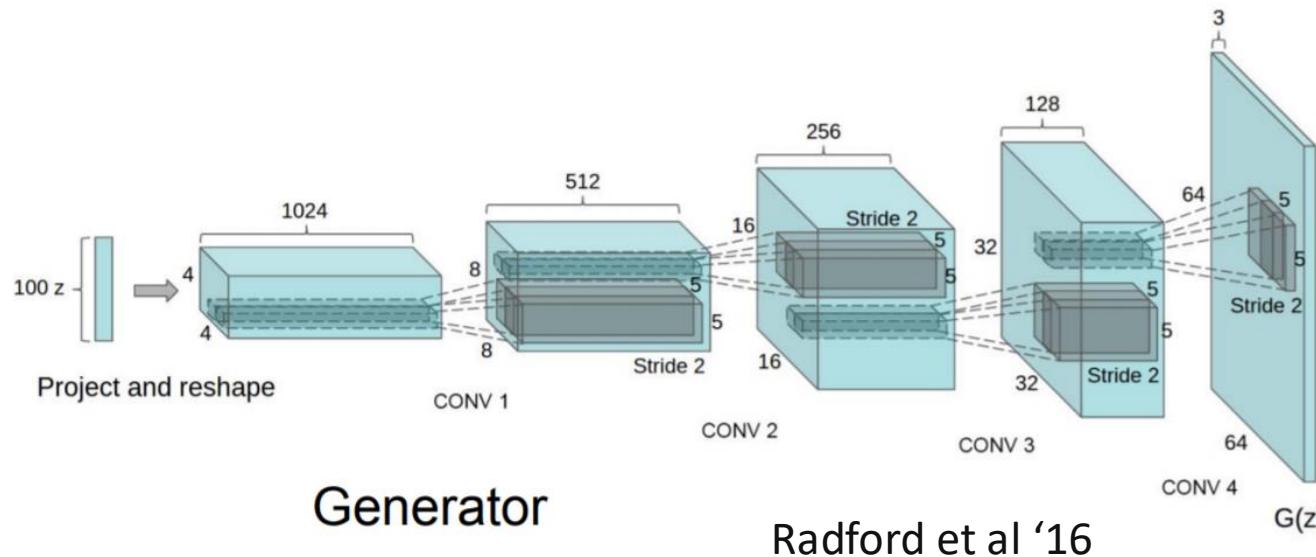
$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

- Better gradient shape
- Choose number of alt. steps carefully
- Can still be challenging.



GAN Architectures

- So far we haven't commented on what the networks are
- **Discriminator**: image classification, use a **CNN**
- What should **generator** look like
 - Input: noise vector z . Output: an image (ie, volume $3 \times \text{width} \times \text{height}$)
 - Can just reverse our CNN pattern...



GANs: Example

- From Radford's paper, with 5 epochs of training:

Break & Questions

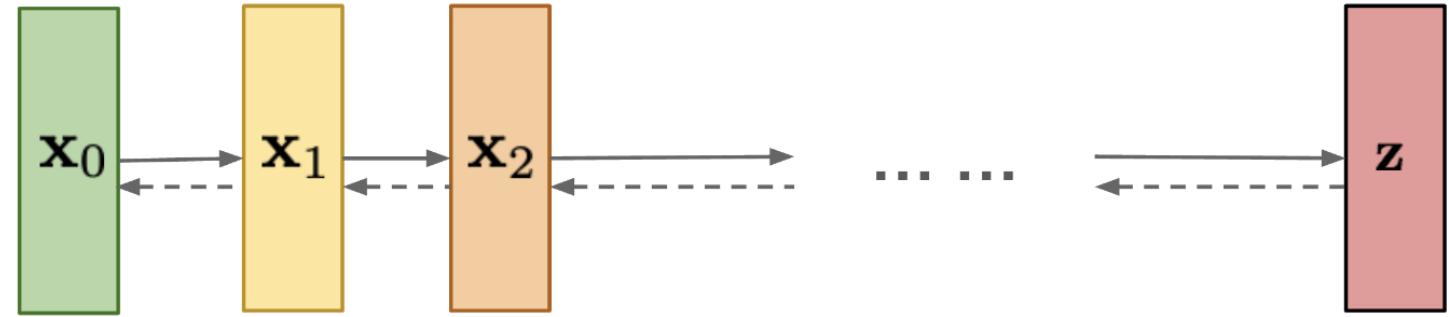
Outline

- **Generative Models Overview**
 - Basic idea, complexity challenges, overview of major image generation techniques, intuitions
- **Normalizing Flows & GANs**
 - Normalizing flow transformations, training, sampling, GAN generators, discriminators, training
- **Diffusion Models**
 - Overall intuition, score-based training, controlling and latent space formulations, extensions

Diffusion Models Idea

- Let's return to something that looks like a normalizing flow,

Diffusion models:
Gradually add Gaussian noise and then reverse



Lilian Weng

- Really a large family of techniques that share some common properties
 - But have been derived from different starting principles / desired properties

Score-Based Generative Models

- How do we avoid running into the partition function?
- Let's not model the pdf
- Instead, model the “**score**”

$$\nabla_{\mathbf{x}} \log p(\mathbf{x})$$

- Score: gradient of the log likelihood with respect to the data.
- Goal: train s such that

$$\mathbf{s}_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})$$

Score-Based Generative Models

Instead, model the “score” $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

Goal: train s such that

$$\mathbf{s}_\theta(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_\theta(\mathbf{x}) :$$

- Why does this avoid the partition function?
- Let’s plug in our energy-based function from earlier. We get:

$$\mathbf{s}_\theta(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_\theta(\mathbf{x}) = -\nabla_{\mathbf{x}} f_\theta(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z_\theta}_{=0} = -\nabla_{\mathbf{x}} f_\theta(\mathbf{x}).$$

Gradient w.r.t. \mathbf{x} , not θ

Training & Inference for Score-Based Models

- Training: can directly run M.S.E. as a loss,

$$\mathbb{E}_{p(\mathbf{x})}[\|\nabla_{\mathbf{x}} \log p(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_2^2]$$

- We usually can't access the left hand term, but techniques for training despite this
- Inference: special methods that can sample, like Langevin dynamics

