839: Foundation Models
caling & Scaling Laws

Fred Sala

University of Wisconsin-Madison

Oct. 31, 2024

Announcements

*Logistics:
*HW3 out Thursday
*Presentations: start Nov 11

* Everyone should come!

*Class roadmap:

Thursday Nov. 6 Security, Privacy, Toxicity +
Future Areas

Outline

*Scaling Laws Intro

*What are laws and why, regimes, idealized versions,
initial findings from Kaplan et al

*Scaling Laws Revised

* Additional methods, new results, Chinchilla and related
hypotheses

*Beyond Scaling Laws
*Data pruning and others

Outline

*Scaling Laws Intro

*What are laws and why, regimes, idealized versions,
initial findings from Kaplan et al

From Last Time: Diffusion Models Idea

*Let’s return to something that looks like a normalizing flow,

Diffusion models: X0 X1 - Xo > -l Z

Gradually add Gaussian - - - - - - - «-—— - “«-——m =
noise and then reverse

Lilian Weng

*Really a large family of techniques that share some common
properties

* But have been derived from different starting principles / desired
properties

Score-Based Generative Models

*How do we avoid running into the partition function?
*Let’s not model the pdf
*|nstead, model the “score”

Vx log p(x)

*Score: gradient of the log likelihood with respect to the data.

e Goal: train s such that
sg(x) = Vxlogps(x)

Score-Based Generative Models

Instead, model the “score” Y/ log p(x)
Goal: train s such that

sg(x) = Vxlogpg(x) :

*Why does this avoid the partition function?
*Let’s plug in our energy-based function from earlier. We get:

Gradient w.r.t. x, not ©

so(x) = Vxlogps(x) = —Vx[fo(x) — Vxlog Zg = —V fo(x).

=0

Training & Inference for Score-Based Models

*Training: can directly run M.S.E. as a loss,

E) [|| Vx log p(x) — sp(x)]]3]

*We usually can’t access the left hand term, but techniques
for training despite this

*Inference: special methods that can sample, like Langevin
dynamics

Xii1 < X; + €Vylogp(x) + Vv 2€ z;

1

T 1

Sample Learned Noise
lterates score function

Training & Inference for Score-Based Models

H...;'-H_H"ﬁ-‘ T | Mg TS T Tagl N " N

*Visual example S T
* Distribution: mixture of o e e L L AR O R
two Gaussians =SS AW

“ 11 1 J AT A AN S SR Fo
» Arrows: given by our o Bt BRSNS
score function, point to T AR AR A
high density regions A T AT A APRE Sy S S P

I S RSN T A s e
*Source: https://yang- A et =
song.net/blog/2021/sc OISR AN AN ===
ore/ oo o oo bololelo bldle \\§

...... LAY S

Score-Based - Denoising Diffusion Models

*Our story so far is s
Pl
S My — fmr-{
SCOre +vvv.osslala d1AENAN Langevin Z
matching - ©ozzzzze N dynamics
femardi e
BRI e
Data samples Scores New samples
{X1,X2,"',XN} I}\Si p(x) So(x) v logp(x)
*But, this leads to inaccurate modeling in low-prob regions:
Data scores Estimated scores

Data density

Yang Song

Score-Based - Denoising Diffusion Models

*Solution: perturb the density with noise
* To ensure accurate modeling in more regions
* In particular, noise at multiple scales

."oon'
o ¢
T
0l
l~_
=
T U
T 00 e
. . ‘‘‘‘‘‘
- 0 Iz

.. il
.......... »
............... A
44444444444444444
LI T B Y
4444444 B B L
AAAAAA i, B T

Score-Based - Denoising Diffusion Models

*So far, “noise” showed up in a few places, but not in a strictly
connected way
* Train model with score matching
e Sample with Lagenvin dynamics (which includes noise)
* Use noise perturbation to train better

*Denoising diffusion models directly use noise in both training
and inference

p@(Xt1|Xt
@H — @ @H = (%)

"--_._.-’

Ho et al ‘20

Diffusion Models

*Basic graphical model

pO(xt1|Xt
G — @) @H — (%)

S ==

Ho et aI 20

*Can easily set up the noising process,
T
q(x¢|x¢—1) = N(xt; V1= B8x¢1,60) q(x1.7|%0) = HQ(Xt|Xt—1)
t=1

To sample, directly compute from reverse, i.e., q(X¢—1[%¢)
e Simple, nice parametrizations in Ho et al ‘20.

