
CS 839: Foundation Models
Transformers, Attention, Subquadratic Architectures

Fred Sala

University of Wisconsin-Madison

Sept. 16, 2025



Announcements

•Announcements: Recordings available on Canvas 
(under Kaltura tab)

•Class roadmap:

Tuesday Sept. 16 Architectures II: Subquadratic 
Architectures

Thursday Sept. 18 Language Models I

Tuesday Sept. 23 Language Models II

Thursday Sept. 25 Prompting 

Tuesday Sept. 30 Specialization & Adaptation

M
o

stly Lan
guage M

o
d

els



Outline

•Review Attention
•Notions of attention, self-attention, basic attention layer, 
QKV setup and intuition, positional encodings

•Transformers
•Architecture, encoder and decoder setups

•Subquadratic Models
•Basic ideas. Examples: S4, Mamba.



Self-Attention: Retrieval Intuition

•How should we design the interactions?
•Analogy: search
“Which restaurants near me are open at 9:00 pm?”

Query Key

Score 0.3

Value

Score 0.7

Objects:

Query
Key
Value



Self-Attention: Query, Key, Value Vectors

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight matrices: linear 
transformations!

Objects:

Query
Key
Value



Self-Attention: Score Functions

Have query, key, value vectors

• Next, get our score 

• Lots of things we could do --- simpler is usually better!

• Dot product

• Then we’ll do softmax 

Query Key

Score 0.3



Self-Attention: Scoring and Scaling

•Transform incoming word vectors,
•Enable interactions between words

• Get our query, key, value vectors via weight 
matrices: linear transformations!

• Compute scores

Objects:

Query
Key
Value



Self-Attention: Putting it Together

• Have query, key, value vectors via 
weight matrices: linear 
transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value



Self-Attention: Matrix Formulas

• Have query, key, value vectors via weight matrices: linear transformations!

• Have softmax score outputs (focus)

• Add up the values! 

Objects:

Query
Key
Value



Self-Attention: Multi-head

This is great but will we capture everything in one?

• Do we use just 1 kernel in CNNs? No!

• Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.

• One annoying issue: so far, order of words (position) doesn’t matter!

• Solution: add positional encodings

Location index



Self-Attention: Positional Encodings

Why these mysterious formulas? Want properties:

• Consistent encoding 

• Smooth

• Linearity across positions
• Alternating sin and cos: can multiply by rotation matrix to 

obtain shifts 

https://huggingface.co/blog/designing-positional-encoding



These sinusoidal embeddings were defined in the original 
Transformers paper,

• Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave 
slightly differently 

• Example: multiplicative instead of additive

• Popular: Rotary Positional Encoding (RoPE)

• Note: perform in every attention layer

Self-Attention: Modern Positional Encodings

https://huggingface.co/blog/designing-positional-encoding



Break & Questions



Vaswani et al. ‘17

Transformers: Model Architecture

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•The famous picture you’ve seen
•Centered on self-attention blocks



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

•Focus encoder first: pretty simple! 2 components:
• Self-attention block
• Fully-connected layers (i.e., an MLP) 



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer (covered this)
•2. “Independent” feedforward nets for each head



Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers



Transformers: Inside a Decoder

•Let’s take a look at the decoder. Three components:
•1. Self-attention layer (covered this)
•2. Encoder-decoder attention (same, but K, V come from encoder)
•3. “Independent” feedforward nets for each head



Transformers: Last Layers

•Next let’s look at the end. Similar to a CNN,

•1. Linear layer
•2. Softmax

Get probabilities of 
words



Transformers: Putting it All Together

•What does the full architecture look like?



Transformers: The Rest

•Next time: we’ll talk about 
•How to use it (i.e., outputs)
•How to train it
•How to rip it apart and build other models with it.



Transformers: The Rest

•Next time: we’ll talk about 
•How to use it (i.e., outputs)
•How to train it 
•How to rip it apart and build other models with it.

Vaswani et al ‘17



Break & Questions



Attention Alternatives?

•One annoying thing: if the sequence length is L, we’re doing a 
O(L2) operation. 

•This can be quite limiting for long

sequences...

I.e., 4000 tokens is fine, but 

106 tokens is not.



Attention Alternatives?

Recently, lots of different approaches that attempt to get rid 
of this quadratic dependency

•Sometimes called sub-quadratic models.

•We’ll briefly study a few.

