



# CS 839: Foundation Models Models II + Prompting Start

Fred Sala

University of Wisconsin-Madison

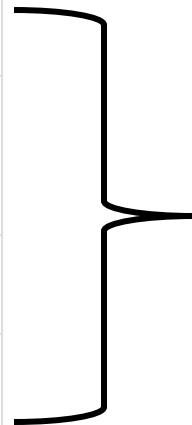
Sept. 23, 2024

# Announcements

- **Logistics:**
  - Homework 1 is ongoing!

- **Class roadmap:**

|                   |                |
|-------------------|----------------|
| Tuesday Sept. 23  | Models II      |
| Thursday Sept. 25 | Prompting      |
| Tuesday Sept. 30  | Specialization |
| Thursday Oct. 2   | Alignment      |
| Tuesday Oct. 7    | RLVR           |



Mostly Language Models

# Outline

- **Decoder-only Models**

- Example: GPT, architecture, basic functionality, properties of new models

- **Intro to Prompting**

- Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

- **Improving Prompting**

- Searching for good prompts, techniques for continuous/soft prompts, ensembling

# Outline

- **Decoder-only Models**

- Example: GPT, architecture, basic functionality, properties of new models

- **Intro to Prompting**

- Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

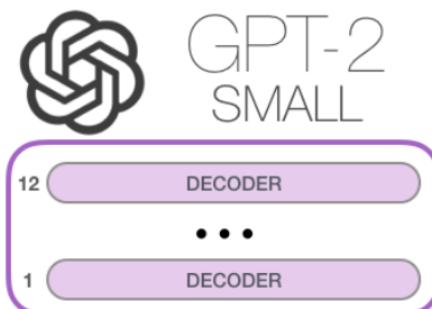
- **Improving Prompting**

- Searching for good prompts, techniques for continuous/soft prompts, ensembling

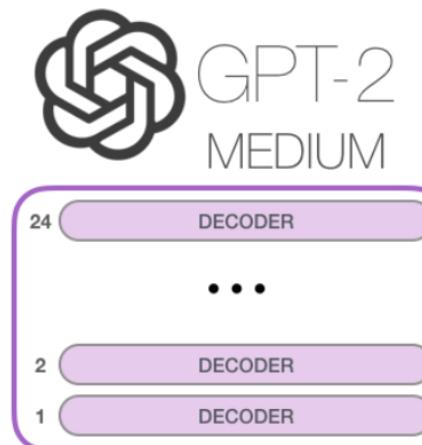
# Decoder-Only Models: GPT

Let's get rid of the second requirement we had before,

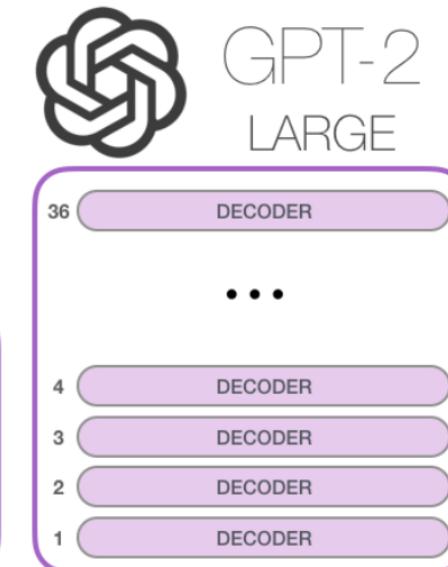
- 1) **Outputs** in natural language
- 2) Tight alignment with **input**
- Rip away encoders
  - Just stack decoders