Latent Diffusion Models

Latents are really just the noised images in pixel space

*No “latent space” so far at |

east

*But, can add by using an autoencoder

S
e

0

z
El
Z |*FT-1

Pixel Space,

pq

denoising step crossattention

Rombach et al ‘22

{

Latent Space
Diffusion Process)I

Denoising U-Net €g 2T

6onditionina
emanti
‘ Ma; \
Text

Repres
entations

Images

o
KV

switch skip connection concat

-

- J

Text-to-Image Generation + Conditional DMs

Lots of approaches! In particular, for text-to-image generation
*All based on similar principles from multimodal training

*Example: for latent diffusion (Rombach et al ’22)

* “Process y from various modalities (such as language prompts) we
introduce a domain specific encoder ... that projects y to an
intermediate representation ... which is then mapped to the
intermediate layers of the UNet via a cross-attention layer

Trends: Models

Models have gotten bigger

le+12 o le+1

10 i
O 2 o Y 0 gi>® I
C B 0O
00 S0, B
le Sa2Ye SHUY %o le+a

Parameters
i
oo
Parameters
(\

= om 4 =
~o %) b 0« —
- 5] o © 9 ol O & ®]
. o< ws/yezr - - ~O
1 . 000 o 8 o ' Q
- e=-"5 0 Q &) O
: 69 o = (=)

0w ~ 00 8

s

O

let+d o le+d s,

Ob 2008 2010 2012 2014 2010

Publication'

Villalobos et al ‘22

2018 2020 2022 106 008 7010

ate“

12 2014 2016 2018 2020 2022

Pablication date

Trends: Compute

Compute has gotten bigger

Startup Builds Supercomputer with 22,000 Tesla's $300 Million Al Cluster Is Going Live
Nvidia's H100 Compute GPUs Today

By Anton Shilov published July 05, 2023

Zuckerberg's Meta Is Spending Billions to
Buy 350,000 Nvidia H100 GPUs

By Anton Shilov published August 28, 2023

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 GPUs to help it
Tesla is about to flip the switch on its new Al cluster, featuring develop nextenertion Alipays CRO Merk Zuckerberg.

000000 ®ommensy 10,000 Nvidia H100 compute GPUs. m“”'““““" ST X
o @ o o ® Comments (23)

The world's second highest performing supercomputer.

(David Paul Morris/Bloomberg via Getty Images)

Mark Zuckerberg plans on acquiring 350,000 Nvidia H100 GPUs to help Meta build a next-

Inflection Al, a new startup found by the former head of deep mind and backed _—

https://www.tomshardware.com/news e

/startup-builds-supercomputer-with- https://www.tomshardware.com/news/te https://www.pcmag.com/news/zuckerber
22000-nvidias-h100-compute-gpus slas-dollar300-million-ai-cluster-is-going- ~ gs-meta-is-spending-billions-to-buy-

live-today 350000-nvidia-h100-gpus

Trends: Data

Datasets have gotten bigger

Dataset
Name

Statlog (Image
Segmentation)
Dataset

Caltech 101

LabelMe

Caltech-256

ImageNet

wiki

Brief
description

L1

The instances were
drawn randomly
from a database of
7 outdoor images
and hand-
segmented to
create a
classification for
every pixel.

Pictures of objects.

Annotated pictures
of scenes.

Large dataset of
images for object
classification.

Labeled object
image database,
used in the
ImageNet Large
Scale Visual
Recognition
Challenge

Preprocessing *

Many features
calculated.

Detailed object outlines
marked.

Objects outlined.

Images categorized and
hand-sorted.

Labeled objects,
bounding boxes,
descriptive words, SIFT
features

Instances #

2310

9146

187,240

30,607

14,197,122

Format +

Text

Images

Images, text

Images, Text

Images, text

Default
Task

Classification

Classification,

object
recognition.