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \mathbf{z}_i$$

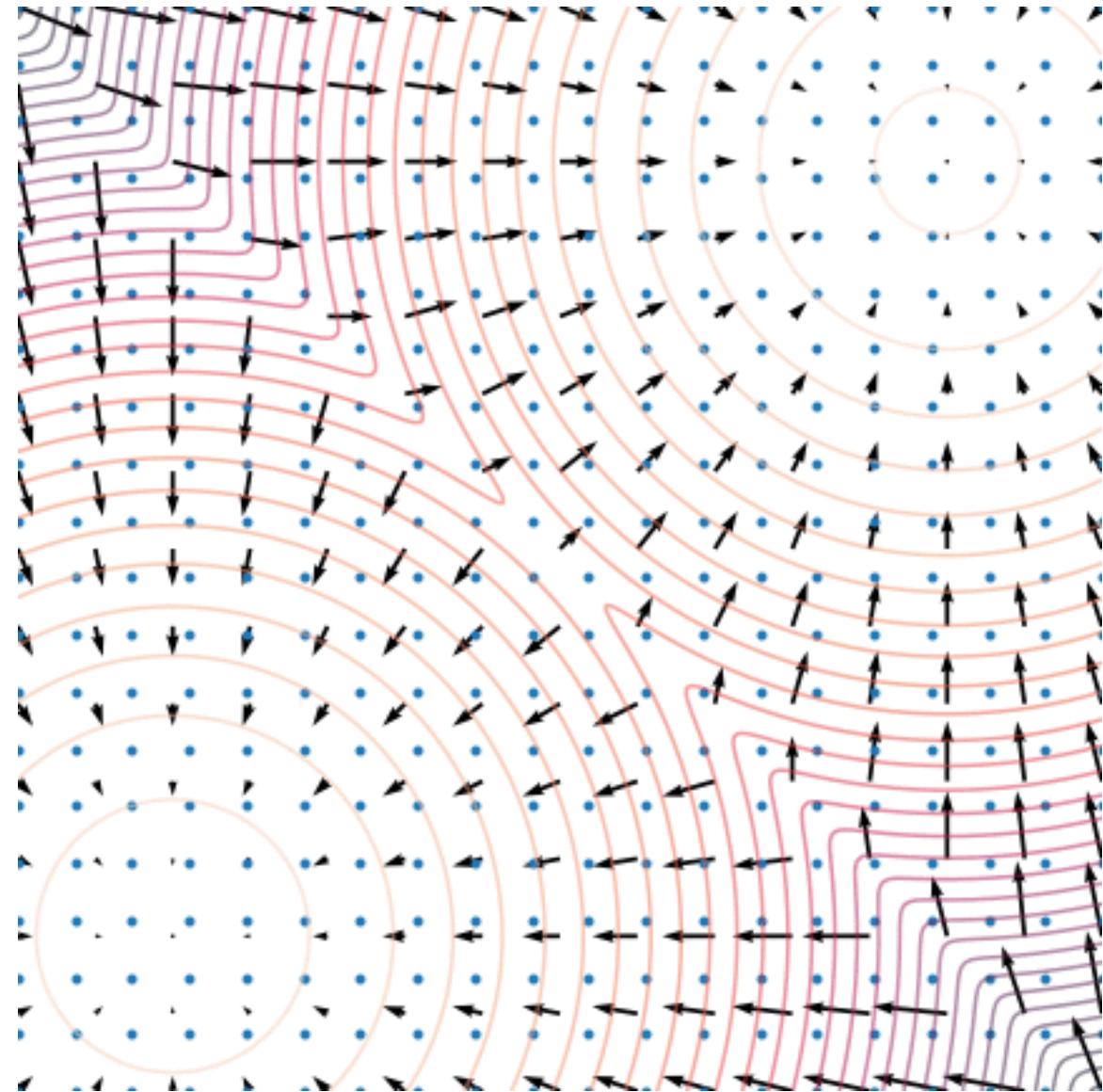
Sample
Iterates

Learned
score function

Noise

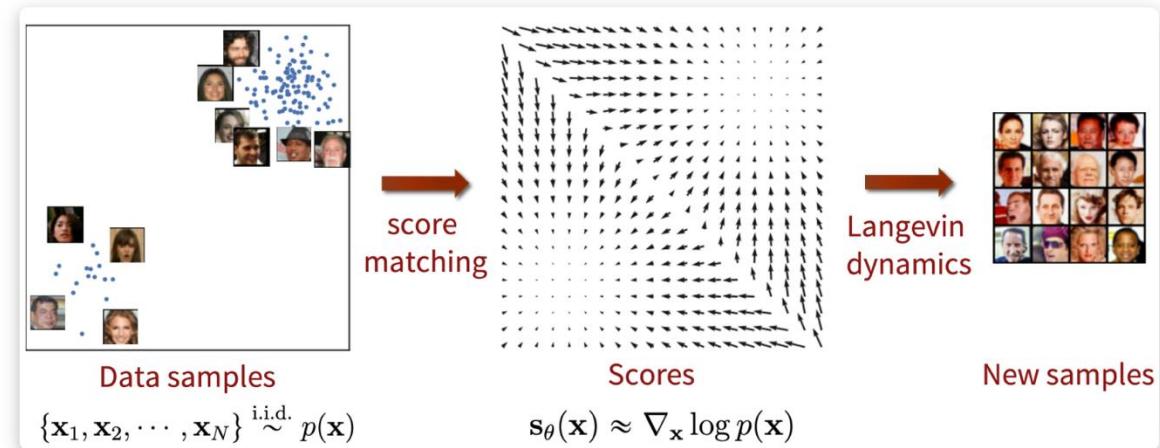
Training & Inference for Score-Based Models