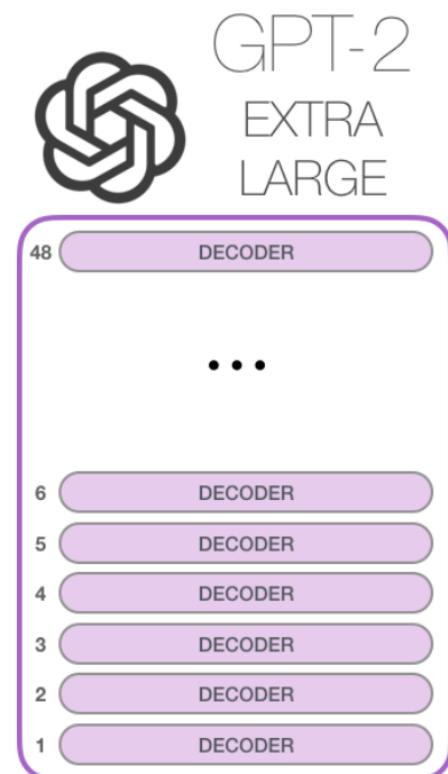
Model Dimensionality: 768



Model Dimensionality: 1024



Model Dimensionality: 1280

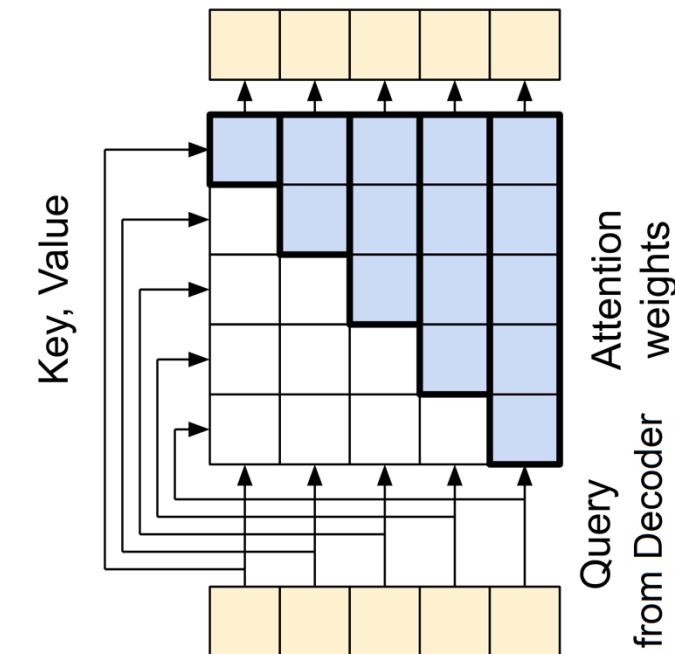


Model Dimensionality: 1600

# Decoder-Only Models: GPT

Rip away encoders

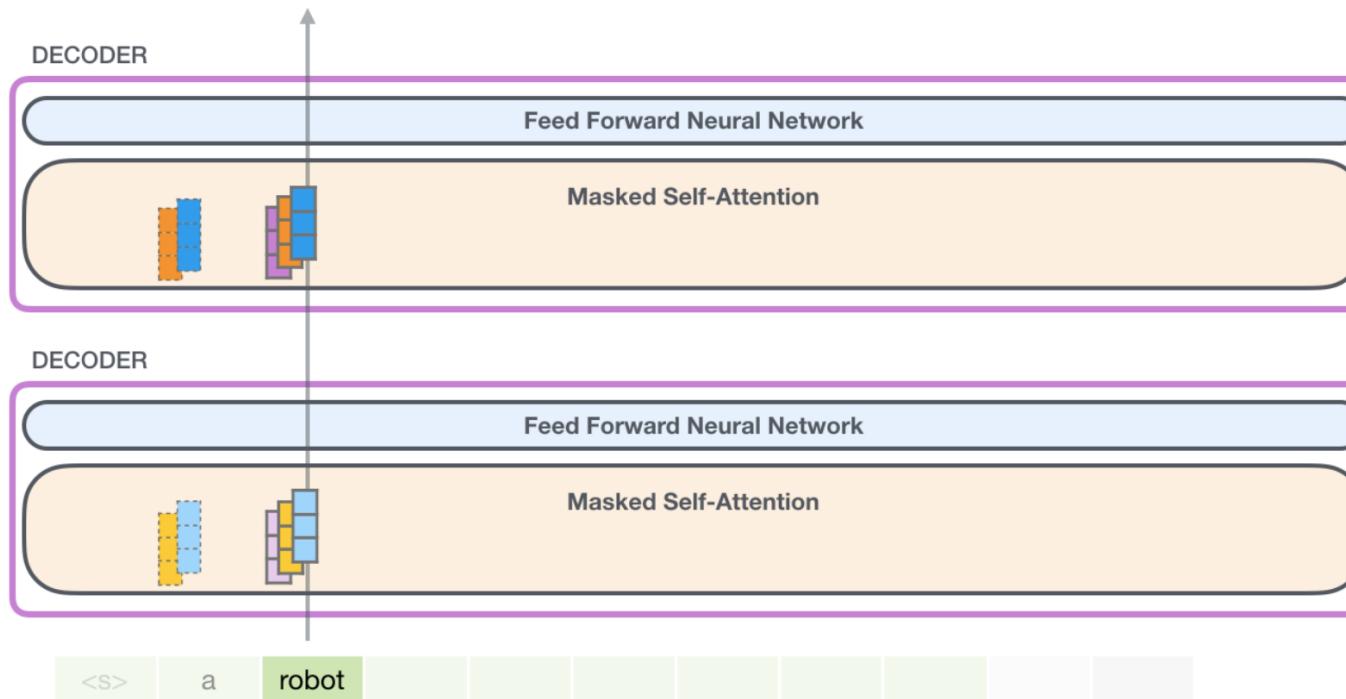
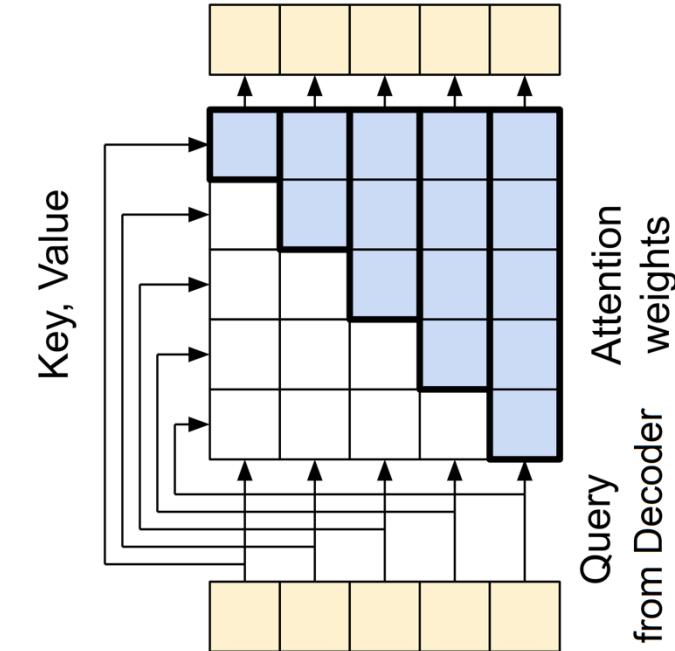
- Just stack decoders
- Use causal masking! NB: not a *mask token* like in BERT