Classification,

object
detection

Classification,

object
detection

Object
recognition,
scene
recoghnition

Created

¥ | (updated)

1990

2003

2005

2007

2009 (2014)

Model

Stock of data (#words)

Growth rate

Recorded speech

Internet users

Popular platforms

CommonCrawl

Indexed websites

Aggregated model

1.46e17
[3.41el16; 4.28¢17]
2.01el15

[6.47e14; 6.28¢15]
44leld

[1.21e14; 1.46e15]
9.62¢13

[4.45e13; 2.84e14]
221el4

[5.16e13; 6.53¢15]
7.41el4

[6.85¢13; 7.13¢16]

5.2%
[4.95%:; 5.2%]
8.14%

[7.89%:; 8.14%]
8.14%

[7.89%:; 8.14%]
16.68%

[16.41%; 16.68%]

NA

T.15%
[6.41%; 17.49%]

Villalobos et al, “Will we run out of data? An analysis of the
limits of scaling datasets in Machine Learning”

Test Loss

Scaling Laws

We want to understand
*How performance scales with these quantities...
* And how they interact!

7 4.2
61 —— L =(D/5.4-10!3)70.095 | 56 —— L=(N/8.8-1013)"0.076
i 3.9 18
\ 3.6 1.0
3.3 39
3
3.0
_ 2.41
L = (Cyinf2.3 - 108)~0:050
10 1077 107> 10°* 107! 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Kaplan et al 20

Scaling Laws

Not unigue to machine learning models.

*Note: often have multiple “regimes”

Example: LDPC and other codes

0
ng

“Waterfall” regime,
“Error floor” regime

101

10-2

Bit error probability

10°7

108

107

103

104

10-°

10-¢

}

Shannon limit

T T T T

et
- -
-
St raa 3
-
- -
- -
-

«— Regular LDPC-BC
Waterfall 3
Irregular LDPC-BC

Error floor
- - .[| 3 ’ |
1 2 3 4 5 6

Costello et al ‘13 E, /Ny (dB)

Scaling: Setup

Kaplan et al "20

Scaling Laws for Neural Language Models

Measurement units:
[Co m p Ute : F I—O PS Johns Hop‘:ztll‘:[:)lrfii:":i]:yj OpenAl " I\Cj}lgfna:ldlism
*Model size: parameters

Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
o D ata * to ke n S henighan@openai.com tom@openai.com bchess@openai.com rewon@openai.com
o g P . p . p . p .
Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl
scott@openai.com alec@openai.com jeffwu@openai.com damodei®@openai.com

*Ranges:
*Model size : 768 to 1.5B (non-embedding) parameters
*Data: 22M to 23B tokens

Compute: FLOPS

FLOPs: a measure of computing performance

*“floating point operations per second”

*Our neural network operations involve adding and

multiplying real numbers - flops
* Note: standard approach 32 bit floating point
* Popular area of research: smaller precision or mixed precision
training, inference, or both

Nvidia's RTX 4090 is listed as having a peak performance of 82.6

September
$0.02 $0.02 RTX 4090 _ o o a7
2022 TFLOPS (1.32 PFLOPS at 8-bit precision) at a retail price of $1599.[67]
AMD's RX 7600 is listed as having a peak performance of 21.5
May 2023 $0.01 $0.01 Radeon RX 7600 o 28
TFLOPS at a retail price of $269.5¢]

Wiki

Scaling: Power Laws

How to model relationships measured?

* Power laws f(:L‘ — ar

II

Coefficient Exponent

*In our case, for model size and training to convergence,

L(N) = (N./N)*"; any ~0.076, N, ~ 8.8 x 10'?

11

Coefficient Exponent

Scaling: Power Laws

Not a new idea. For data: hypothetical power-law like scaling
*Note: different regimes

Small Data p | Req Irreducible
Region

Best Guess Error

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)
Hestness et al ‘17

Scaling: Varying the Model Size

Let’s see this in detail. ol
Kaplan et al '20. Fix the dataset (large). *

L =(N/8.8-10"3)70-076

4.0

3.2

*Vary model size: 769 to 1.5B
 Measure test loss

2.4

105 107 10°

Parameters
non-embedding

*Fit the curve as before:

L(N) = (N./N)*; an ~0.076, N, ~ 8.8 x 10*°

Scaling: Varying the Dataset

Same idea, but for data. AL — L=osa0me
Fix the model size (large).

