1l

g
2

W

CS 839: Foundation Models
Transformers and Attention

Fred Sala

University of Wisconsin-Madison

Sept. 11, 2025

Announcements

*Announcements: Recordings available on Canvas
(under Kaltura tab)

*Class roadmap:

__

Tuesday Sept. 16 Architectures Il: Subquadratic
Architectures

—
Thursday Sept. 18 Language Models |
Tuesday Sept. 23 Language Models II —
Thursday Sept. 25 Prompting

S|opo|N @23endue Aj1so

Outline

*Basic Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition

*Additional Elements
* Multi-head attention, positional encodings

*Transformers
* Architecture, encoder and decoder setups

Outline

*Basic Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition

History of Attention

Basic motivation: in NLP fixed context vector not enough
*Why?
* Words depend on each other =
* Dependencies are complex -

agreement
European
Economic
Area

was
signed

on
the

in
August
1992
<end>

accord
sur
la

*Need: mechanism to help model

économique

focus on the right “part” européenne
été
signé

Lots of approaches from 2014 on er

aolt

*Bahdanau et al, 2014 1992

<end>

Bahdanau et al, 2014

Self-Attention: Motivation

Popularized from 2017 on...

*From bottom-up. Let’s design a basic layer.
* Intuition: dependencies within same sentence

The
Te
The
The

The
The
The
The
The

The FBI is chasing a criminal on the run .

FBI is chasing a criminal on the run .

EBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

18
18
18
18
I
18

1S

chasing a criminal on the run .

chasing a criminal on the run .
chasing a criminal on the run .
chasing a criminal on the run.

chasing a criminal em the run.

chasing @ criminal em the run.

chasing a criminal on the man .

Cheng et al, 2016

Layer. 5 § Attention:

The_
animal_
didn_

t

Cross_
the_
street_
because_

it_

was
too_
tire

Jay Alammar

d

Input - Input

A
v

The_
animal_
didn_

t

Cross_
the_
street_
because_
it

was

too

tire
d

Self-Attention: Goals and Inputs

From bottom-up. Let’s design a basic layer.

*Two criteria
* Transform incoming word vectors,
* Enable interactions between words

*Input: vectors for words

Note: All visualizations are due to Jay Alammar

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”

\ J \ J
I I

Query Value
| J
Obijects: '
Score 0.3
Query
Value
Score 0.7

Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding [T TT] [T T 1]
Objects: Queries o I e T 1]
Query
Keys [:I:I:] [:I:I:]
Value

Values [:I:I:] [:I:I:]

Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

d+1

\ J \ J

Query

I

Score 0.3

* Lots of things we could do --- simpler is usually better!
* Dot product gy * o =

* Then we’ll do softmax

Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight
matrices: linear transformations! input
* Compute scores
Embedding l ‘ ‘ ‘ |
Objects: Queries
Keys
Query
Values

Value

Self-Attention: Putting it Together

* Have query, value vectors via Input
weight matrices: linear Embedding T T
transformations!
* Have softmax score outputs (focus) — Queres o [T q [T
* Add up the values! Keys [T 1] L]
Values [T 1] [T 1]
ObjECtS: Score qi* ki = qi e ko =
Divide by 8 (/d;)

Query

Value

Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ:, — X }V — XWV

Query

Value

. ® T)
Attention((Q), /v, V) = softmax (V
() Vi

Ur@ T
Attention(Q, /', V) = softmax (X — XT) vV

.,i?_,;f.\ T T L

Break & Questions

Outline

*Additional Elements
* Multi-head attention, positional encodings

Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs

Self-Attention: Positional Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!

* Solution: add positional encodings

PE(pos,2i) = Sin(pos/j_()()()()z’i/dmodel)
PE(pos,2i+1) = cos(pos 100002/ dmose)

Location index POSITIONAL .- N 0,840.54 : 091 ,
ENCODING

- + -

EMBEDDINGS LT] LT HEN

INPUT

Self-Attention: Positional Encodings

PE(pos,Qi) — Sin(p08/100002i/dm0de1)
PE(pOS,2i+1) — COS(pOS/l()O()OZ’i/dmodel)

Why these mysterious formulas? Want properties:

* Consistent encoding
* Smooth

* Linearity across positions

 Alternating sin and cos: can multiply by rotation matrix to
obtain shifts

https://huggingface.co/blog/designing-positional-encoding

Self-Attention: Modern Positional Encodings

These sinusoidal embeddings were defined in the original
Transformers paper,

* Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave
slightly differently

252

chased

* Example: multiplicative instead of additive
* Popular: Rotary Positional Encoding (RoPE)
* Note: perform in every attention layer

https://huggingface.co/blog/designing-positional-encoding

.,i?_,;f.\ T T L

Break & Questions

Outline

*Transformers
* Architecture, encoder and decoder setups

Transformers: Model Architecture

*|nitial goal for an architecture: encoder-decoder

. Linear
* Get rid of recurrence ——
* Replace with self-attention Fonward
(~Cariem))
F(F)::avf;’rd) At’te)ﬂtior‘. g N

- [
o A h .t t ”@.@ Masked
rC I ec u re Multi-Head Muiti-Head

Attention Attention
* The famous picture you’ve seen = ==
* Centered on self-attention blocks Eonang CO-9 & Froodng
Input Qutput
Embedding Embedding

il T

Vaswani et al. ‘17

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student

r 3

fr ~ e \
ENCODER g DECODER
\ y \ J
i I
(A 4
ENCODER DECODER
\, J \
4 4
') a2)
ENCODER DECODER
. J \. J
[y [
g) [)
ENCODER DECODER
\ J \, J
i p
(A (" "
ENCODER DECODER
\ J \ J
A 4
e 5 s ™)
ENCODER DECODER
. J \. J
4 Y,

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

[\ Feed Forward
Feed Forward Neural Network
\ J - *
1‘ — [Feed Forward] [Encoder-Decoder Attention J
Self-Attention
\) Self-Attention Self-Attention

t t t

Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
* 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head

t t
| . L1
[F ed Forwardj Feed Forwar dj
Neural Network N | Network
t t
m
t t
[Self-Attention j
t 1

Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

4 3
I,-b(Add & Normalize)
: 4 4
: (Feed Forward) (Feed Forward)
P —— A---cccccccccccnnnan A
,-p(Add & Normalize)
:) R

E (Self-Attention)

.

POSITIONAL
ENCODING

x1 [x2 [

Thinking Machines

Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
* 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head

t

Feed Forward J

+

Encoder-Decoder Attention

4

Self-Attention

t

¢ N[N/ N

N

Transformers: Last Layers

*Next let’s look at the end. Similar to a CNN,

Which word in our vocabulary

1. Linea r |ayel‘ is associated with this index? A
* 2. Softmax

Get the index of the cell
with the highest value

(argmax)
- log_probs (TTTTT T T [
Get probabilities of JEL L
words (Softmax)
*
logits Lttt ettt el
0 12345 . vocab_size
*
(: Linear :)
*

Decoder stack output L1 1]

Transformers: Putting it All Together

\What does the full architecture look like?

Softmax
[}
Linear
5, 4
S 4 ¢
i Add & Normalize)

= 4 4
Encoder-Decoder Attention
= Ny vy sl B BT T T e i
\; Add & Normalize

]

'

L} '

' 1]

1 L}

» ’ e e el

POSITIONAL
ENCODING

« T T 1] [[1]

Thinking Machines

Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.

Sl GaC R E S

K :i'-"‘_;" '.7 ‘-. A . “;—I‘—‘Xf‘
. T -

Thank You!

	Slide 1: CS 839: Foundation Models Transformers and Attention
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: History of Attention
	Slide 6: Self-Attention: Motivation
	Slide 7: Self-Attention: Goals and Inputs
	Slide 8: Self-Attention: Retrieval Intuition
	Slide 9: Self-Attention: Query, Key, Value Vectors
	Slide 10: Self-Attention: Score Functions
	Slide 11: Self-Attention: Scoring and Scaling
	Slide 12: Self-Attention: Putting it Together
	Slide 13: Self-Attention: Matrix Formulas
	Slide 14: Break & Questions
	Slide 15: Outline
	Slide 16: Self-Attention: Multi-head
	Slide 17: Self-Attention: Positional Encodings
	Slide 18: Self-Attention: Positional Encodings
	Slide 19: Self-Attention: Modern Positional Encodings
	Slide 20: Break & Questions
	Slide 21: Outline
	Slide 22: Transformers: Model Architecture
	Slide 23: Transformers: Architecture
	Slide 24: Transformers: Architecture
	Slide 25: Transformers: Inside an Encoder
	Slide 26: Transformers: More Tricks
	Slide 27: Transformers: Inside a Decoder
	Slide 28: Transformers: Last Layers
	Slide 29: Transformers: Putting it All Together
	Slide 30: Transformers: The Rest
	Slide 31: Thank You!