# Decoder-Only Models: GPT

Rip away encoders

- Just stack decoders
- Decoders: get rid of **encoder** aspects (masked self-attention only)



# From GPT2 to GPT3

Mainly make things larger!

- 96 decoder blocks (getting very tall)
- Context size: **2048**
- 175 billion parameters in total (800GB!)

**Training data:**

GPT-3 training data<sup>[1]:9</sup>

| Dataset      | # tokens    | Proportion within training |
|--------------|-------------|----------------------------|
| Common Crawl | 410 billion | 60%                        |
| WebText2     | 19 billion  | 22%                        |
| Books1       | 12 billion  | 8%                         |
| Books2       | 55 billion  | 8%                         |
| Wikipedia    | 3 billion   | 3%                         |

<https://en.wikipedia.org/wiki/GPT-3>



Brown et al '20

# Open Source: Llama 3.1

Mainly make things larger! Note: multiple model sizes:

|                       | <b>8B</b>          | <b>70B</b>                  | <b>405B</b>        |
|-----------------------|--------------------|-----------------------------|--------------------|
| Layers                | 32                 | 80                          | 126                |
| Model Dimension       | 4,096              | 8192                        | 16,384             |
| FFN Dimension         | 14,336             | 28,672                      | 53,248             |
| Attention Heads       | 32                 | 64                          | 128                |
| Key/Value Heads       | 8                  | 8                           | 8                  |
| Peak Learning Rate    | $3 \times 10^{-4}$ | $1.5 \times 10^{-4}$        | $8 \times 10^{-5}$ |
| Activation Function   |                    | SwiGLU                      |                    |
| Vocabulary Size       |                    | 128,000                     |                    |
| Positional Embeddings |                    | RoPE ( $\theta = 500,000$ ) |                    |