3.61

3.31

*Vary Data: 22M to 23B tokens 3.0

27—

o S .,.,iég

*Measure test loss Dataset Size
*Again fit a curve

L(D) = (D./D)*"; ap ~ 0.095, D, ~ 5.4 x 10" (tokens)

Scaling: Interactions

What about the effect of both model size and data?

*Why? Need to figure out what to prioritize: get more data or
increase the model size?

* “as we increase the model size, we should increase the dataset size
sublinearly according to D oc N@-N/a_D ~ NO.74”

L.oss vs Model and Dataset Size

°
- TN 9 D 4.51 .. e ...
-_-I.:‘ i e B -rrrrerrrsariassaiasssiiasiiaans 8-
()) - + G-_II'-...,..- _____ o ..o 708M
N D " 35 9. 302M
o _ o g 85M
- . e e e M
3.0 S ® 25M
e 393.2K
2.51
F Rt T T T

Tokens in Dataset

Scaling: Compute

How much compute do we need?
*Note: not independent of the data/model size!
*Rough equation: C=6 NxB xS

LILIL

Params Batch Steps
Size
*Cis a direct function of model size.
* Batch size varies (existing heuristics for optimal batch size).
* Steps depend on stopping rules

Scaling: Compute

What are the interactions?

*Using the critical batch size (optimizes the speed/efficiency
tradeoff).

. min o min _ min ;
N xcoc’/an Bocgec’/os G/ D=PRB.S§

*Empirically optimal results: NocC%73, BcC%24, and SoxC0-03

*“As the computational budget C increases, it should be spent
primarily on larger models, without dramatic increases in
training time or dataset size”

Scaling: Architectures

What about choosing various architectures?

*Compare transformers vs LSTMs

*Change parameter counts, #layers
* Fixed dataset (WebText2)

Test Loss 5.4

4.8

*Transformers win here e
* Some recent work challenges this e

2.4

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

LSTMs

'

1 Layer

2 Layers

Transformers 4 Layers

10° 106 107 108 10°
Parameters (non-embedding)

Scaling: Predicting

All of this requires huge
numbers of training runs...

*But, if the laws are reliable,
can:

*Train smaller models,
*Obtain a scaling law,

* Make design decisions based
on this law.

.,i?_,;f.\ T T L

Break & Questions

Outline

*Scaling Laws Revised

* Additional methods, new results, Chinchilla and related
hypotheses

Scaling: How Universal Is This?

Kaplan et al made certain choices,

* Results used early stopping, etc.

* One particular learning rate
schedule

*Scaling law results may change
with different choices!

eHoffman et al ‘22: another
exploration with different
results.

0 DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.

SL2: Approach #1: Minimum Over Curves

For each number of parameters (range: 70M to 10B),
*Vary # of training steps,

*4 training sequences, take overall minimum
*Results:

Approach Coeff. a where N

opt & C* Coeff. b where D, o C"

1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)

Kaplan et al. (2020) 0.73 0.27

SL2: Approach #2: IsoFLOP Profiles

Vary model size for a fixed set of
FLOP counts

*Obtain best performance for

I
ca

6el8
lel9 -

fixed FLOP at various models, Bao o0 TuewB s 1
. E e ¥ ‘ ,,. af E
use to obtain curve aa o 120 "tg;,;f'- ;
6e20
2.2 : 1e21 ﬁ—.#“
—&— 3ell
20 100M 300M 1B 3B 6B
Parameters
Approach Coeff. a where N, oc C* Coeff. b where D
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)

Kaplan et al. (2020) 0.73 0.27

SL2: Approach #3: Direct Fitting

Fit the function (inspired by classical risk bounds)

.) A B
L(N,D) = E+ — + —
N® DF
Results:
Approach Coeff. a where N, o« C* Coeff. b where D, o« C"
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.27

SL2 Conclusion

Note all results fairly similar:

Approach Coeff. a where N, ,, o« C* Coeff. b where D,,,, o« C"
1. Minimum over training curves 0.50 (0.488, 0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

“All three approaches suggest that as compute budget

increases, model size and the amount of training data should

be increased in approximately equal proportions”
*Quite different from Kaplan et al!

