

CS 839: Foundation Models **Transformers and Attention**

Fred Sala

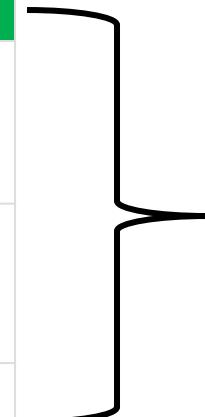
University of Wisconsin-Madison

Sept. 11, 2025

Announcements

- **Announcements:** Recordings available on Canvas (under Kaltura tab)
- Class roadmap:

Thursday Sept. 11	Architectures I: Transformers & Attention
Tuesday Sept. 16	Architectures II: Subquadratic Architectures
Thursday Sept. 18	Language Models I
Tuesday Sept. 23	Language Models II
Thursday Sept. 25	Prompting



Mostly Language Models

Outline

- **Basic Attention**

- Notions of attention, self-attention, basic attention layer, QKV setup and intuition

- **Additional Elements**

- Multi-head attention, positional encodings

- **Transformers**

- Architecture, encoder and decoder setups

Outline

- **Basic Attention**

- Notions of attention, self-attention, basic attention layer, QKV setup and intuition

- **Additional Elements**

- Multi-head attention, positional encodings

- **Transformers**

- Architecture, encoder and decoder setups

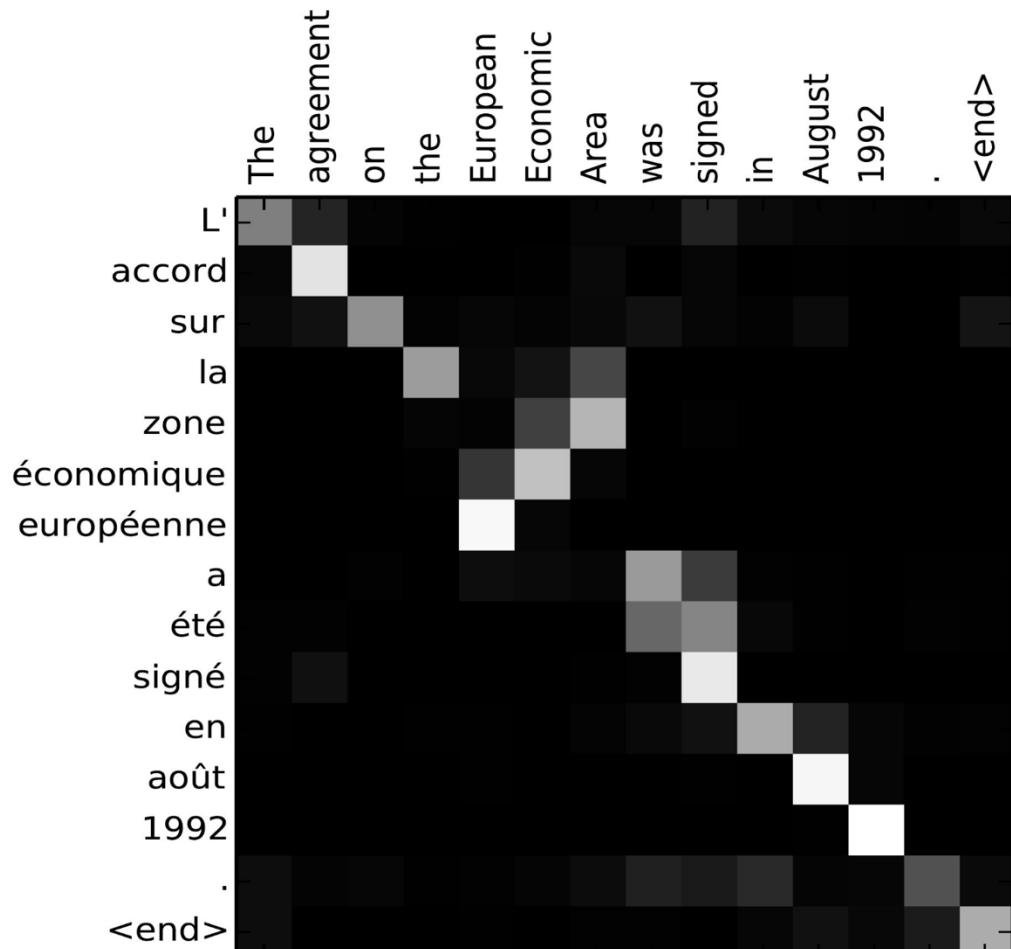
History of Attention

Basic motivation: in NLP *fixed* context vector **not** enough

- Why?
 - Words depend on each other
 - Dependencies are complex
- Need: mechanism to help model **focus** on the right “part”

Lots of approaches from 2014 on

- Bahdanau et al, 2014



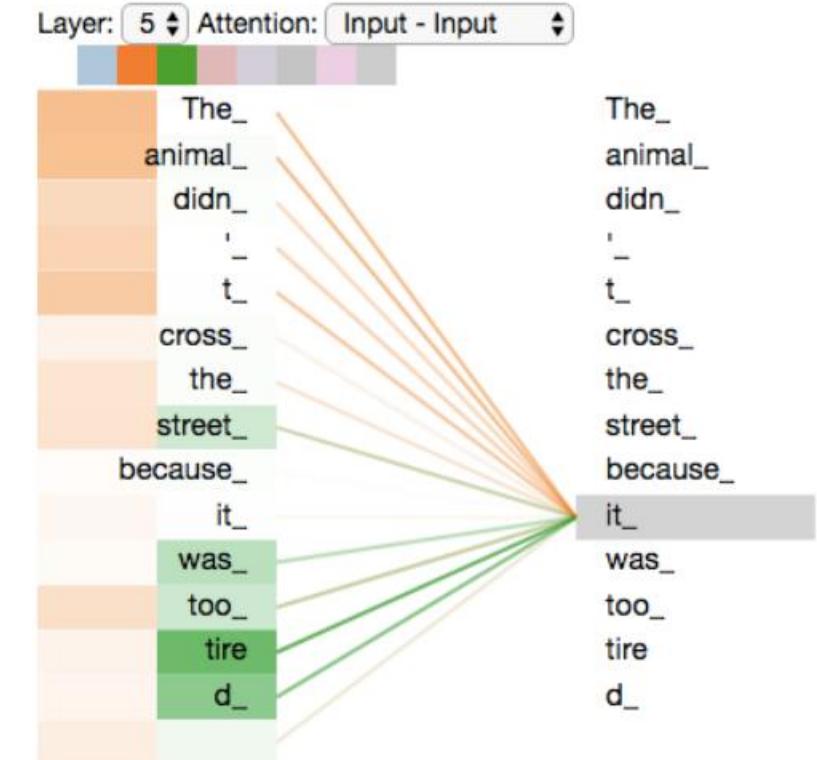
Bahdanau et al, 2014

Self-Attention: Motivation

Popularized from 2017 on...