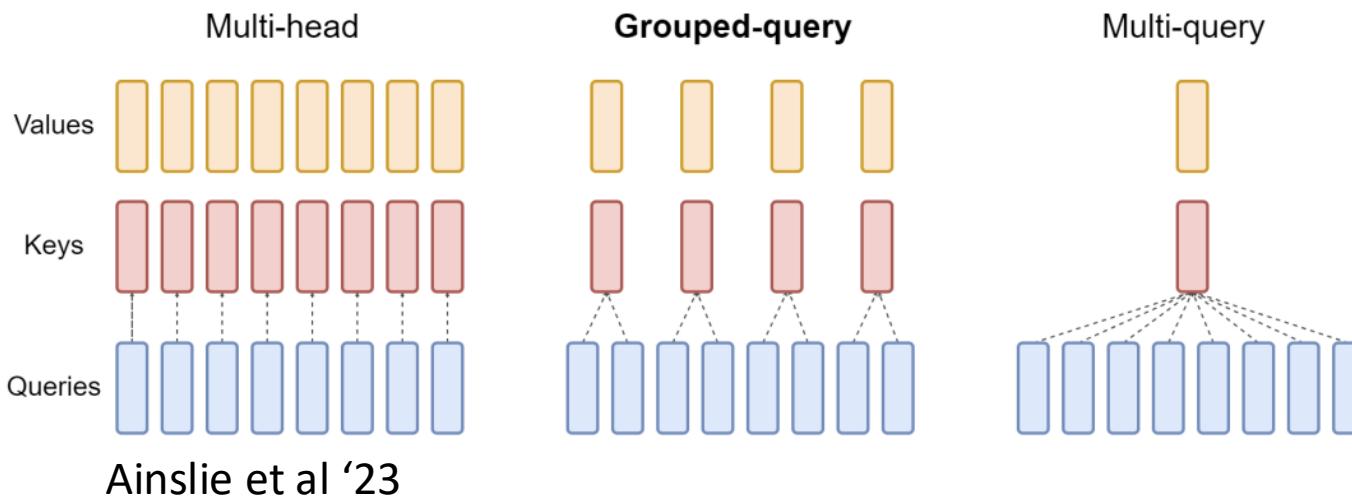
Dubey et al '24



# Open Source: Llama 3.1

Some improvements for Llama 3.1:

- “We use an attention mask that **prevents self-attention between different documents** within the same sequence”
- “**grouped query attention** (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed...”



o et al '21



# Open Source: Llama 3.1

Some improvements for Llama 3.1:

- “We use an attention mask that **prevents self-attention between different documents** within the same sequence”
- “**grouped query attention** (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed...”
- “We use a **vocabulary with 128K tokens**. Our token vocabulary combines 100K tokens from the tiktoken3 tokenizer with 28K additional tokens to better support non-English languages”

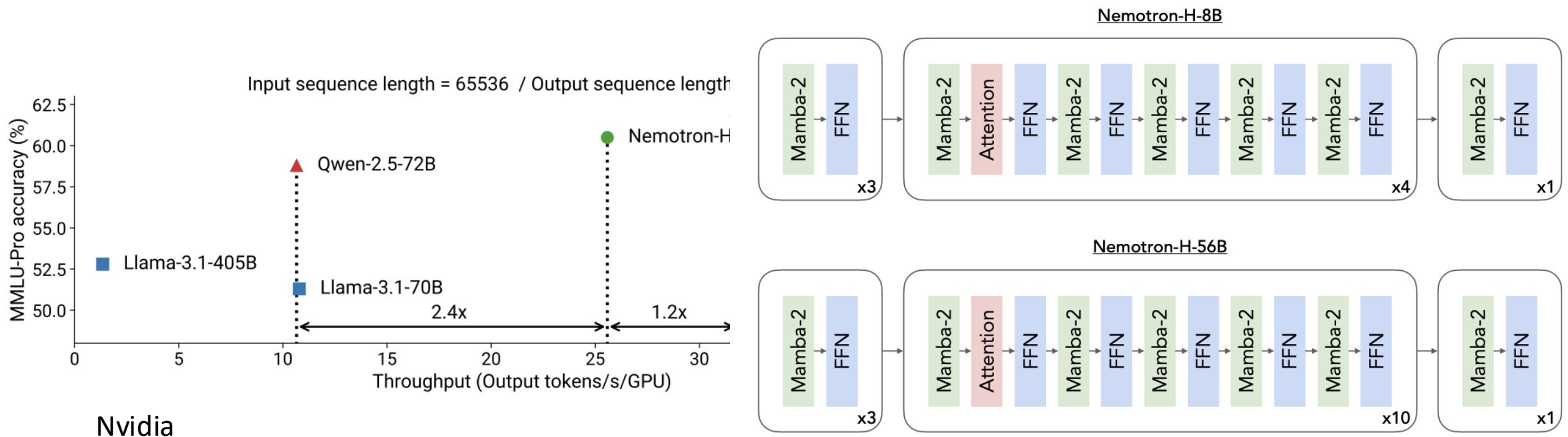
Zhao et al '21



# “Hybrid” Models: Attention + SSM

## Nvidia’s Nemotron-H:

- Hybrid Mamba-Transformer Models Mamba-2
- High throughput
- Custom hybrid architecture of alternating layers