SL2 Chinchilla

What are the implications? ijgi‘gghuman . 250
. GPT-3 5-shot 43.9%
° For d partICU|ar (Iarge) Gopher 5-shot 60.0%
1 Chinchilla 5-shot 67.6%
CompUte bUdget’ Very massive Average human expert performance 89.8%
models are not the way to go,
*“Smaller” is better. T
*Chinchilla model: 70B oo — Anproach 1
—— Approac
parameters, 1.4T tokens ’ T heeroacns
. . 8 10B - aplan et a
* Comparison agglnst Gopher: - & Chinehilla (708)
same compute in FLOPs, but & 18 ¥ Gopher (2808)
Y GPT-3(175B)
mUCh Iarger Y Megatron-Turing NLG
100M
1om

1017 1019 1021 1023 1025
FLOPs

Reconciling Differences & Practical Use

Reconciling Kaplan and Chinchilla Scaling Laws

Tim Pearce Microsoft Research

Jinyeop Song MIT

Abstract

Kaplan et al. (2020) (‘Kaplan’) and Hoffmann et al. (2022) (‘Chinchilla’) studied the scaling
behavior of transformers trained on next-token language prediction. These studies pro-
duced different estimates for how the number of parameters (N) and training tokens (D)
should be set to achieve the lowest possible loss for a given compute budget (C). Kaplan:
Noptimal X €Y7 Chinchilla: Noptimal X €050 This paper finds that much of this discrep-
ancy can be attributed to Kaplan counting non-embedding rather than total parameters,
combined with their analysis being performed at small scale. Simulating the Chinchilla
study under these conditions produces biased scaling coefficients close to Kaplan’s. Hence,
this paper reaffirms Chinchilla’s scaling coefficients, by explaining the primary cause of Ka-
plan’s original overestimation. As a second contribution, the paper explains differences in
the reported relationships between loss and compute. These findings lead us to recommend
that future scaling studies use total parameters and compute. !

Find compute optimal frontier in terms of total Find power law scaling coefficient of 0.51,
parameters N7 and compute as in Chinchilla close to Chinchilla’s 0.50

Start from fitted model of Chinchilla’s training curves
482 2085

o T poar 182 P

Generate training curves for model sizes used in
Kaplan’s study (1k to 1.5B params)

Loss(Nyp, D) =

AT * 0.51
Nj x Crp

parameters [V, z and compute as in Kaplan 0.78, close to Kaplan's 0.73

(Find compute optimal frontier in non-embedding Find local power law scaling coefficient of

Reproducing some scaling laws results from Chinchilla. Can't get the numbers to match exactly, but can still be used as a rough guide

to help determine compute-optimal models. Also contains related utilities for calculating flops and param counts.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline

params

First some parameter calculations:

def gpt_params(seg_len, vocab_size, d_model, num_heads, num_layers):
""" Given GPT config calculate total number of parameters """

ffw_size = 4%d_model # in GPT the number of intermediate features is always 4*d_model

token and position embeddings

embeddings = d_model * vocab_size + d_model * seg_len
transformer blocks

attention = 3xd_model**2 + 3xd_model # weights and biases
attproj = d_model**2 + d_model

ffw = d_modelx(ffw_size) + ffw_size

ffwproj = ffw_sizexd_model + d_model

layernorms = 2*2*d_model

dense

In_f = 2%d_model

dense = d_modelxvocab_size # note: no bias here

note: embeddings are not included in the param count!

total_params = num_layersx(attention + attproj + ffw + ffwproj + layernorms) + ln_f + dense

return total_params

gpt2 = dict(seq_len = 1024, vocab_size = 50257, d_model = 768, num_heads = 12, num_layers

gpt_params (sxgpt2) /1e6

123.653376

= 12)

OpenAl reports gpt2 (small) as having 124M params, so this is a match. Also, loading the OpenAl weights into nanoGPT and then

calling model.parameters() exactly matches the above number and verifies the implementation. Now Chinchilla parameters:

https://github.com/karpathy/nanoGPT/blob/master/scaling_laws.ipynb

.,i?_,;f.\ T T L

Break & Questions

Outline

*Beyond Scaling Laws
*Data pruning and others

Back to Universality

Even if we could estimate these law parameters correctly, are

we stuck with the implications?
* Maybe not!