•Step 1: let’s get inspired by something RNN-like (well, fully 
linear for now). Borrow from continuous models:



State-Space Model

Step 1: let’s get inspired by something RNN-like (well, fully 
linear for now). Borrow from continuous models:

•Can ignore the “D” (think of this as a skip connection). 

•Inputs, outputs are 1-D, state is higher dimensional. 

State Input

Output



State-Space Model: Discrete Form

Step 2: let’s make this a discrete function

•Ignored D

•Can create approximations of A,B,C through discretizing. 

•Looks a lot like an RNN! (or, a linear version of one)

State Input

Output



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

•In general,

•This is a convolution!



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

•Convolution

•But a weird one. It’s a very long convolution.
•Kernel as long as the input sequence (say, L). 
•Naively, is this better than attention? 
• Let’s do something else instead.



Interlude: Time & Frequency Domains

Back to Signals and Systems class,

•Convolution in the time-domain is element-wise 
multiplication in the frequency domain

•So low-complexity.

•But, need to convert to frequency domain

•Solution: FFT. O(L log L) (and also for iFFT, to invert back).

•So, can compute fast and use during training!



Back to SSM Picture

Back to the formula 

•Just directly making all of these trainable parameters doesn’t 
work so well.
•Similar issues as in RNNs: stuff blowing up
• Instead, various models propose approaches

S4 (Structured State Space Models) Gu et al’ 22
•Build A with a special fixed transition matrix that is good at 

memorization
•Couple with a particular parametrization to get the discretization. 



Using SSMs as Layers

Back to the formula 

S4 (Structured State Space Models) Gu et al’ 22
•Special A state transition matrix
•Special parametrization/choice of trainable parameters

•How to actually use these? Need to define a layer,
•Stack H of them together (similar to conv layers, multihead attn)
•Mix with linear layer, place activation function at the end



S4 Results: The Good and the Bad

Models like S4 can address very long sequences
• “S4 solves the Path-X task, an extremely challenging task that 

involves reasoning about LRDs over sequences of length … 16384. 
All previous models have failed…”

•But, can struggle with “selective” tasks.



S4 Results: The Good and the Bad

Solution: need some type of context-aware approach

•Mamba Model 
•Gu and Dao ‘23, “Mamba: Linear-Time Sequence Modeling with 

Selective State Spaces”



Lots of Related Approaches & Variations

•Linear attention. “Transformers are RNNs: Fast 
Autoregressive Transformers with Linear Attention”. 
Katharopoulos et al, ‘20

•RWKV. “RWKV: Reinventing RNNs for the Transformer Era”, 
Peng et al ‘23

We’ll see more as we go!


	Slide 1: CS 839: Foundation Models Transformers, Attention, Subquadratic Architectures
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Self-Attention: Retrieval Intuition
	Slide 5: Self-Attention: Query, Key, Value Vectors
	Slide 6: Self-Attention: Score Functions
	Slide 7: Self-Attention: Scoring and Scaling
	Slide 8: Self-Attention: Putting it Together
	Slide 9: Self-Attention: Matrix Formulas
	Slide 10: Self-Attention: Multi-head
	Slide 11: Self-Attention: Positional Encodings
	Slide 12: Self-Attention: Positional Encodings
	Slide 13: Self-Attention: Modern Positional Encodings
	Slide 14: Break & Questions
	Slide 15: Transformers: Model Architecture
	Slide 16: Transformers: Architecture
	Slide 17: Transformers: Architecture
	Slide 18: Transformers: Inside an Encoder
	Slide 19: Transformers: More Tricks
	Slide 20: Transformers: Inside a Decoder
	Slide 21: Transformers: Last Layers
	Slide 22: Transformers: Putting it All Together
	Slide 23: Transformers: The Rest
	Slide 24: Transformers: The Rest
	Slide 25: Break & Questions
	Slide 26: Attention Alternatives?
	Slide 27: Attention Alternatives?
	Slide 28: State-Space Model
	Slide 29: State-Space Model: Discrete Form
	Slide 30: State-Space Model: Convolutional Form
	Slide 31: State-Space Model: Convolutional Form
	Slide 32: Interlude: Time & Frequency Domains
	Slide 33: Back to SSM Picture
	Slide 34: Using SSMs as Layers
	Slide 35: S4 Results: The Good and the Bad
	Slide 36: S4 Results: The Good and the Bad
	Slide 37: Lots of Related Approaches & Variations