# Break & Questions

# Outline

- **Decoder-only Models**

- Example: GPT, architecture, basic functionality, properties of new models

- **Intro to Prompting**

- Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

- **Improving Prompting**

- Searching for good prompts, techniques for continuous/soft prompts, ensembling

# Prompting: Ask Your Model

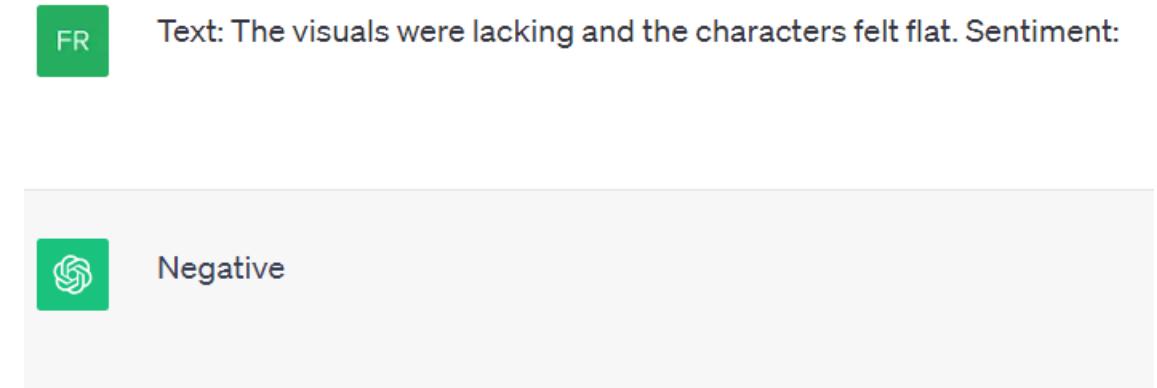
Essentially, ask your model to perform your goal task

**Example:** sentiment analysis task

- Prompt: “Text: The visuals were lacking and the characters felt flat. Sentiment:”

- Result: “Negative”

Default (GPT-3.5)



# Prompting: Zero-shot vs Few-shot

Terminology:

- **Zero-shot:** No “examples” provided to the model.
- **Few-shot/in-context learning:** Provide “examples”

Input: Subpar acting. Sentiment: Negative

Input: Beautiful film. Sentiment: Positive

Input: Amazing. Sentiment:

Zhao et al '21



Positive

# Prompting: Few-shot vs. In-context learning

Terminology conflicts! Note: we have a set of labeled examples. Could **fine-tune!**

**Few-shot:** *sometimes* means fine-tune on this dataset, then prompt

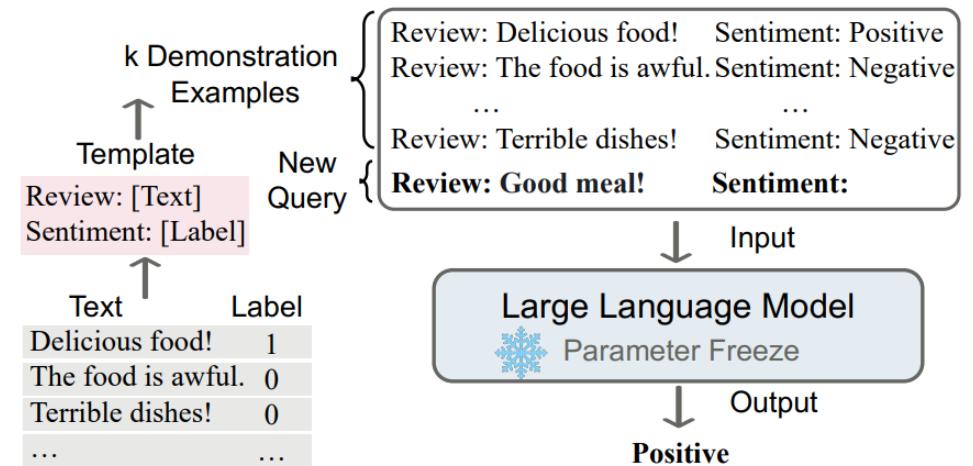
**In-context learning:** do not fine-tune. Model weights unchanged.