- From bottom-up. Let's design a basic layer.
 - Intuition: dependencies **within** same sentence

The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .



Self-Attention: Goals and Inputs

From bottom-up. Let's design a basic layer.

- Two criteria
 - *Transform* incoming word vectors,
 - Enable *interactions* between words
- Input: vectors for words

Note: All visualizations are due to Jay Alammar

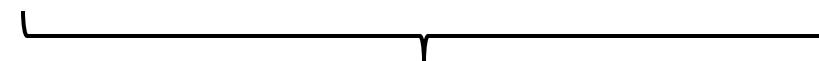
Excellent resource: <https://jalammar.github.io/illustrated-transformer/>

Self-Attention: Retrieval Intuition

- How should we design the interactions?

- Analogy: **search**

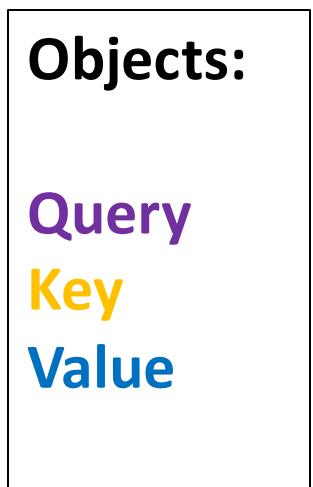
“Which restaurants near me are open at 9:00 pm?”



Query

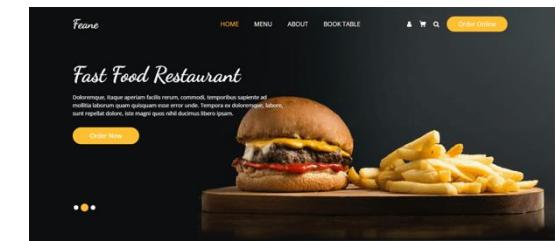
Key

Value



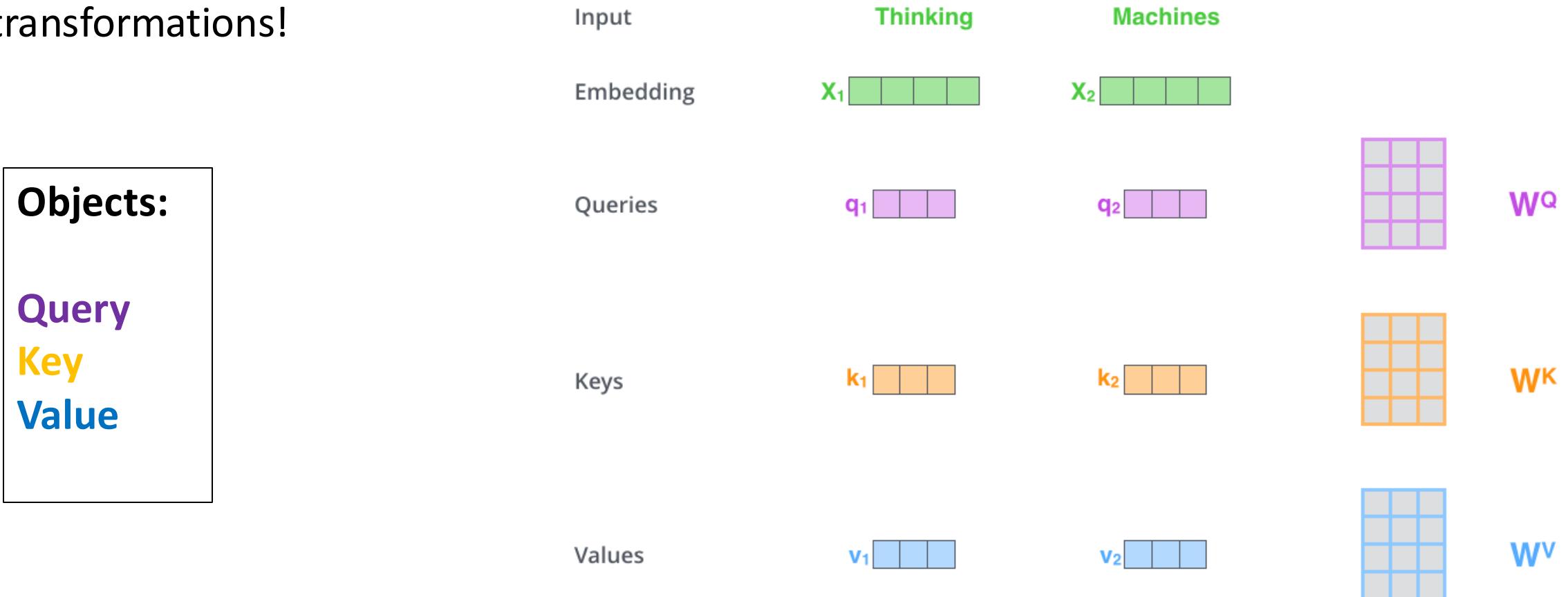
Score 0.3

Score 0.7



Self-Attention: Query, Key, Value Vectors

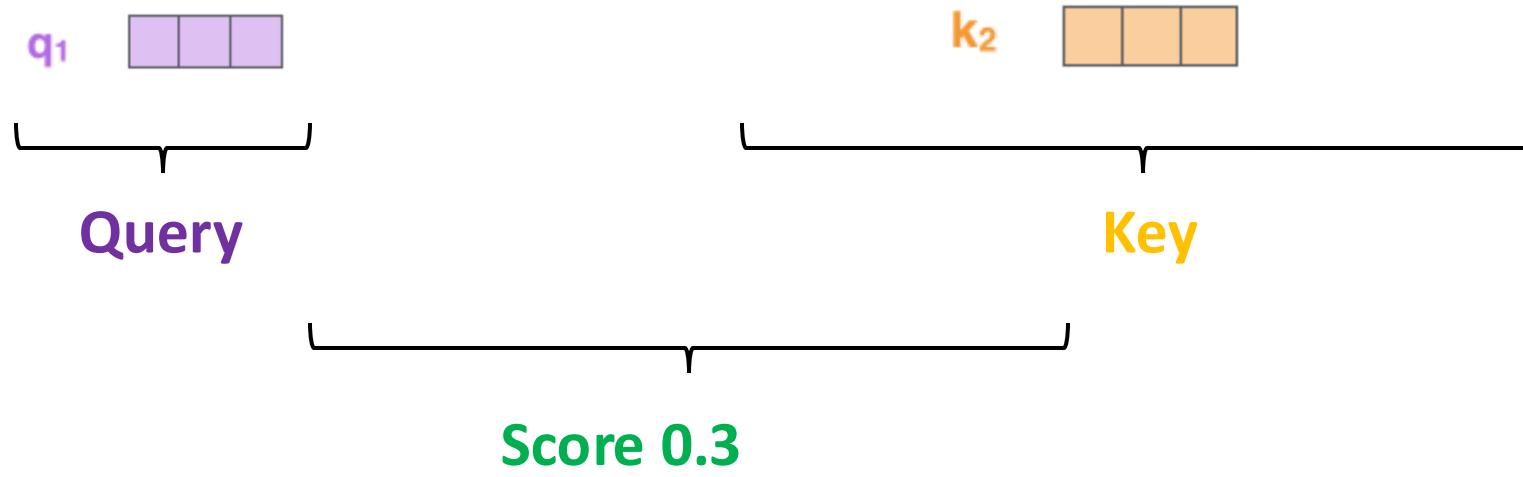
- *Transform* incoming word vectors,
- Enable *interactions* between words
- Get our **query**, **key**, **value** vectors via weight matrices: linear transformations!



