S 839: Foundation Models
ML Mini-Review

Fred Sala

University of Wisconsin-Madison

Sept. 9, 2025

Announcements

*OH: Thurs 2:30-4:00 PM in Morgridge 5514

*Resources

*https://milstory.org/ : fun book by Hardt and Recht

*Class roadmap:

Thursday Sept. 11
Tuesday Sept. 16

Thursday Sept. 18
Tuesday Sept. 23

Architectures I: Transformers & Attention

Architectures Il: Subguadratic
Architectures

Language Models |
Language Models II

\

|I9POIN @3endue] Aj3SoN

https://mlstory.org/
https://mlstory.org/

Outline

*General Supervised Learning Review
*Features, labels, hypothesis classes, training, generalization

*Neural Networks

*Perceptrons, MLPs, training and backprop, CNNs, brief
review of RNNs and LSTMs, data augmentation

*Self-Supervised Learning

*Getting representations, pretext tasks, using
representations

Supervised Learning: Formal Setup

Problem setting
* Set of possible instances X

* Unknown target function f: X =)

* Set of models (a.k.a. hypotheses): H = {h‘h X — y}

Get
* Training set of instances for unknown target function,

(x(l), y(l))’ (x(2)7 y(2))7 Cee (Qj(n)7 y(n))
— P, Fah

A

¢ poisonous

Supervised Learning: Objects

Three types of sets
* Input space, output space, hypothesis class
XV, H
*Examples:

* Input space: feature vectors X C R

* Output space:
* Binary y — {—1,—|—1}

e Continuous y Q R

safe poisonous

13.23°

Output Space: Classification vs. Regression

Choices of J have special names:

*Discrete: “classification”. The elements of)/ are classes
* Note: doesn’t have to be binary

‘) /?\\
Versmoior

*Continuous: “regression”
* Example: linear regression

*There are other types...

Hypothesis Class

We talked about X',)) what about H ?

* Pick specific class of models. Ex: linear models: --

h@ (x) — (90 (9133‘1 (922132 c o (9d£13d

*Ex: feedforward neural networks

f¥ (@) = o (Wi f* ()

Parameters: 6, w.

Wikipedia

SL: Training & Generalization

Goal: model h that best approximates f

*One way: empirical risk minimization (ERM)

f = arg min — Z€), 1))

hE?—L n
\
Model prediction

Hypothesis Class
Loss function (how far are we)?

*Generalization?

Evaluation: Validation and Test Sets

e Avalidation set (a.k.a. tuning set) is

e Not used for primary training process, used to select among
models

e A test set
e Not used for training or selection

e Compute metrics

Overfitting

Notation: error of model h over
e training data: errorg(h)
e entire distribution of data: errory(h)

Model h overfits training data if it has
*a low error on the training data (low errorg(h))

Wikipedia

Beyond Accuracy: Confusion Matrices

*How can we understand what types of mistakes a learned

model makes?

actual class

task: activity recognition from video

bend (Y 0 0
jackr 0 0
jump 0 0
piumpr 0 0
run 0 0
sidef 0 0
skipp 0 0
walk [{ 0 Qi
nvavelp 0 0 0 0 0 0 0 0 33
vave2rr 0 0 0 0 0 0 0 0 0
belnd ja'ck jurlnp P ulmp rL]m ss':.‘e skllp w;IK wa:/e 1 wave2

predicted class

.,i?_,;f.\ T T L

Break & Questions

Perceptron: Simple Network

Input
X1
&
ﬁ ’4 xZ\VVA‘ Output
il 7 () 1 wiz>0
Y\r) — :
X, a 0 otherwise

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

13

Neural Networks: Multilayer Perceptrons

An (L + 1)-layer network

First layer

A
[\

@

4
@

Input x = h® Hidden variables h'

hZ

Output layer

Training Neural Networks

*Algorithm:
< Get D = {(=",y"), ..., (", y")}
* Initialize weights
* Until stopping criteria met,
e For each training point (z'¥, y\9)