Text: (lawrence bounces) all over the stage, dancing,  
Sentiment: positive

Text: despite all evidence to the contrary, this clun  
Sentiment: negative

Text: for the first time in years, de niro digs deep  
Sentiment: positive

Weng / SST

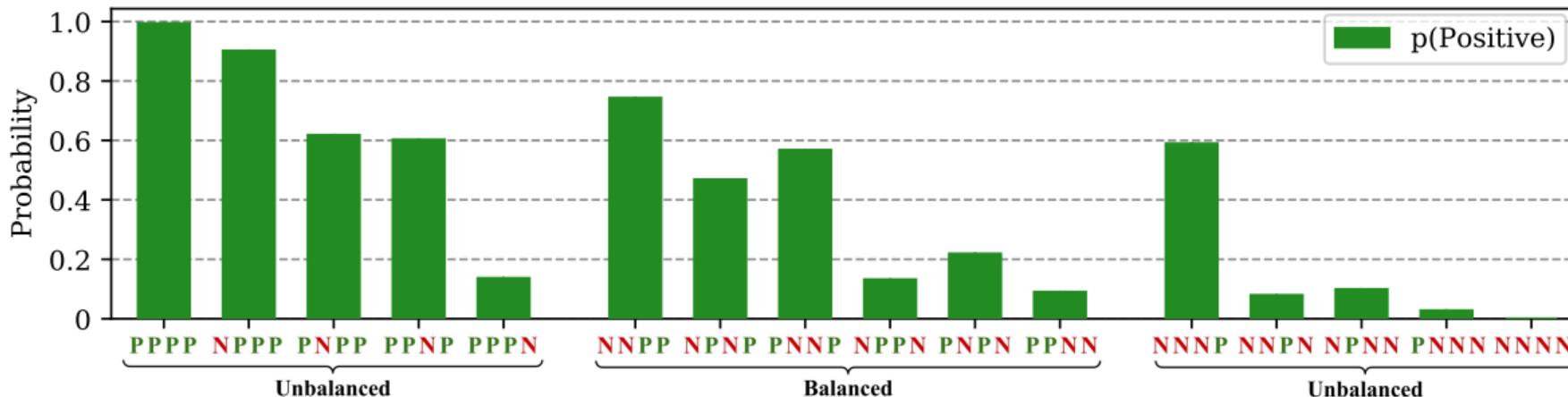


Dong et al, '23

# Few-Shot Choices

Examples/structure affect performance:

1. Prompt **format** (affects everything)
2. **Choice** of examples
3. **Order** of examples (permutation)



# 1. Prompt Formats

The choice of model affects the prompt format

**Masked language model:** “Cloze”-style prompt (**old!**)

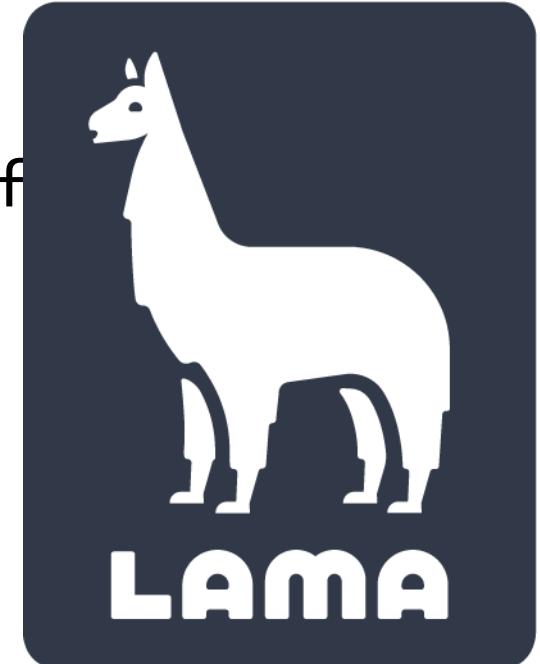
- “I love this movie, it is a [Z] movie:”

**Left-to-right language model:** prefix prompt

- “I love this movie. What is the sentiment of this review?”

Note: eval datasets have pre-created prompts.

- LAMA (LAnguage Model Analysis): Cloze prompts



# 1. Prompt Formats: Recent Models

Modern instruction-tuned models have more complex instructions/formats

- **The good:** more natural way to tell the model what to do
- **The bad:** searching over formats/templates increasingly challenging

- *Example: (White et al, '23): "From now on, I would like you to ask me questions to deploy a Python application to AWS. When you have enough information to deploy the application, create a Python script to automate the deployment."*