- **Visual example**
 - Distribution: mixture of two Gaussians
 - Arrows: given by our score function, point to high density regions
 - Source: <https://yang-song.net/blog/2021/score/>

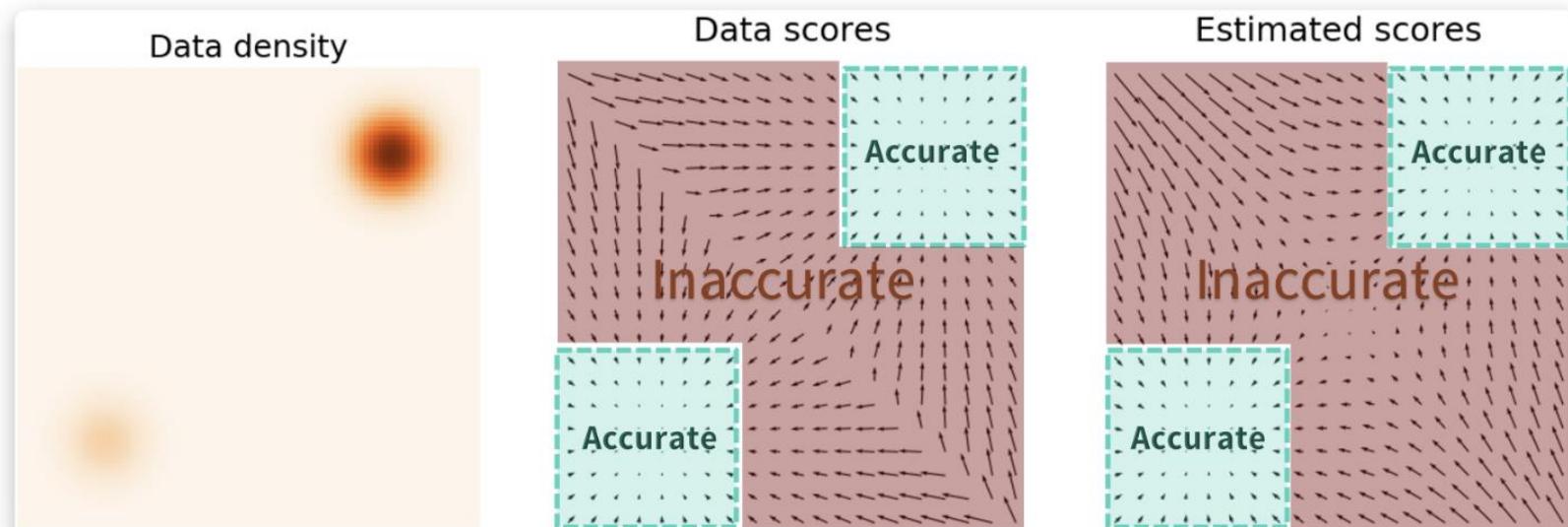


Score-Based → Denoising Diffusion Models

- Our story so far is

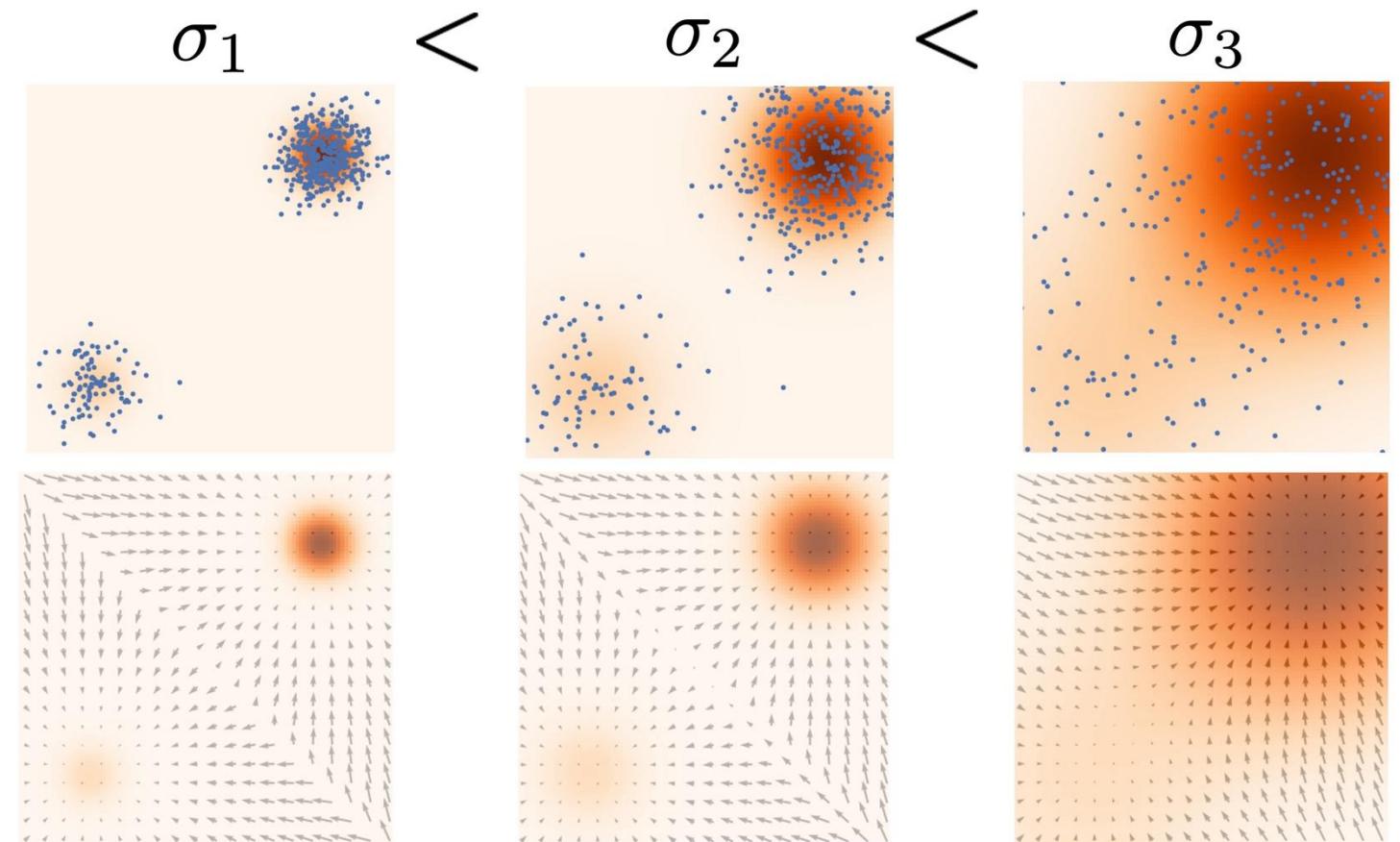


- But, this leads to inaccurate modeling in low-prob regions:



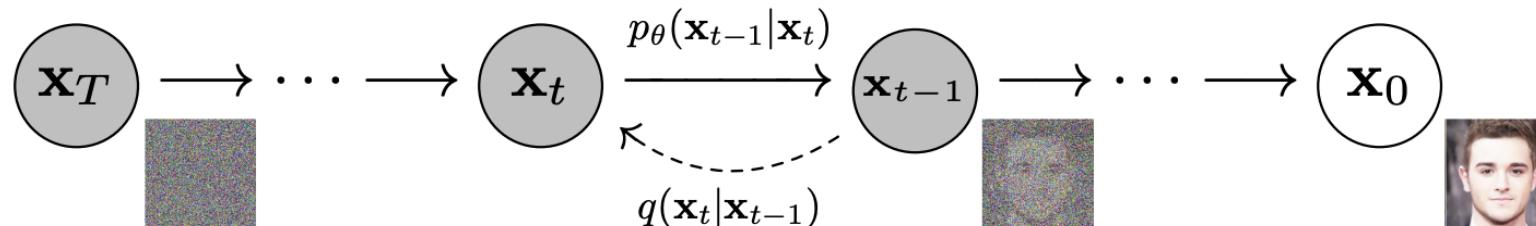
Score-Based → Denoising Diffusion Models

- Solution: perturb the density with noise
 - To ensure accurate modeling in more regions
 - In particular, noise at multiple scales



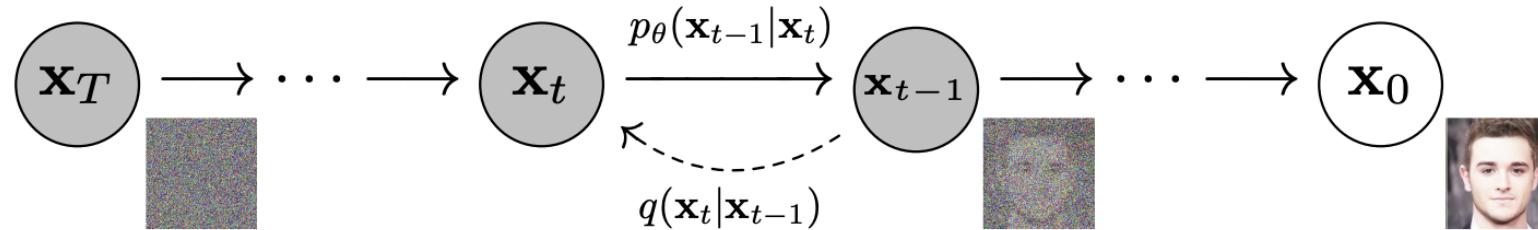
Score-Based → Denoising Diffusion Models

- So far, “noise” showed up in a few places, but not in a strictly connected way
 - Train model with score matching
 - Sample with Lagenvin dynamics (which includes noise)
 - Use noise perturbation to train better
- Denoising diffusion models **directly** use noise in both training and inference