Self-Attention: Score Functions

Have **query**, **key**, **value** vectors

- Next, get our **score**



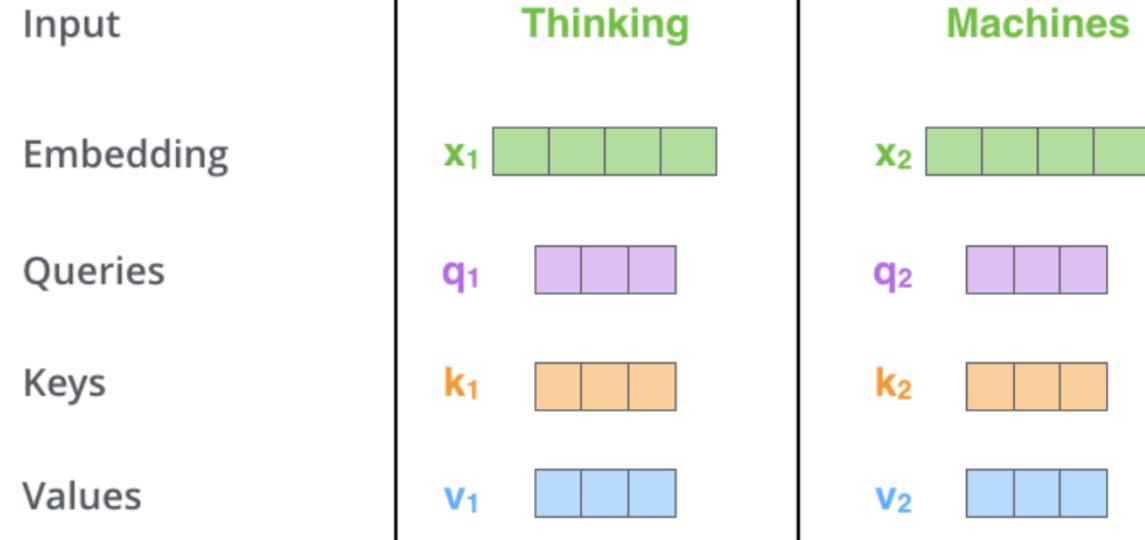
- Lots of things we could do --- **simpler** is usually better!
- Dot product $q_1 \cdot k_2 = 96$
- Then we'll do **softmax**

Self-Attention: Scoring and Scaling

- *Transform* incoming word vectors,
- Enable *interactions* between words
- Get our **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Compute scores

Objects:

Query
Key
Value



Self-Attention: Putting it Together

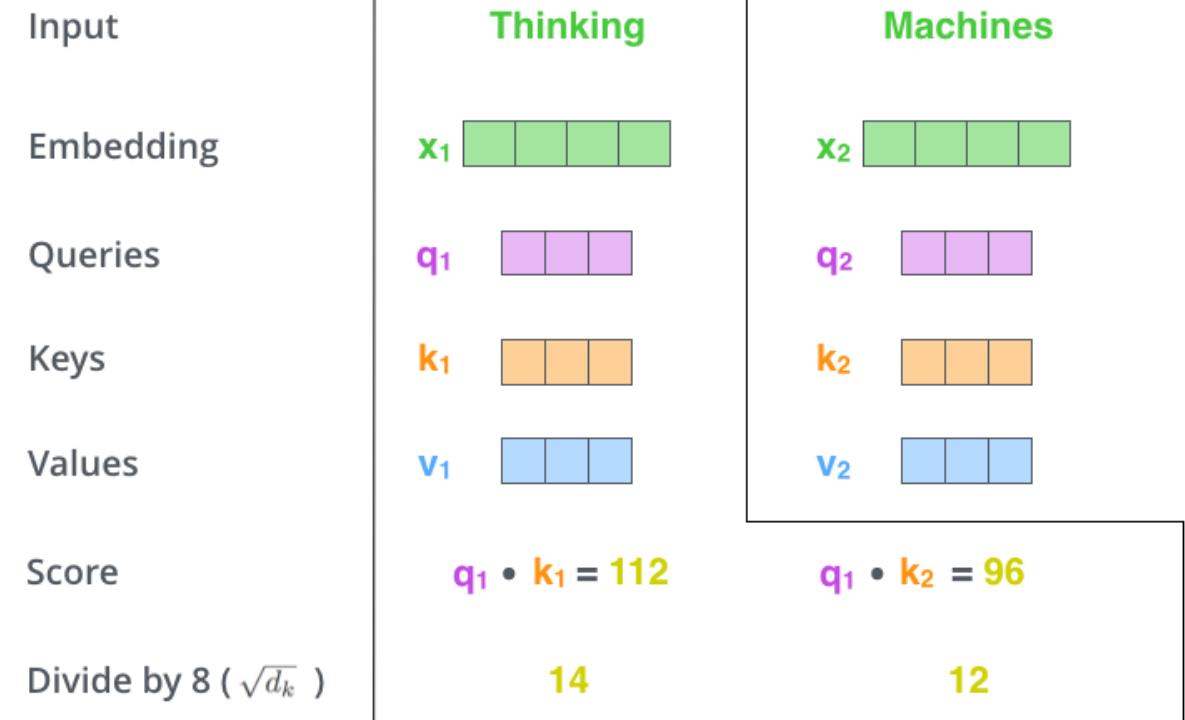
- Have **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Have softmax score outputs (**focus**)
- Add up the values!

Objects:

Query

Key

Value



Self-Attention: Matrix Formulas

- Have **query**, **key**, **value** vectors via weight matrices: linear transformations!
- Have softmax score outputs (**focus**)
- Add up the values!