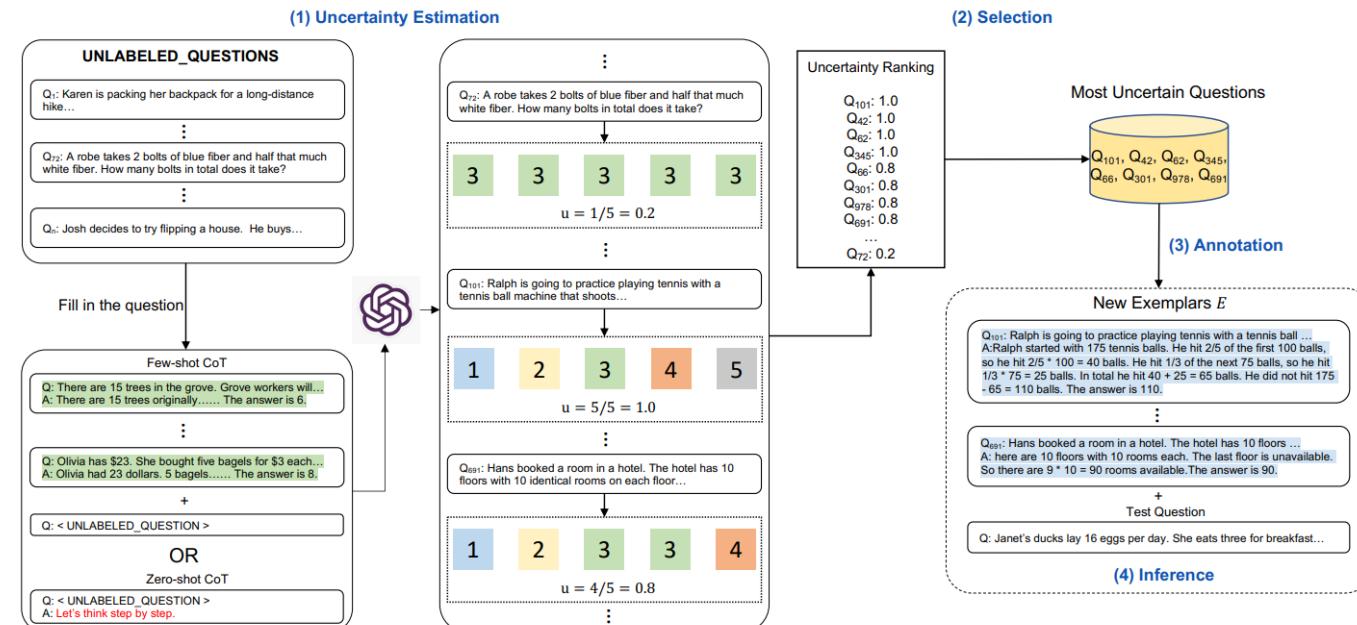
# 2. Choice of Examples

How to pick appropriate examples in few-shot?

- **Note:** initially only a “small” number of examples can be shown, unlike in supervised learning.

Many options. Sampling:

- Liu et al, '21: kNN in embedding space (semantic similarity)
- Su et al, '22: Encourage diversity in embeddings
- Diao et al, '23: “Active prompting”



# 3. Order of Examples

What order to show them to the model?

## Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity

**Yao Lu<sup>†</sup>** **Max Bartolo<sup>†</sup>** **Alastair Moore<sup>‡</sup>** **Sebastian Riedel<sup>†</sup>** **Pontus Stenetorp<sup>†</sup>**

<sup>†</sup>University College London <sup>‡</sup>Mishcon de Reya LLP

{yao.lu,m.bartolo,s.riedel,p.stenetorp}@cs.ucl.ac.uk  
alastair.moore@mishcon.com

- **Findings:**

- Model size doesn't guarantee low-variance
- Adding more examples doesn't reduce variance
- Good prompts don't transfer from one model to another ☹
- Good orders don't transfer



# Break & Questions

# Outline

- **Decoder-only Models**

- Example: GPT, architecture, basic functionality, properties of new models

- **Intro to Prompting**

- Terminology: zero-shot, few-shot, in-context, etc, prompt characteristics: format, examples, orders

- **Improving Prompting**

- Searching for good prompts, techniques for continuous/soft prompts, ensembling

# Hard Prompting

Also called **zero-shot**.

- Note: terminology conflict with another area called zero-shot learning

“Hard prompt discovery is a specialized alchemy, with many good prompts being discovered by trial and error, or sheer intuition

(Wen et al '23)

- Note: not just for language models!



