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Announcements

•Announcement:
•Homework 1 will be released later today!

•Class roadmap:
Thursday Sept. 18 Models I

Tuesday Sept. 23 Models II

Thursday Sept. 25 Prompting 

Tuesday Sept. 30 Specialization

Thursday Oct. 2 Alignment
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Outline

•From Last Time
•Finish up SSMs, a little bit more on decoders

•Encoder-only Models
•Example: BERT, architecture, multitask training, fine-tuning 

•Decoder-only Models
•Example: GPT, architecture, basic functionality 
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State-Space Model: Discrete Form

Step 2: let’s make this a discrete function

•Ignored D

•Can create approximations of A,B,C through discretizing. 

•Looks a lot like an RNN! (or, a linear version of one)

State Input

Output



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

•In general,

•This is a convolution!

•Why? Two sequences:



State-Space Model: Convolutional Form

Step 3: let’s unroll the recursion

•Convolution

•But a weird one. It’s a very long convolution.
•Kernel as long as the input sequence (say, L). 
•Naively, is this better than attention? 
• Let’s do something else instead.



Interlude: Time & Frequency Domains

Back to Signals and Systems class,

•Convolution in the time-domain is element-wise 
multiplication in the frequency domain

•So low-complexity.

•But, need to convert to frequency domain

•Solution: FFT. O(L log L) (and also for iFFT, to invert back).

•So, can compute fast and use during training!



Back to SSM Picture

Back to the formula 

•Just directly making all of these trainable parameters doesn’t 
work so well.
•Similar issues as in RNNs: stuff blowing up
• Instead, various models propose approaches

S4 (Structured State Space Models) Gu et al’ 22
•Build A with a special fixed transition matrix that is good at 

memorization
•Couple with a particular parametrization to get the discretization. 



Using SSMs as Layers

Back to the formula 

S4 (Structured State Space Models) Gu et al’ 22
•Special A state transition matrix
•Special parametrization/choice of trainable parameters

•How to actually use these? Need to define a layer,
•Stack H of them together (similar to conv layers, multihead attn)
•Mix with linear layer, place activation function at the end



S4 Results: The Good and the Bad

Models like S4 can address very long sequences
• “S4 solves the Path-X task, an extremely challenging task that 

involves reasoning about LRDs over sequences of length … 16384. 
All previous models have failed…”

•But, can struggle with “selective” tasks.



S4 Results: The Good and the Bad

Solution: need some type of context-aware approach

•Mamba Model 
•Gu and Dao ‘23, “Mamba: Linear-Time Sequence Modeling with 

Selective State Spaces”



Lots of Related Approaches & Variations

•Linear attention. “Transformers are RNNs: Fast 
Autoregressive Transformers with Linear Attention”. 
Katharopoulos et al, ‘20

•RWKV. “RWKV: Reinventing RNNs for the Transformer Era”, 
Peng et al ‘23

We’ll see more as we go!



Back To Transformers: Model Architecture

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

•Architecture
•The famous picture you’ve seen
•Centered on self-attention blocks

Vaswani et al. ‘17



Interlude: Encoder-Decoder Models

•Translation tasks: natural encoder-decoder architecture

•Intuition: 



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

•Focus on encoder first: pretty simple! 2 components:
• Self-attention block
• Fully-connected layers (i.e., an MLP) 
• Captures 1) interactions 2) processing (separately!)



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer (covered this)
•2. “Independent” feedforward nets for each head



Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers



Transformers: Inside a Decoder

•Let’s take a look at the decoder. Three components:
•1. Self-attention layer (covered this)
•2. Encoder-decoder attention (same, but K, V come from encoder)
•3. “Independent” feedforward nets for each head



Transformers: Cross-Attention

•Why encoder-decoder attention ?
•Recall: same as before, but K, V come from encoder
•Actually more traditional, but… intuition:

• Key term 1
• Key term 2
• Key term 3
• Key term 4…



Transformers: Decoder Masking

•One more interesting bit!
•At the decoder level, self-attention changes a bit:
•Masked instead: block future words from being attended to



Transformers: Outputs

•Finally, let’s see the final layer and outputs



Transformers: Putting it All Together

•What does the full architecture look like?



Transformers: Training

•Data: standard datasets (WMT English-German)
•~5 million pairs for this dataset
•Nothing very special: Adam optimizer



Break & Questions
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Why Encoder-Decoder?

Wanted two things for translation: 
•1) Outputs in natural language
•2) Tight alignment with input

What happens if we relax these?

 1. Encoder-only models

 2. Decoder-only models



Encoder-Only Models: BERT

Let’s get rid of the first part
•1) Outputs in natural language
•2) Tight alignment with input

•Rip away decoders
• Just stack encoders



Interlude: Contextual Embeddings

Q: Why is it called “BERT”?
•A: In a sense, follows up ELMo 

•Story: 
•2013: “Dense” word embeddings 

(Word2Vec, Glove)
•Downside: fixed representations per word

• “Bank”: building or riverside?

•Need: contextual representations
• Using language model-like techniques
• 2018: ELMo, BERT

• ELMo: uses LSTMs, BERT uses transformers
https://nlp.stanford.edu/projects/glove/



Interlude: Contextual Embeddings

Q: Why is it called “BERT”?
•A: In a sense, follows up ELMo 

BERT acronym:
•Bidirectional Encoder Representations from 

Transformers.
•ERT should make sense,

•Bidirectional: no causal masks, look at both 
sides of a word!
•Captured in self-attention block



BERT: Forward Pass

BERT architecture

•Rip away decoders
• Just stack encoders



BERT: Training

Training is more interesting!
•Pretraining. Then fine-tuning on task of interest

•Back to self-supervised learning!

•Two tasks for pretraining.

sbert.net

1. Masked Language Modeling 2. Next Sentence Prediction
scaler.com



BERT: Training Task 1

Masked Language Modeling Task
•Use [MASK] token for word to be predicted

•Which words to mask? 
•Original paper: 15% of words at random
•But… of these

• 10% of the time, no [MASK], flip word randomly

• 10% of the time leave word unchanged

sbert.net



BERT: Training

Training is more interesting,
•Pretraining. Then fine-tuning on task of interest

Devlin et al



Break & Questions
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Decoder-Only Models: GPT

Let’s get rid of the first part
•1) Outputs in natural language
•2) Tight alignment with input

•Rip away encoders
• Just stack decoders



Decoder-Only Models: GPT

Rip away encoders
• Just stack decoders
•Use causal masking! NB: not a mask token like in BERT

PyLessons



Thank You!
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