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Announcements

*Announcements: Recordings available on Canvas
(under Kaltura tab)

*Class roadmap:

__

Thursday Sept. 18 Language Models |

Tuesday Sept. 23 Language Models II

Thursday Sept. 25 Prompting

Tuesday Sept. 30 Specialization & Adaptation -
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Outline

Review Attention

*Notions of attention, self-attention, basic attention layer,
QKV setup and intuition, positional encodings

*Transformers
* Architecture, encoder and decoder setups

*Subquadratic Models

*Basic ideas. Examples: S4, Mamba.



Self-Attention: Retrieval Intuition

*How should we design the interactions?
* Analogy: search
“Which restaurants near me are open at 9:00 pm?”
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Self-Attention: Query, Key, Value Vectors

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight matrices: linear
transformations! Input
Embedding [T TT] [T T 1]
Objects: Queries o I e T 1]
Query
Keys [:I:I:] [:I:I:]
Value

Values [:I:I:] [:I:I:]



Self-Attention: Score Functions

Have query, value vectors
* Next, get our score

d+1
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* Lots of things we could do --- simpler is usually better!
* Dot product gy * o =

* Then we’ll do softmax



Self-Attention: Scoring and Scaling

* Transform incoming word vectors,
 Enable interactions between words

* Get our query, value vectors via weight
matrices: linear transformations! input
* Compute scores
Embedding l ‘ ‘ ‘ |
Objects: Queries
Keys
Query
Values

Value




Self-Attention: Putting it Together

* Have query, value vectors via Input
weight matrices: linear Embedding T T
transformations!
* Have softmax score outputs (focus) — Queres o [T q [T
* Add up the values! Keys [T 1] L]
Values [T 1] [T 1]
ObjECtS: Score qi* ki = qi e ko =
Divide by 8 ( /d; )

Query

Value




Self-Attention: Matrix Formulas

* Have query, value vectors via weight matrices: linear transformations!
* Have softmax score outputs (focus)
e Add up the values!

Objects: Q — XWQ:, — X }V — XWV

Query

Value

. ® T)
Attention((Q), /v, V) = softmax ( V
( ) Vi

Ur@ T
Attention(Q, /', V) = softmax (X — XT) vV



Self-Attention: Multi-head

This is great but will we capture everything in one?
* Do we use just 1 kernel in CNNs? No!
* Do it many times in parallel: multi-headed attention. Concatenate outputs



Self-Attention: Positional Encodings

Almost have a full layer designed.
* One annoying issue: so far, order of words (position) doesn’t matter!

* Solution: add positional encodings

PE(pos,2i) = Sin(pos/j_()()()()z’i/dmodel)
PE(pos,2i+1) = cos(pos 100002/ dmose)

Location index POSITIONAL .- N 0,840.54 : 091 ,
ENCODING

- + -
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INPUT



Self-Attention: Positional Encodings

PE(pos,Qi) — Sin(p08/100002i/dm0de1)
PE(pOS,2i+1) — COS(pOS/l()O()OZ’i/dmodel)

Why these mysterious formulas? Want properties:

* Consistent encoding
* Smooth

* Linearity across positions

 Alternating sin and cos: can multiply by rotation matrix to
obtain shifts

https://huggingface.co/blog/designing-positional-encoding



Self-Attention: Modern Positional Encodings

These sinusoidal embeddings were defined in the original
Transformers paper,

* Added once (as we saw) prior to the first layer

Many new variants of positional encodings that behave
slightly differently

252

chased

* Example: multiplicative instead of additive
* Popular: Rotary Positional Encoding (RoPE)
* Note: perform in every attention layer

https://huggingface.co/blog/designing-positional-encoding
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Break & Questions



Transformers: Model Architecture

*|nitial goal for an architecture: encoder-decoder

. Linear
* Get rid of recurrence ——
* Replace with self-attention Fonward
(~Cariem))
F(F)::avf;’rd ) At’te)ﬂtior‘. g N

- [
o A h .t t ”@.@ Masked
rC I ec u re Multi-Head Muiti-Head

Attention Attention
* The famous picture you’ve seen = ==
* Centered on self-attention blocks Eonang CO-9 & Froodng
Input Qutput
Embedding Embedding

il T

Vaswani et al. ‘17



Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student
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Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

* Focus encoder first: pretty simple! 2 components:
* Self-attention block
* Fully-connected layers (i.e., an MLP)

[ \ Feed Forward
Feed Forward Neural Network
\ J - *
1‘ — [ Feed Forward ] [ Encoder-Decoder Attention J
Self-Attention
\ ) Self-Attention Self-Attention

t t t



Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
* 1. Self-attention layer (covered this)
*2. “Independent” feedforward nets for each head
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Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

4 3
I,-b( Add & Normalize )
: 4 4
: ( Feed Forward ) ( Feed Forward )
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,-p( Add & Normalize )
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Transformers: Inside a Decoder

*Let’s take a look at the decoder. Three components:
* 1. Self-attention layer (covered this)
2. Encoder-decoder attention (same, but K, V come from encoder)
*3. “Independent” feedforward nets for each head
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Transformers: Last Layers

*Next let’s look at the end. Similar to a CNN,

Which word in our vocabulary

1. Linea r |ayel‘ is associated with this index? A
* 2. Softmax

Get the index of the cell
with the highest value

(argmax)
- log_probs (TTTTT T T [
Get probabilities of JEL L
words ( Softmax )
*
logits Lttt ettt el
0 12345 . vocab_size
*
(: Linear :)
*

Decoder stack output L1 1]



Transformers: Putting it All Together

\What does the full architecture look like?