* Compute: fnetwork (:lj(d)) «— Forward Pass

. oL HL,(d) OL(d)
 Compute gradient: VLY (w) = [

T
owg = Ow, 8wm] «— Backward Pass

* Update weights: W +— W — aVL(Z) (UJ)

Neural Networks: Convolution Layers

*Notation:
*X: n, x n, input matrix
*W: k, x k,, kernel matrix
b : bias (a scalar)
*Y: () x () output matrix

*As usual W, b are learnable parameters

0| 1] 2

3|4 |5 =*
6|7]38

Neural Networks: Convolution NNs

*Properties
*Input: volume c;x n, x n,, (channels x height x width)

* Hyperparameters: # of kernels/filters c,, size k, x k,, stride s, x s,
zero padding p, x p,,

* Qutput: volume ¢, x m, x m,, (channels x height x width)
* Parameters: k, x k,, x ¢; per filter, total (k, x k,, x ¢;) x ¢,

@E>OOOOO

3
Stanford CS 231n

Training a CNN

*Q: so we have a bunch of layers. How do we train?
*A: same as before. Apply softmax at the end, use backprop.

DoOO@000000000 |

exp (fi(x)) softmax

S exp (f(2))

pi(x) =

CNN Architectures: AlexNet

*First of the major advancements: AlexNet
*Wins 2012 ImageNet competition
* Major trends: deeper, bigger LeNet

227 3

CONV
11x11,
stride=4,
96 kernels

—_—

[N
11 B (227-11)4 +1

55
_——

CONV

384 3x3.pad=1
384 kernels

B

{13+2°1-3)/1

+1 =13

13| £
13

96

55

55

Owverlapping

Max POOL

3x3,
stride=2

(55-3)(2 +1
=27

CONV

E—
(13+2%1-31
+1 =13

13

-
i

3x3,pad=1
256 kernels

[
B7

27

256

CONY

axb,pad=2
256 kernels
(27+2°2-5)1 pF
+1 =27

27

Overlapping
Max POOL
3x3, 256
stride=2
(13-3)/2 +1
=5

G

]

9216

=13

4096

Overlapping
Max POOL
I3,
stride=2

(27-3)i2 +1

13

13

CONV
3x3,pad=1
384 kernels
(13+2%1-3)/1
+1 =13

O
O

1000
Softmax

Tasks We Can Handle with NNs?

one to one one to many many to one many to many many to many
! Pt 1 ! Pt Pt
f f Pt Pt o

* Mostly talked about (1) so far
* Others: need a new kind of model

Neural Networks: Simple RNNs

eClassical RNN variant:

a® =p+wWstD 4 yx®
s® = tanh(a®)
0® =¢c4+Vs®
@ @ $® = softmax(o®)
L® = CrossEntropy(y®, ®)

ot—1) o® ot+1)

Neural Networks: LSTMs

* RNN: can write structure as:

& ®)
(|,
=)
| " [_ T
3) ® &)
*Long Short-Term Memory: deals with problem. Cell:
®) ® &)
o [TdAL A [
6{) Q[) é Chris Olah

Neural Networks: Transformers

*Initial goal for an architecture: encoder-decoder

* Get rid of recurrence
* Replace with self-attention

e Architecture
* The famous picture you’ve seen
e Centered on self-attention blocks

Vaswani et al. ‘17

Multi-Head Mq:t»He..ad
Attention Attention
[) VI SO
G J frm—
tional F
Encoding QO &0
Input Qutput
Embedding Embedding
nputs

Data Augmentation

Augmentation: transform + add new samples to dataset
*Transformations: based on domain

*|ldea: build invariances into the model
* Ex: if all images have same alignment, model learns to use it

*Keep the label the same!

Data Augmentation: Examples

Examples of transformations for images
*Crop (and zoom)

*Color (change contrast/brightness)
*Rotations+ (translate, stretch, shear, etc)
Many more possibilities. Combine as well!