Diffusion Models

- Basic graphical model



Ho et al '20

- Can easily set up the noising process,

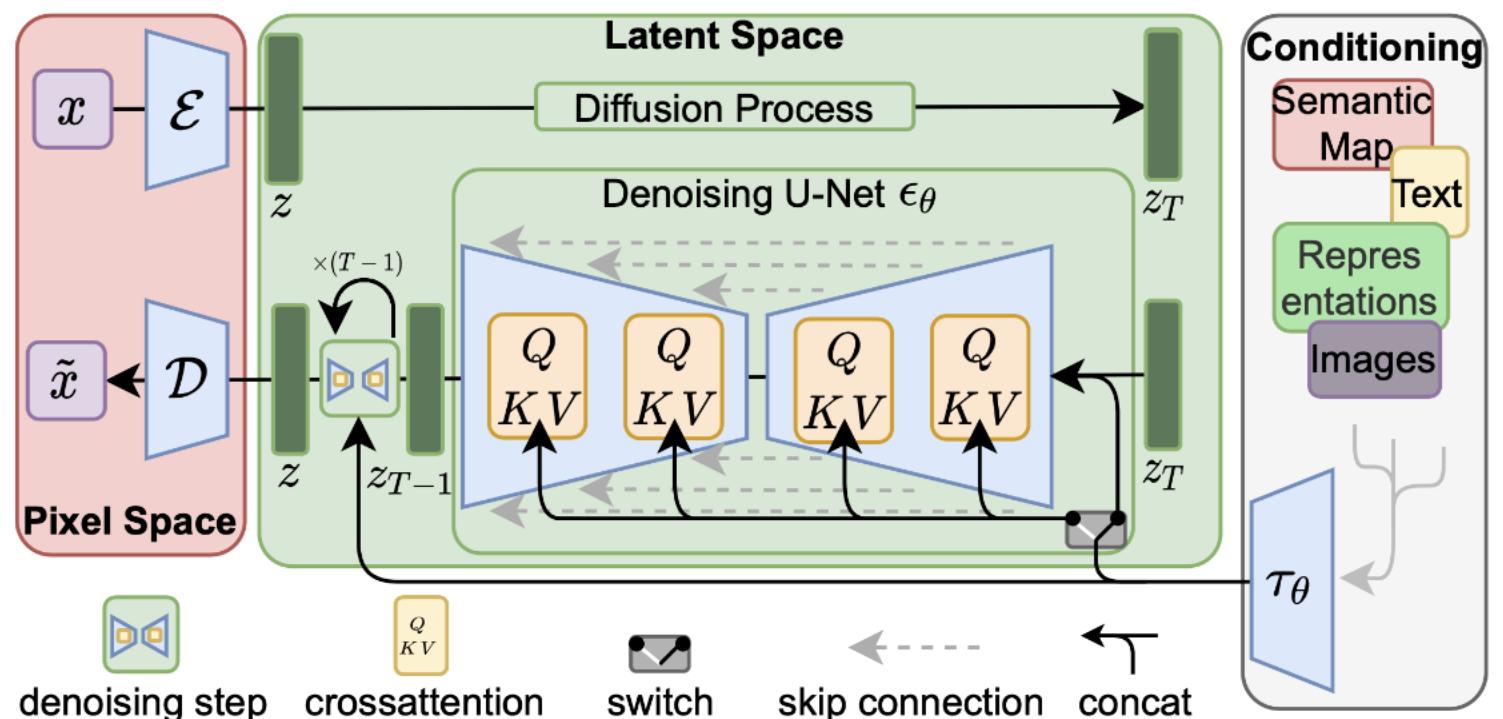
$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad q(\mathbf{x}_{1:T} | \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})$$

- To sample, directly compute from reverse, i.e., $q(\mathbf{x}_{t-1} | \mathbf{x}_t)$
 - Simple, nice parametrizations in Ho et al '20.

Latent Diffusion Models

Latents are really just the noised images in pixel space

- No “latent space” so far at least
- But, can add by using an autoencoder



Text-to-Image Generation + Conditional DMs

Lots of approaches! In particular, for text-to-image generation

- All based on similar principles from multimodal training
- Example: for latent diffusion (Rombach et al '22)
 - “Process y from various modalities (such as language prompts) we introduce a domain specific encoder ... that projects y to an intermediate representation ... which is then mapped to the intermediate layers of the UNet via a cross-attention layer “

Bibliography

- <https://lilianweng.github.io/tags/generative-model/>
- <https://lilianweng.github.io/posts/2018-10-13-flow-models/>
- <https://lilianweng.github.io/posts/2021-07-11-diffusion-models>
- https://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture11.pdf
- Radford et al '16: Alec Radford, Luke Metz, Soumith Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" (<https://arxiv.org/abs/1511.06434>)
- <https://yang-song.net/blog/2021/score/>
- Song et al '20: Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole , "Score-Based Generative Modeling through Stochastic Differential Equations" (<https://arxiv.org/abs/2011.13456>)
- Ho et al '20: Jonathan Ho, Ajay Jain, Pieter Abbeel, "Denoising Diffusion Probabilistic Models", (<https://arxiv.org/abs/2006.11239>)
- Rombach et al '22: Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer "High-Resolution Image Synthesis with Latent Diffusion Models" (<https://arxiv.org/abs/2112.10752>)

Thank You!