Softmax
[}
Linear
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Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)
* How to train it
* How to rip it apart and build other models with it.




Transformers: The Rest

*Next time: we’ll talk about
* How to use it (i.e., outputs)

* How to train it
* How to rip it apart and build other models with it.

5.1 Training Data and Batching

We trained on the standard WMT 2014 English-German dataset consisting of about 4.5 million
sentence pairs. Sentences were encoded using byte-pair encoding [3], which has a shared source-
target vocabulary of about 37000 tokens. For English-French, we used the significantly larger WMT
2014 English-French dataset consisting of 36M sentences and split tokens into a 32000 word-piece
vocabulary [38]. Sentence pairs were batched together by approximate sequence length. Each training
batch contained a set of sentence pairs containing approximately 25000 source tokens and 25000
target tokens.

Vaswanietal 17
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Attention Alternatives?

*One annoying thing: if the sequence length is L, we’re doing a
O(L?) operation.

*This can be quite limiting for long
sequences...

l.e., 4000 tokens is fine, but
10° tokens is not.




Attention Alternatives?

Recently, lots of different approaches that attempt to get rid
of this quadratic dependency

*Sometimes called sub-quadratic models.
*We'll briefly study a few.

*Step 1: let’s get inspired by something RNN-like (well, fully
linear for now). Borrow from continuous models:

7' (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)




State-Space Model

Step 1: let’s get inspired by something RNN-like (well, fully
linear for now). Borrow from continuous models:
State Input

T’ (t) = A.Ci(t) + qu(t)
output — Y(t) = Cx(t) + Du(t)

*Can ignore the “D” (think of this as a skip connection).
*Inputs, outputs are 1-D, state is higher dimensional.



State-Space Model: Discrete Form

Step 2: let’s make this a discrete function

State Input

! !
Ty, = Azg_1 + Buy

Output — Y — 633’;3

*lgnored D
*Can create approximations of A,B,C through discretizing.
*Looks a lot like an RNN! (or, a linear version of one)



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

To = E’U,o r1 = ABug + Bu,; To = ZZE’LLQ + ABu; + Bus
yo = C Buy y1 = CABug + CBu, Yo = CA2§'U,0 + CABu; + CBus

Yk = CA Bug + C'Ai!c 1§u1 +.--+CABuj_1 + CBuy

Ingeneral, v=Kxu

*This is a convolution!



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

yr = CA Bug+ CA" Buy +---+ CABuy_; + CBuy

y = K *u.

* Convolution

*But a weird one. It’s a very long convolution.
e Kernel as long as the input sequence (say, L).

* Naively, is this better than attention?
* Let’s do something else instead.



Interlude: Time & Frequency Domains

Back to Signals and Systems class,

e Convolution in the time-domain is element-wise
multiplication in the frequency domain

*So low-complexity.

*But, need to convert to frequency domain
*Solution: FFT. O(L log L) (and also for iFFT, to invert back).
*So, can compute fast and use during training!

yr = CA Bug + CA" "Buy +---+ CABuy_; + CBuy

y = K *u.




Back to SSM Picture

Back to the formula zp = Azg—1 + Bug

yr = Czp,

*Just directly making all of these trainable parameters doesn’t
work so well.
 Similar issues as in RNNs: stuff blowing up
* Instead, various models propose approaches

S4 (Structured State Space Models) Gu et al’ 22

* Build A with a special fixed transition matrix that is good at
memorization
* Couple with a particular parametrization to get the discretization.



Using SSMs as Layers

Back to the formula zp = Azg—1 + Bug

yr = Czp,

S4 (Structured State Space Models) Gu et al’ 22

* Special A state transition matrix
* Special parametrization/choice of trainable parameters

*How to actually use these? Need to define a layer,
 Stack H of them together (similar to conv layers, multihead attn)
* Mix with linear layer, place activation function at the end



S4 Results: The Good and the Bad

Models like S4 can address very long sequences

* “S4 solves the Path-X task, an extremely challenging task that
involves reasoning about LRDs over sequences of length ... 16384,
All previous models have failed...”

*But, can struggle with “selective” tasks.

Copying Selective Copying
Output NNN---NMN N H N Outeut [\J [N [N [N SENINE 10

W Il INIEEIEEREIEE | ]} ] Bl -/ AENN

Solution




S4 Results: The Good and the Bad

Solution: need some type of context-aware approach
*Mamba Model

* Gu and Dao 23, “Mamba: Linear-Time Sequence Modeling with
Selective State Spaces”

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x: (B,L,D) Input: x: (B,L,D)
Output: y: (B,L,D) Output: y: (B,L,D)
1: A: (D,N) « Parameter 1: A: (D,N) <« Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B: (D,N) « Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C: (B,LLN) « sc(x)
4: A: (D) < ra(Parameter) 4: A: (B,L,D) « tp(Parameter+sy(x))
5. A, B: (D,N) « discretize(A, A, B) 5. A,B: (B,L,D,N) < discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A, B,C)(x)

> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: return y 7: return y




Lots of Related Approaches & Variations

*Linear attention. “Transformers are RNNs: Fast
Autoregressive Transformers with Linear Attention”.
Katharopoulos et al, 20

*RWKYV. “RWKV: Reinventing RNNs for the Transformer Era”,
Peng et al 23

We'll see more as we go!
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