Objects: Query Key Value	$Q = XW_Q, K = XW_K, V = XW_V$ $\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$
---	---

$$\text{Attention}(Q, K, V) = \text{softmax} \left(X \frac{W_Q W_K^T}{\sqrt{d_k}} X^T \right) V$$

Break & Questions

Outline

- **Basic Attention**

- Notions of attention, self-attention, basic attention layer, QKV setup and intuition

- **Additional Elements**

- Multi-head attention, positional encodings

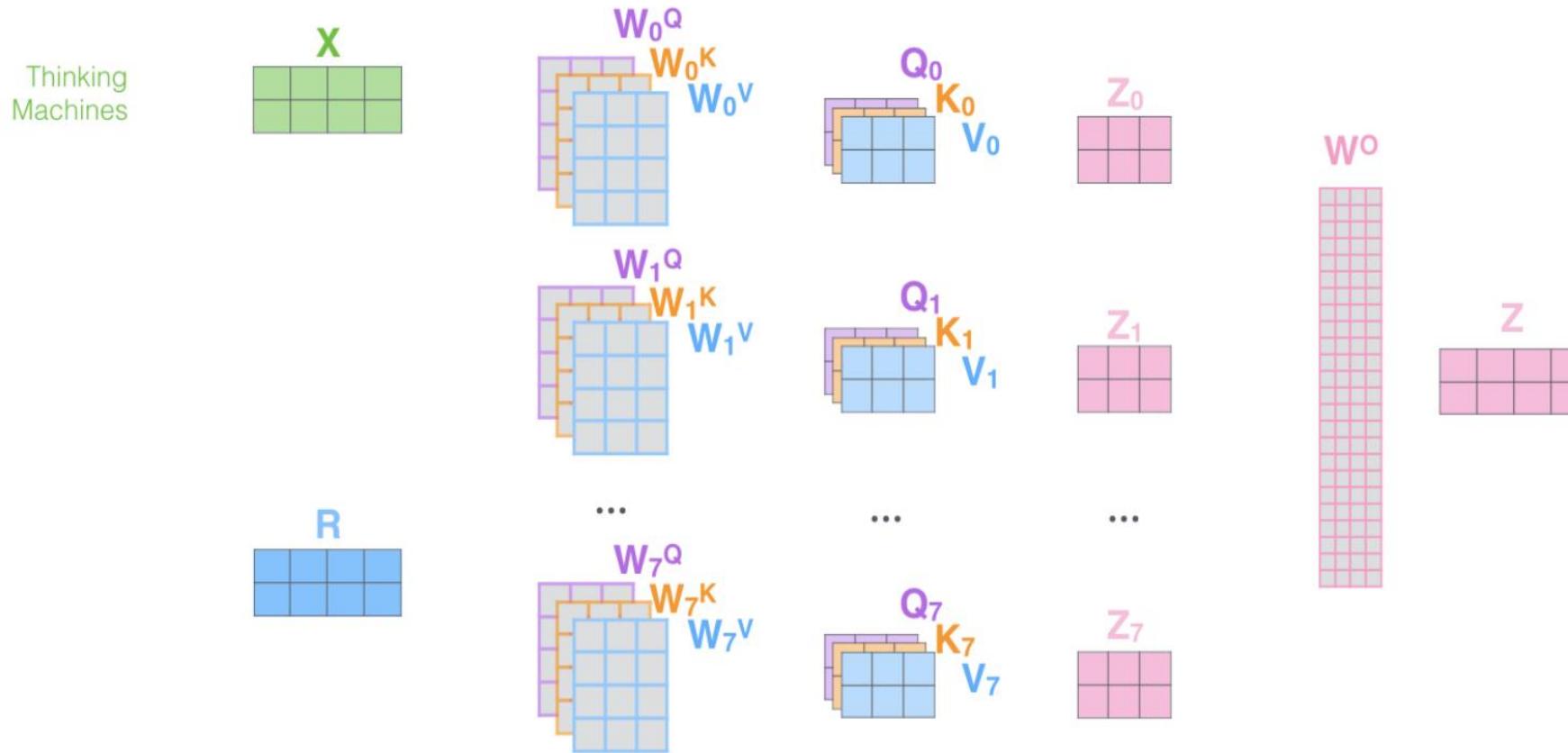
- **Transformers**

- Architecture, encoder and decoder setups

Self-Attention: Multi-head

This is great but will we capture everything in one?

- Do we use just 1 kernel in CNNs? **No!**
- Do it many times in parallel: **multi-headed attention**. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.

- One annoying issue: so far, order of words **(position) doesn't matter!**
- Solution: add positional encodings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{\text{model}}})$$

↑
Location index

POSITIONAL
ENCODING

0	0	1	1
---	---	---	---

0.84	0.0001	0.54	1
------	--------	------	---

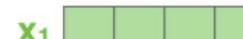
0.91	0.0002	-0.42	1
------	--------	-------	---

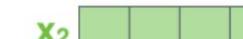
+

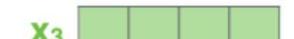
+

+

EMBEDDINGS

x_1 

x_2 

x_3 

INPUT

Je

suis

étudiant

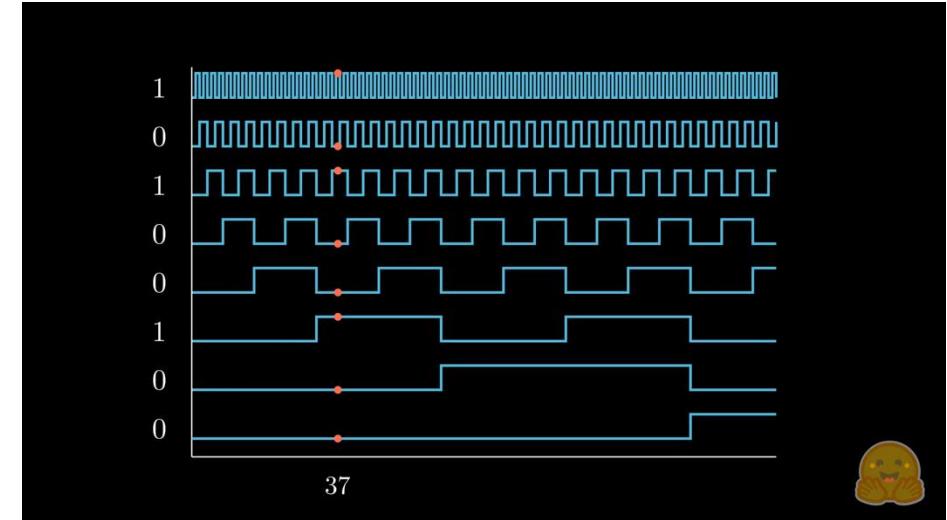
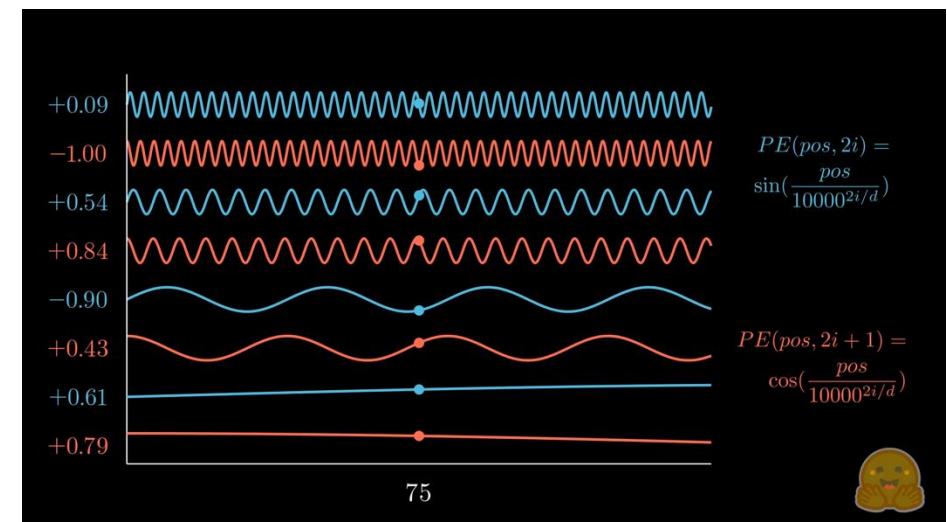
Self-Attention: Positional Encodings