Q: how to deal with this at test time?
*A: transform, test, average

.,i?_,;f.\ T T L

Break & Questions

Representations

*Basic idea in ML is to discover useful representations
*|.e., higher level features that are discriminative
* These are not necessarily present in raw data...

Layer 2

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what
part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations

of the 16 different filters (on the left) DeSphande

Where to Get Representations?

*Deep learning:
* Automatically obtain good features, but
* Downside: Need lots of labeled data

*Pre-trained models:

*E.g., ResNets trained on ImageNet. Use last layer (pre-prediction)
* Downside: pre-trained task may not match our goal task

* Generative model encoders:
* Downside: may not relate to semantics we care about

Representations from Self Supervision

*There’s lots of information in our dataset already
* Of course, specific to our task

*Need to create tasks from unlabeled data: “Pretext tasks”
* Ex: predict stuff you already know

4 I
= \
W s
b 4

image completion rotation prediction “‘ligsaw puzzle” colorization
Stanford CS 231n

Using the Representations

*Don’t care specifically about our performance on self-task
*Use the learned network as a feature extractor

*Once we have labels for a particular task, train
* A small amount of data

4) " feature | [h
g |::> self-supervised [> extractor = supervised @{ evaluate on the ‘
learning ' (e.g., a learning target task _
Y Y, . convnet) | L ' g

e.g. classification, detection

lots of
unlabeled

T T

— labeled data on .
conv fc the target task conv linear

Stanford CS 231n classifier

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Discriminative model
* Directly predict label h(x) = y or compute h(x) = p(y|x)

* Canonical example: logistic regression

Py(y =1|z) = o(6' z) =

1 4+ exp(—01x)

Terminology: Generative vs. Discriminative

Need a few terms to be re-used during class

*Generative model
* Model h(x,y) = p(x,y) or h(x) = p(x). Can be unsupervised

e Canonical example: naive Bayes

P(X17'°°7XK7Y) :P(XlaaXK|Y)P(Y)

= (H p(ka) P(Y)

k=1

Generative Models

Learning a distribution from samples
33'(1),3’}(2), i ’w(n) ™ pdata(x)

*Traditionally, want to
* Compute density: compute p(x) for some x
* Inference: compute p(a|b) for some a,b
*Sampling: obtain a sample from p

*Modern methods: may only be able to
sample/conditionally sample

Embeddings & Representations

Related terminology.

*Embeddings

* Traditionally, goal is to take discrete objects (words,
graphs, etc.) and produce vectors usable in DNNs

* Text: Word2Vec Graphs: Hyperbolic embeddings

Epoch O
e MAP 0.104
L T financi q w ”"tbi:’f term '&EW%; r mee tt?gt Y
| hold
dqn inves tment country .) SCWXF ﬂ'¥5 fr? r ha ﬂn d
Rz maip gwwecom‘r:vg ad %ppm} londog u:tu%
.flr R'. repot a:a ntm"%efesg&i’ ' d‘“ﬁ joip internationgl
l'l I'l accord o " Mg boSEpWate annou L‘O(also role =3 back
| : | s 2% S VS A W
l. .I g,emgpg fig o) levg - 3 ectdyiti m& poir nati Gﬁglangmﬁd
' ' B franigla
1\ ;I p:fg:@;;% expect although o dgﬁ'"ﬁ‘%égog lea g nm?gﬁ Io e j ggo
se %‘?g de embe \ mov priz d%
> &T\aJOdwgtg show & name P%§
atmitegn 3”“"‘3 south featuresong®nd winner olymp
Wd ctiop S&ecrgg rrrrr § Veverg Eﬂg ‘a} satu x
&M ,-f"“/ list aml;encagﬁe:s ha‘f P lea g tf“ nda x
— Iaunc‘\ Iw ﬁ\g?'s un: . P febrgea&] dro p thirde.; pla CE beat

