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Announcements

•Logistics:
•Homework 1 is ongoing!

•Class roadmap:
Tuesday Sept. 23 Models II

Thursday Sept. 25 Prompting 

Tuesday Sept. 30 Specialization

Thursday Oct. 2 Alignment

Tuesday Oct. 7 RLVR
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Outline

•Decoder-only Models
•Example: GPT, architecture, basic functionality, properties 
of new models 

•Intro to Prompting
•Terminology: zero-shot, few-shot, in-context, etc, prompt 
characteristics: format, examples, orders

•Improving Prompting
•Searching for good prompts, techniques for 
continuous/soft prompts, ensembling
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Decoder-Only Models: GPT

Let’s get rid of the second requirement we had before, 
•1) Outputs in natural language
•2) Tight alignment with input

•Rip away encoders
• Just stack decoders



Decoder-Only Models: GPT

Rip away encoders
• Just stack decoders
•Use causal masking! NB: not a mask token like in BERT

PyLessons



Decoder-Only Models: GPT

Rip away encoders
• Just stack decoders
•Decoders: get rid of encoder aspects (masked self-attention 

only) 

PyLessons



From GPT2 to GPT3

Mainly make things larger!
•96 decoder blocks (getting very tall)
•Context size: 2048
•175 billion parameters in total (800GB!)

Training data:

https://en.wikipedia.org/wiki/GPT-3

Brown et al ‘20



Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

Dubey et al ‘24



Open Source: Llama 3.1

Some improvements for Llama 3.1:

•“We use an attention mask that prevents self-attention 
between different documents within the same sequence”

•“grouped query attention (GQA; Ainslie et al. (2023)) with 8 
key-value heads to improve inference speed…”

Zhao et al '21

Ainslie et al ‘23



Open Source: Llama 3.1

Some improvements for Llama 3.1:

•“We use an attention mask that prevents self-attention 
between different documents within the same sequence”

•“grouped query attention (GQA; Ainslie et al. (2023)) with 8 
key-value heads to improve inference speed…”

•“We use a vocabulary with 128K tokens. Our token 
vocabulary combines 100K tokens from the tiktoken3 
tokenizer with 28K additional tokens to better support non-
English languages”

Zhao et al '21



“Hybrid” Models: Attention + SSM

Nvidia’s Nemotron-H: 

•Hybrid Mamba-Transformer Models Mamba-2

•High throughput

•Custom hybrid architecture of alternating layers

Nvidia



Break & Questions
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Prompting: Ask Your Model

Essentially, ask your model to perform your goal task

Example: sentiment analysis task

•Prompt:  “Text: The visuals were lacking and the 
characters felt flat. Sentiment:”

•Result: “Negative”



Prompting: Zero-shot vs Few-shot

Terminology:

•Zero-shot: No “examples” provided to the model.

•Few-shot/in-context learning: Provide “examples”

Zhao et al '21



Prompting: Few-shot vs. In-context learning

Terminology conflicts! Note: we have 
a set of labeled examples. Could 
fine-tune! 

Few-shot: sometimes means fine-
tune on this dataset, then prompt

In-context learning: do not fine-
tune. Model weights unchanged. 

Weng / SST

Dong et al, ‘23



Few-Shot Choices

Examples/structure affect performance:

1. Prompt format (affects everything)

2. Choice of examples

3. Order of examples (permutation)

Zhao et al '21



1. Prompt Formats

The choice of model affects the prompt format

Masked language model: “Cloze”-style prompt (old!)
•“I love this movie, it is a [Z] movie:”

Left-to-right language model: prefix prompt
•“I love this movie. What is the sentiment of 
this review?”

  
Note: eval datasets have pre-created prompts. 
• LAMA (LAnguage Model Analysis): Cloze prompts



1. Prompt Formats: Recent Models

Modern instruction-tuned models have more complex 
instructions/formats

•The good: more natural way to tell the model what to do 

•The bad: searching over formats/templates increasingly 
challenging

•Example: (White et al, ‘23): "From now on, I would like you to 
ask me questions to deploy a Python application to AWS. 
When you have enough information to deploy the 
application, create a Python script to automate the 
deployment.”



Diao et al ‘23

2. Choice of Examples

How to pick appropriate examples in few-shot?

•Note: initially only a “small’ number of examples can be 
shown, unlike in supervised learning. 

Many options. Sampling:
• Liu et al, ‘21: kNN in embedding 

space (semantic similarity)
• Su et al, ‘22: Encourage diversity 

in embeddings
• Diao et al, ’23: “Active 

prompting” 



3. Order of Examples

What order to show them to the model?

•Findings:
•Model size doesn’t guarantee low-variance
•Adding more examples doesn’t reduce variance
•Good prompts don’t transfer from one model to another  
•Good orders don’t transfer 



Break & Questions
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Hard Prompting 

Also called zero-shot. 
•Note: terminology conflict with another area called zero-shot 

learning

“Hard prompt discovery is a specialized alchemy, with many good 
prompts being discovered by trial and error, or sheer intuition

(Wen et al ‘23) 

•Note: not just for language models! 



Zero-shot Generalization

Most exciting aspect of zero-shot: don’t need to have been 
explicitly trained or fine-tuned. 

•Example: Multitask Prompted Training Enables Zero-Shot 
Task Generalization

Sanh et al ‘22

Recipe
• Pretrain
• Fine-tune 

• Multitask



Hard Prompting: Discrete Optimization 

Sometimes, can avoid gradients 
•Random search
•Greedy 

Prasad et al ‘23



Soft Prompting 

Also called continuous prompting

Basic idea: insert some (non-language) parameters into 
prompt
•Train these parameters 
•Do not directly correspond to words in prompt



Soft Prompting: Prefix-Tuning 

Goal: create prefixes that steer models

•Prefixes are trainable parameters

•Train one for each goal task, only store these new 
parameters

•Enables cheap adaptation of frozen language model

Li and Liang ‘21



Ensembling Prompts

One prompt can give you an answer… but might be 
wrong
•One simple approach: get multiple samples
•From?
•Change temperature parameter
•Vary your prompts

Then, run majority vote
•New terminology: “test-time scaling, 
self-consistency” 

Witnesses

Votes



Chain-of-Thought

A form of prompting that helps break down the problem 
(more soon!)

•Produces more answers to run majority vote on

Wang et al ‘23



Ensembling Prompts: Weighted Version

Downside of majority vote… most responses might be 
wrong
•Should weight them by how accurate they are

Chen et al, ‘23
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Thank You!
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