$$PE_{(pos,2i)} = \sin(pos/10000^{2i}/d_{\text{model}})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i}/d_{\text{model}})$$

Why these **mysterious formulas**? Want properties:

- Consistent encoding
- Smooth
- Linearity across positions
 - Alternating sin and cos: can multiply by rotation matrix to obtain shifts



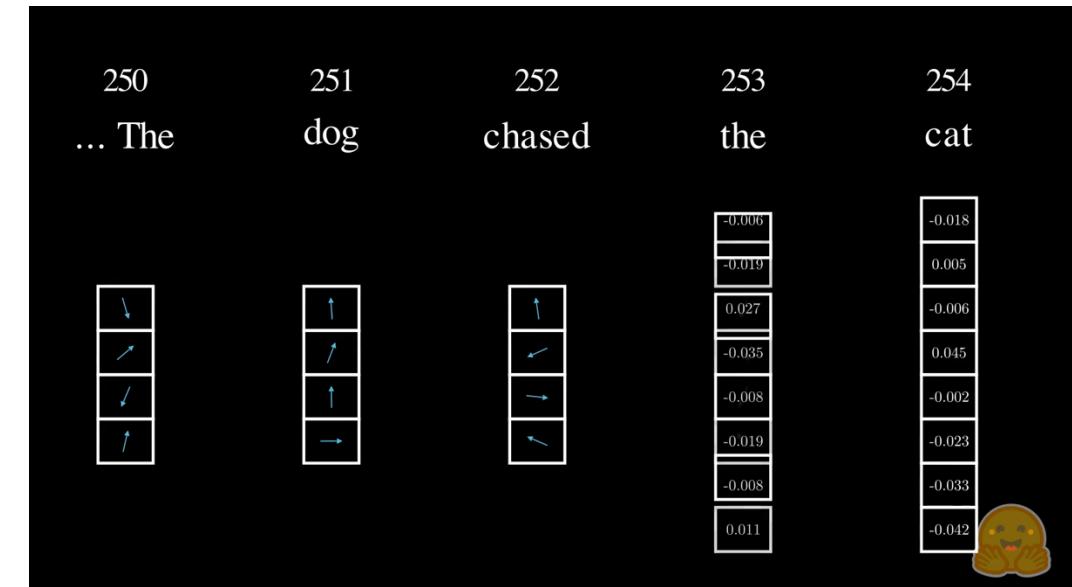
Self-Attention: Modern Positional Encodings

These *sinusoidal* embeddings were defined in the original Transformers paper,

- Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave slightly differently

- Example: *multiplicative* instead of *additive*
- Popular: **Rotary Positional Encoding (RoPE)**
- Note: perform in every attention layer



Break & Questions

Outline

- **Basic Attention**

- Notions of attention, self-attention, basic attention layer, QKV setup and intuition

- **Additional Elements**

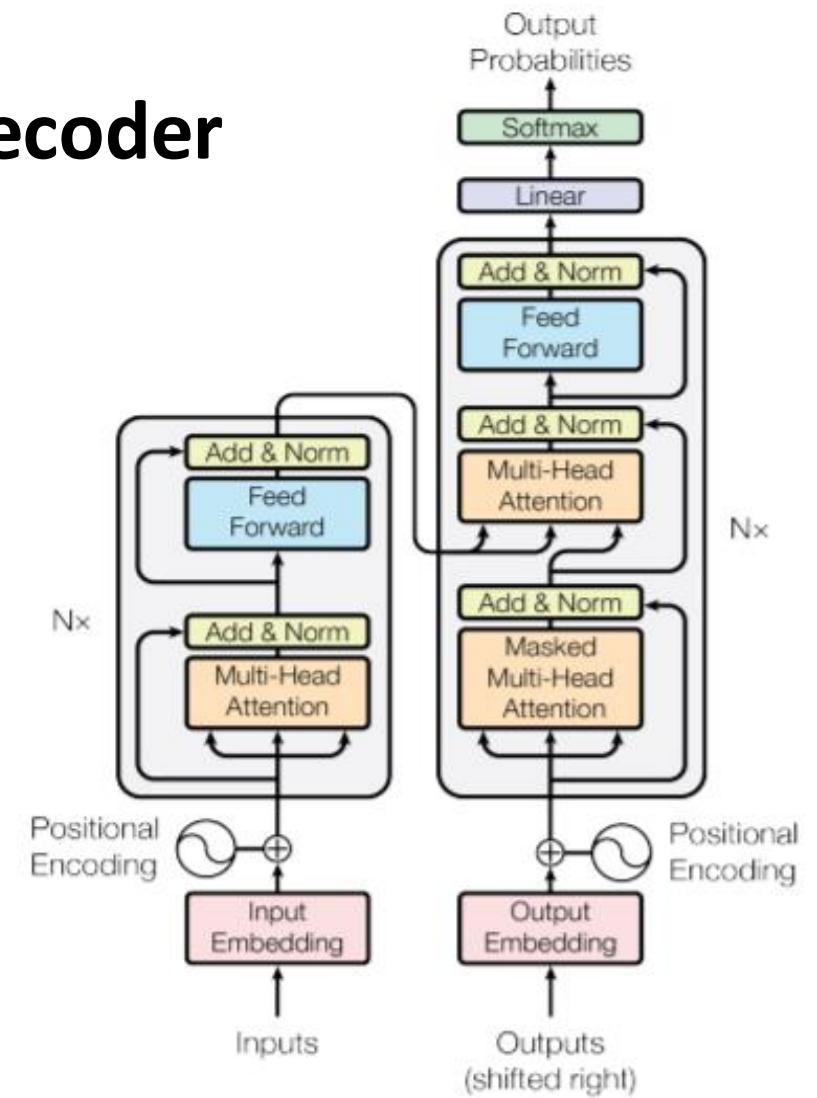
- Multi-head attention, positional encodings