Embeddings & Representations

Related terminology.
*Embeddings

e Often trained based on some custom loss (no “task”)
* Word2Vec: word co-occurrences €2 embedding distances/ips

financigl "'tbg.?’f term m‘EWf'i[me'etul#ﬁ gD
dq xmgllyai W holg hea“uteg

investment country) ; fridayarch leav »
R ma economig offic % 0 londo tu% §
§ ¢ Uagw“ onom 3‘5 d‘m'lpp % (Y
oo ntin re%t g joip internationg|
uk te
accofgsharg boSEP annOUﬁ) alsp role e < back
market stocg pncg bt stro . appear ma aheag a‘ dug
fi | directd¥itisbo 2 nati glan d
g»ggopg figur 9% 'evg receive ® woman DS Gﬁ nager
A I)
pfOf% expect although amon ﬁm)ac leag T’an@@ an
% rt? includ awgrg 900 e um??ﬁ os; zgo tF::.q
sell 8 mbe&najcﬂﬁ@tg show ~ MOVig nam six $
ahmidegin south nne olymp
" B’gducnog featureso j)aer’armancg {everg e;g mar} ol 3‘"'3 an
list amerlc e ha‘f Ieag atf““dax

reacI-

®
launch |q@ea§pg?’g . P febrggaII drop third-+P3C§ peat

Embeddings & Representations

Related terminology.
*Representations

e Often trained based on related task OR pretext task

* Contain “deeper” information about each sample

* Come from “pretrained” models

from torchvision.models import resnet50, ResNet50 "Was<h+e

P —
01d weights with accuracy 76.130% a N " feature N
resnet50 (weights=ResNet50_Weights.IMAGENET1K_V1) SE|f—Sup6NiSBd > extractor

> : (-
New weights with accuracy 80.858% Ieammg (e-g-: a
reshet50 (weights=ResNet50_Weights.IMAGENET1K_V2) \ J _ convnet) Y

Best available weights (currently alias for IMA lots of

Note that these weights may change across versiunlabeled
resnet50(weights=ResNet50_Weights.DEFAULT) data . :| :| 90°
Strings are also supported

resnet50(weights="IMAGENET1K_V2")

- "
No weights - random initialization conv fc

resnet50 (weights=None)
Stanford CS 231n

s Y

N supervised
learning

A

small amount of
labeled data on
the target task

=

evaluate on the ‘
target task

e.g. classification, detection

AH

CO nv

- bird

hnear

classifier

	Slide 1: CS 839: Foundation Models ML Mini-Review
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Supervised Learning: Formal Setup
	Slide 5: Supervised Learning: Objects
	Slide 6: Output Space: Classification vs. Regression
	Slide 7: Hypothesis Class
	Slide 8: SL: Training & Generalization
	Slide 9: Evaluation: Validation and Test Sets
	Slide 10: Overfitting
	Slide 11: Beyond Accuracy: Confusion Matrices
	Slide 12: Break & Questions
	Slide 13: Perceptron: Simple Network
	Slide 14: Neural Networks: Multilayer Perceptrons
	Slide 15: Training Neural Networks
	Slide 16: Neural Networks: Convolution Layers
	Slide 17: Neural Networks: Convolution NNs
	Slide 18: Training a CNN
	Slide 19: CNN Architectures: AlexNet
	Slide 20: Tasks We Can Handle with NNs?
	Slide 21: Neural Networks: Simple RNNs
	Slide 22: Neural Networks: LSTMs
	Slide 23: Neural Networks: Transformers
	Slide 24: Data Augmentation
	Slide 25: Data Augmentation: Examples
	Slide 26: Break & Questions
	Slide 27: Representations
	Slide 28: Where to Get Representations?
	Slide 29: Representations from Self Supervision
	Slide 30: Using the Representations
	Slide 31: Terminology: Generative vs. Discriminative
	Slide 32: Terminology: Generative vs. Discriminative
	Slide 33: Generative Models
	Slide 34: Embeddings & Representations
	Slide 35: Embeddings & Representations
	Slide 36: Embeddings & Representations