*Better data via pruning

Beyond neural scaling laws:
beating power law scaling via data pruning

Ben Sorscher*! Robert Geirhos*2 Shashank Shekhar?

Surya Ganguli'~3 Ari S. Morcos>®

*equal contribution
lDepartn'lenl; of Applied Physics, Stanford University
2University of Tiibingen
3Meta Al (FAIR)
8 Joint senior authors

Bibliography

* -Villalobos et al '22a: Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, Marius Hobbhahn, "Machine Learning Model Sizes and
the Parameter Gap" (https://arxiv.org/abs/2207.02852)

* - Villalobos et al '22b: Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, Anson Ho, "Will we run out of data? An
analysis of the limits of scaling datasets in Machine Learning" (https://arxiv.org/abs/2211.04325)

* -Kaplan et al '20: Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,
Dario Amodei, "Scaling Laws for Neural Language Models" (https://arxiv.org/abs/2001.08361)

* -Costello et al '13: Daniel J. Costello, Jr., Lara Dolecek, Thomas E. Fuja, Jorg Kliewer, David G. M. Mitchell, Roxana Smarandache, "Spatially Coupled
Sparse Codes on Graphs - Theory and Practice" (https://ieeexplore.ieee.org/abstract/document/6852099)

* - Hestness et al '17: Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang
Yang, Yangi Zhou, "Deep Learning Scaling is Predictable, Empirically" (https://arxiv.org/abs/1712.00409)

* - Hoffman et al '22: Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa
Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre, "Training Compute-Optimal Large Language Models"
(https://arxiv.org/pdf/2203.15556.pdf)

* -Sorscheretal '22: Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, Ari S. Morcos, "Beyond neural scaling laws: beating power law
scaling via data pruning" (https://arxiv.org/abs/2206.14486)

Sl GaC R E S

K :i'-"‘_;" '.7 ‘-. A . “;—I‘—‘Xf‘
. T -

Thank You!

	Slide 1: CS 839: Foundation Models Scaling & Scaling Laws
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: From Last Time: Diffusion Models Idea
	Slide 6: Score-Based Generative Models
	Slide 7: Score-Based Generative Models
	Slide 8: Training & Inference for Score-Based Models
	Slide 9: Training & Inference for Score-Based Models
	Slide 10: Score-Based → Denoising Diffusion Models
	Slide 11: Score-Based → Denoising Diffusion Models
	Slide 12: Score-Based → Denoising Diffusion Models
	Slide 13: Diffusion Models
	Slide 14: Latent Diffusion Models
	Slide 15: Text-to-Image Generation + Conditional DMs
	Slide 16: Trends: Models
	Slide 17: Trends: Compute
	Slide 18: Trends: Data
	Slide 19: Scaling Laws
	Slide 20: Scaling Laws
	Slide 21: Scaling: Setup
	Slide 22: Compute: FLOPS
	Slide 23: Scaling: Power Laws
	Slide 24: Scaling: Power Laws
	Slide 25: Scaling: Varying the Model Size
	Slide 26: Scaling: Varying the Dataset
	Slide 27: Scaling: Interactions
	Slide 28: Scaling: Compute
	Slide 29: Scaling: Compute
	Slide 30: Scaling: Architectures
	Slide 31: Scaling: Predicting
	Slide 32: Break & Questions
	Slide 33: Outline
	Slide 34: Scaling: How Universal Is This?
	Slide 35: SL2: Approach #1: Minimum Over Curves
	Slide 36: SL2: Approach #2: IsoFLOP Profiles
	Slide 37: SL2: Approach #3: Direct Fitting
	Slide 38: SL2 Conclusion
	Slide 39: SL2 Chinchilla
	Slide 40: Reconciling Differences & Practical Use
	Slide 41: Break & Questions
	Slide 42: Outline
	Slide 43: Back to Universality
	Slide 44: Bibliography
	Slide 45: Thank You!