- **Transformers**

- Architecture, encoder and decoder setups

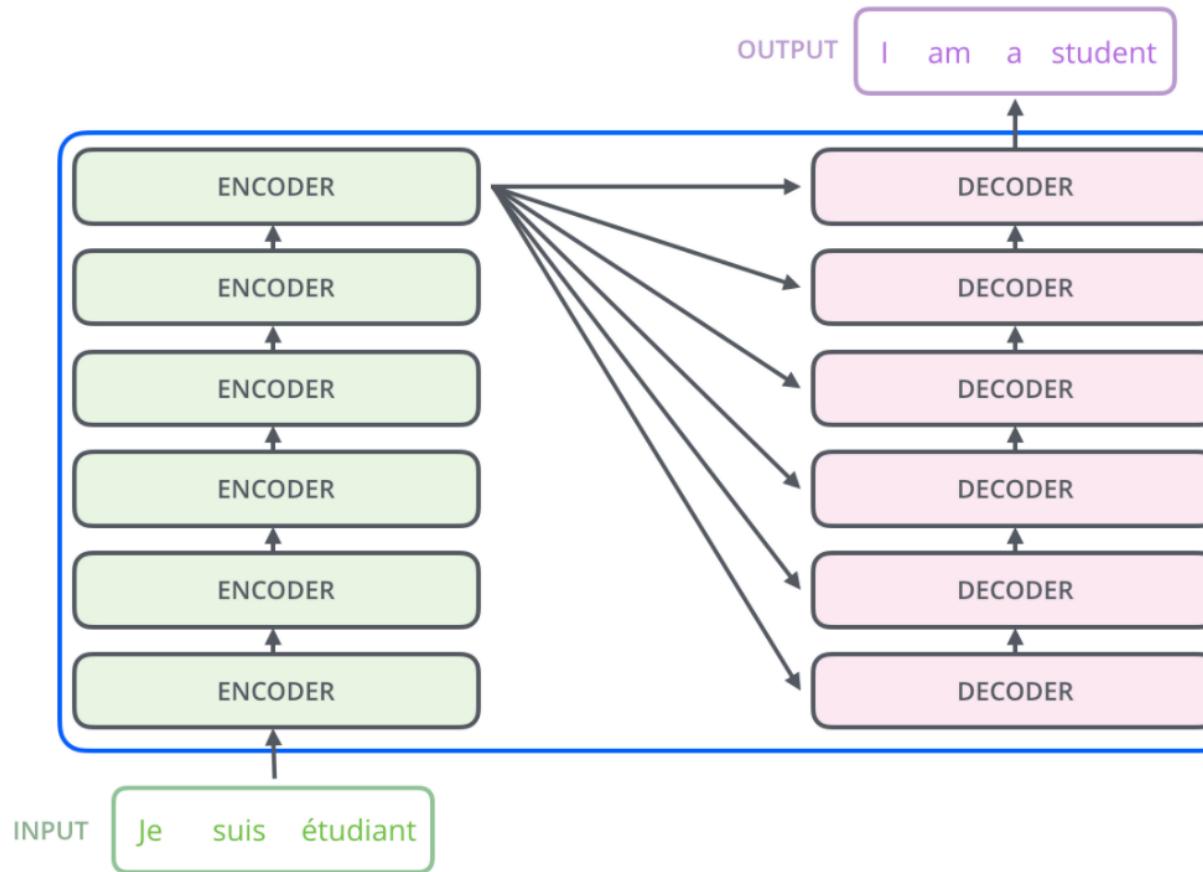
Transformers: Model Architecture

- Initial goal for an architecture: **encoder-decoder**
 - Get rid of recurrence
 - Replace with **self-attention**
- Architecture
 - The famous picture you've seen
 - Centered on self-attention blocks



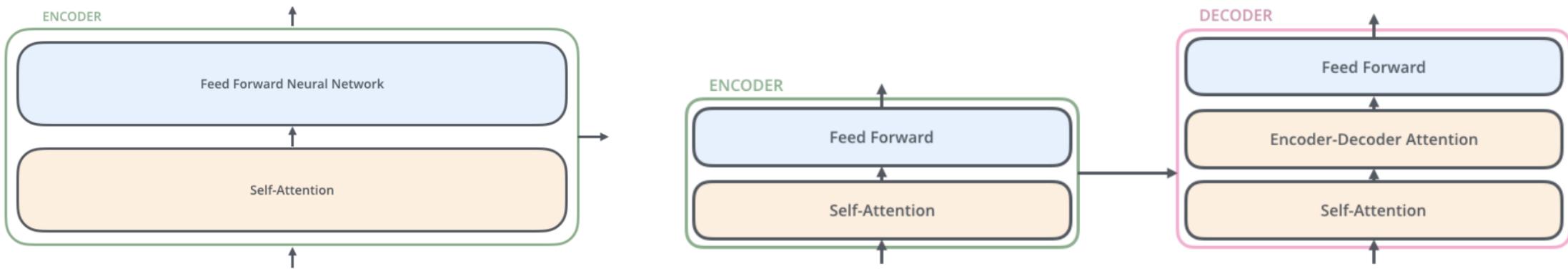
Transformers: Architecture

- **Sequence-sequence model with stacked encoders/decoders:**
 - For example, for French-English translation:



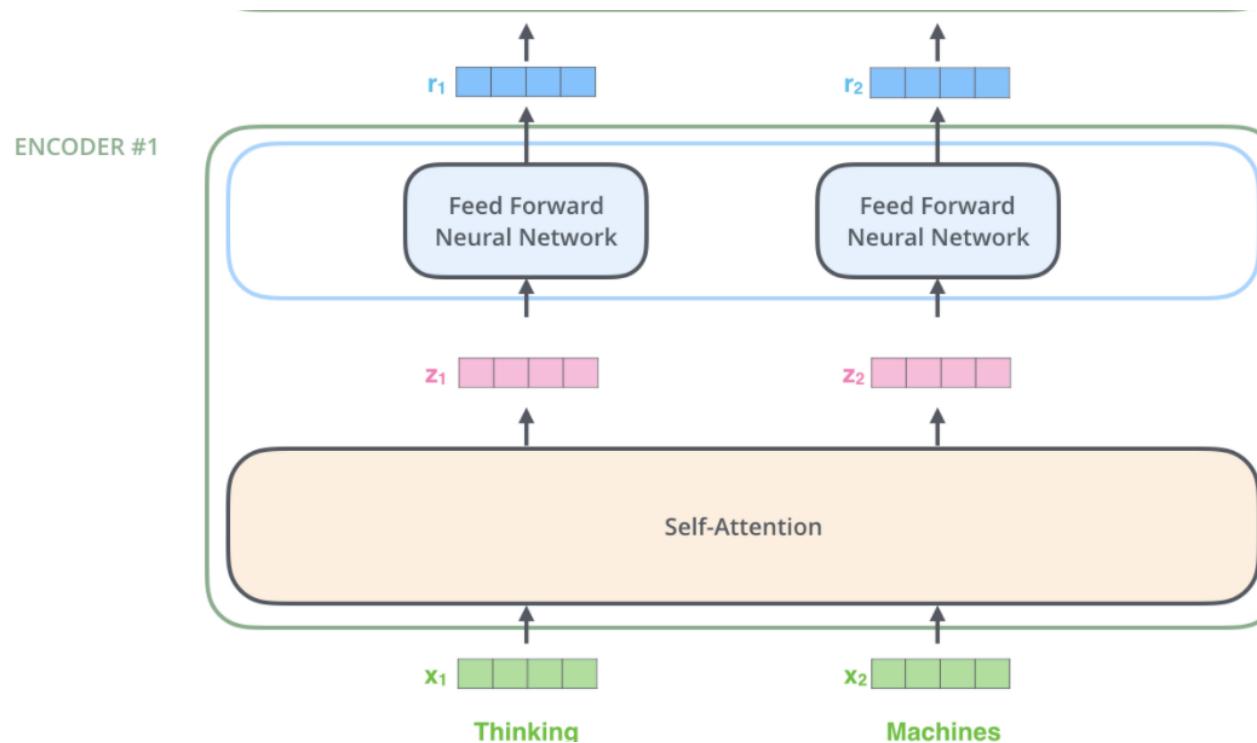
Transformers: Architecture

- Sequence-sequence model with **stacked** encoders/decoders:
 - What's inside each encoder/decoder unit?
 - Focus encoder first: **pretty simple!** 2 components:
 - Self-attention block
 - Fully-connected layers (i.e., an MLP)



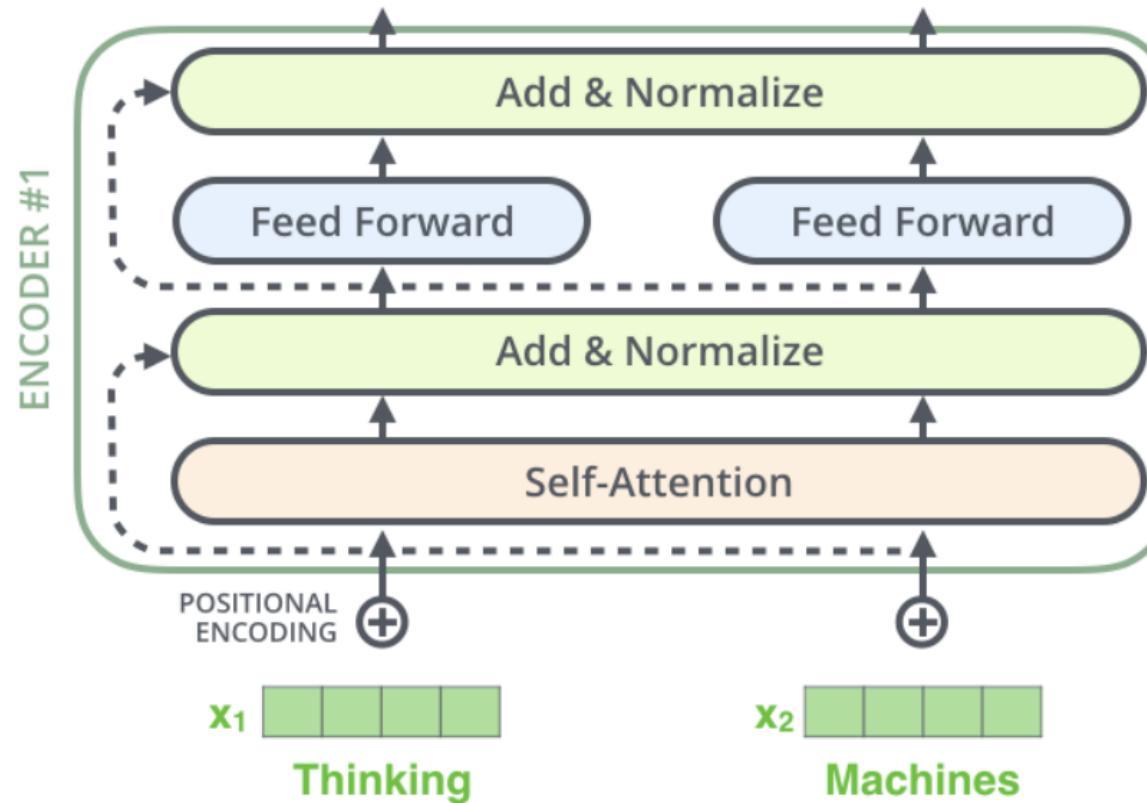
Transformers: Inside an Encoder

- Let's take a look at the encoder. Two components:
 - 1. **Self-attention** layer (covered this)
 - 2. “Independent” **feedforward nets** for each head



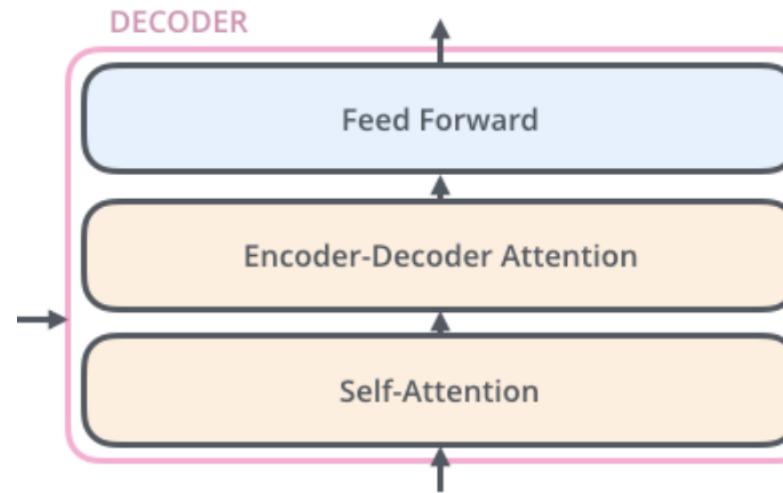
Transformers: More Tricks

- Recall a big innovation for ResNets: residual connections
 - And also layer normalizations
 - Apply to our encoder layers



Transformers: Inside a Decoder

- Let's take a look at the decoder. Three components:
 - 1. **Self-attention** layer (covered this)
 - 2. Encoder-decoder attention (same, but K, V come from encoder)
 - 3. “Independent” **feedforward nets** for each head



Transformers: Last Layers

- Next let's look at the end. Similar to a CNN,

- 1. Linear layer
- 2. Softmax

Get probabilities of words

Which word in our vocabulary is associated with this index?

am

Get the index of the cell with the highest value (argmax)

5

log_probs

0 1 2 3 4 5 ... vocab_size

Softmax

logits

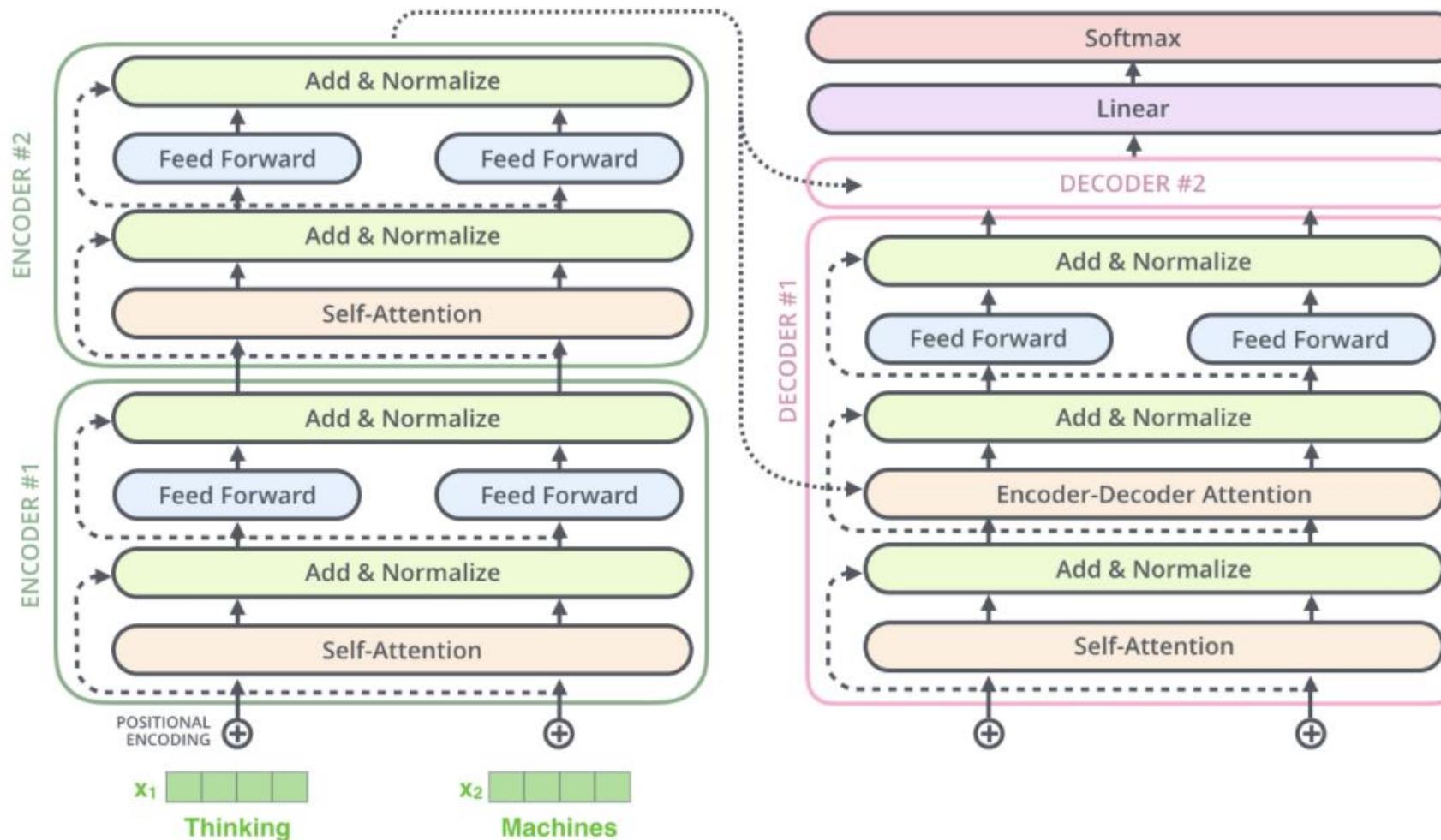
0 1 2 3 4 5 ... vocab_size

Linear

Decoder stack output

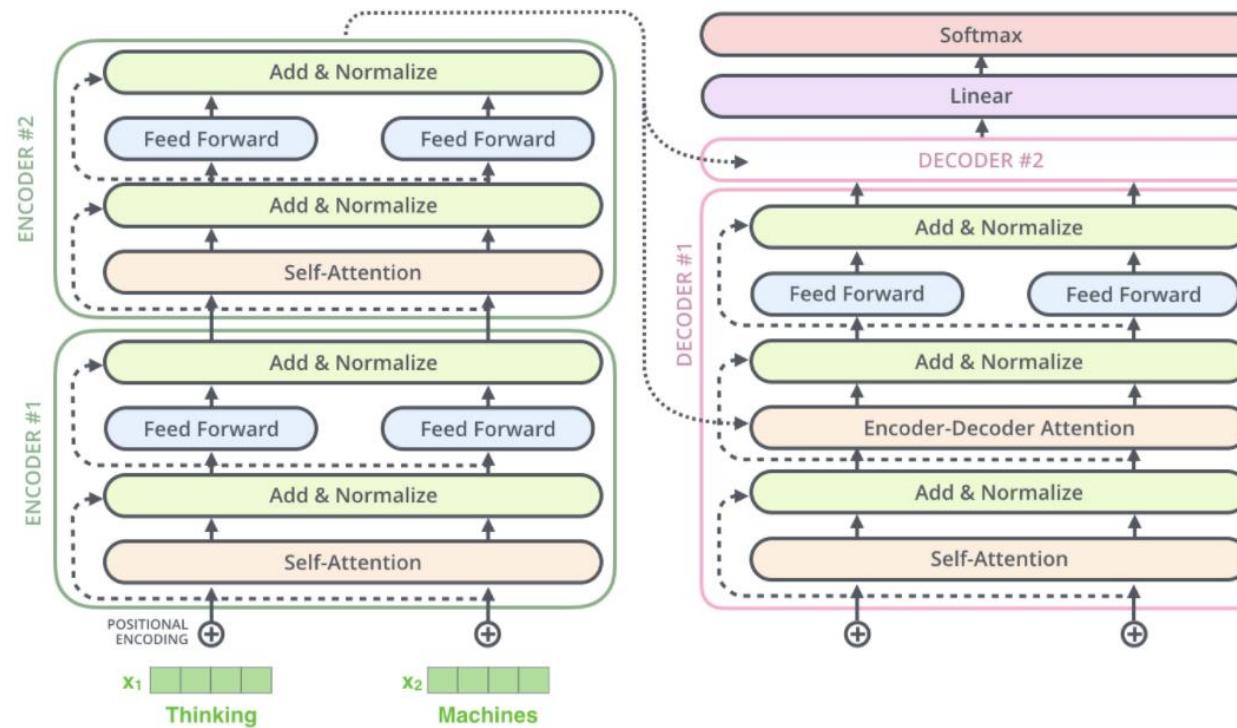
Transformers: Putting it All Together

- What does the full architecture look like?



Transformers: The Rest

- Next time: we'll talk about
 - How to **use** it (i.e., outputs)
 - How to **train** it
 - How to **rip** it apart and build other models with it.



Thank You!