Optimize  
Prompt

🐻 cuddly teddy skateboarding  
comforting nyc led cl



Generate  
Image

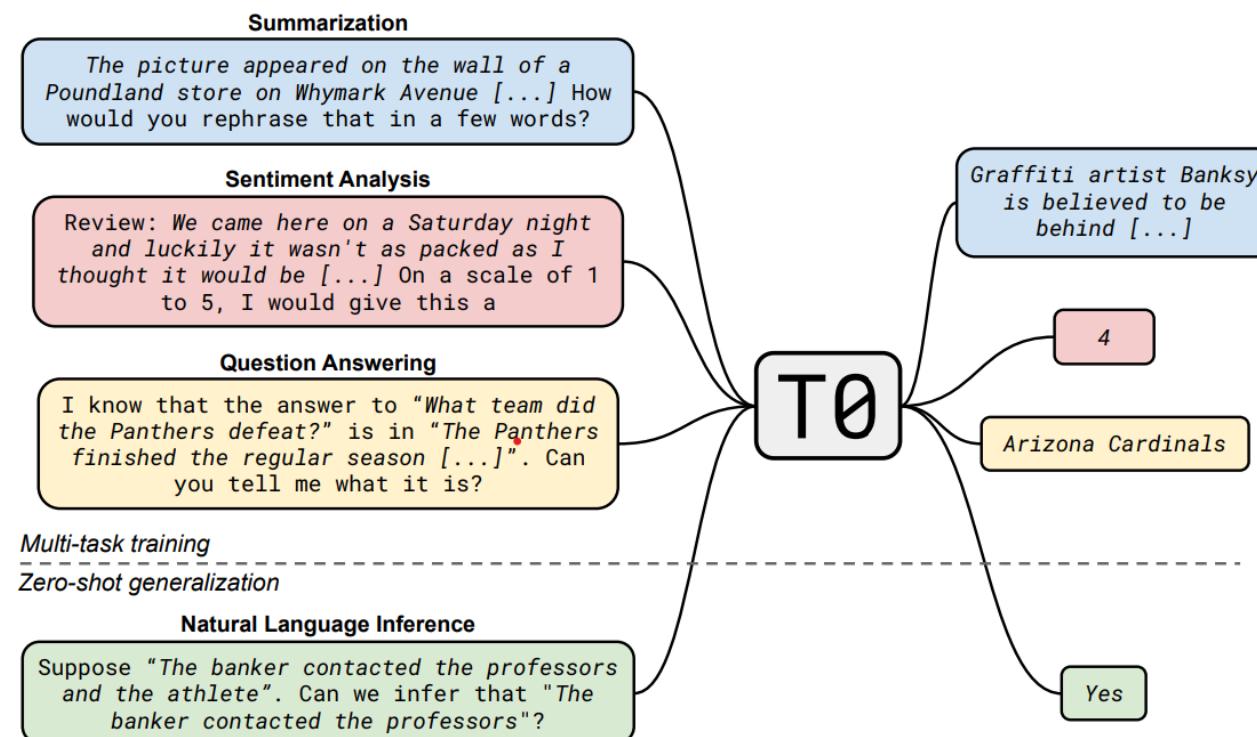
# Zero-shot Generalization

Most exciting aspect of zero-shot: don't need to have been explicitly trained or fine-tuned.

- **Example: Multitask Prompted Training Enables Zero-Shot Task Generalization**

Recipe

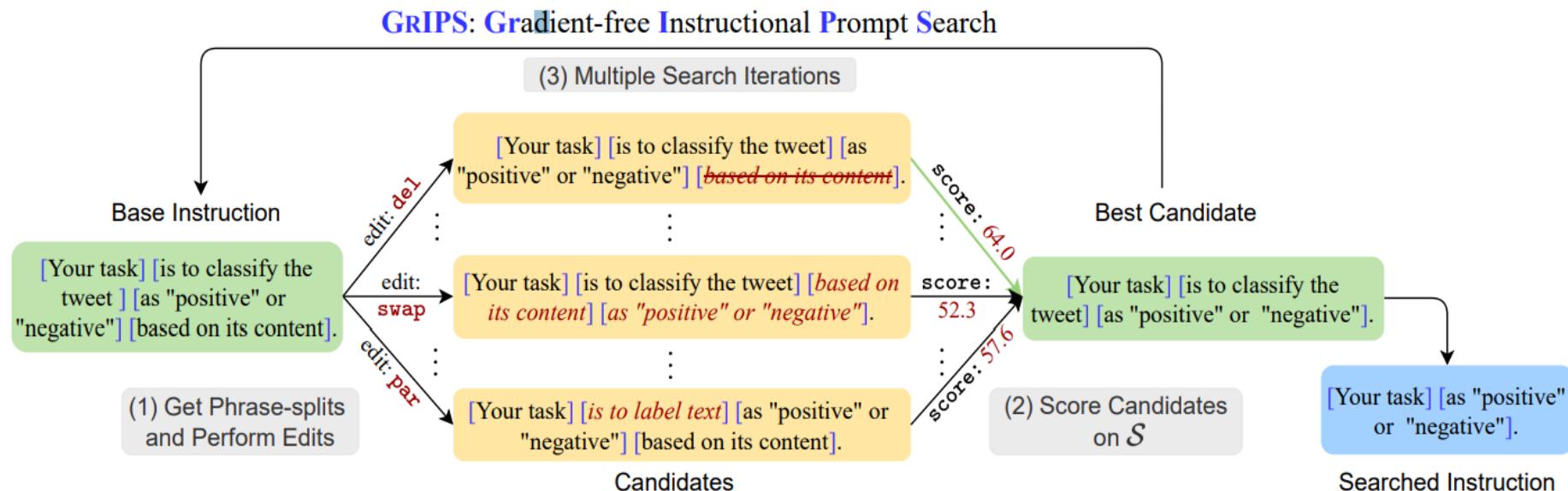
- Pretrain
- Fine-tune
- Multitask



# Hard Prompting: Discrete Optimization

Sometimes, can avoid gradients

- Random search
- Greedy



# Soft Prompting

Also called **continuous prompting**

Basic idea: insert some (non-language) parameters into prompt

- Train these parameters
- Do not directly correspond to words in prompt

---

**Prefix-Tuning: Optimizing Continuous Prompts for Generation**

**Xiang Lisa Li**  
Stanford University  
xlisali@stanford.edu

**Percy Liang**  
Stanford University  
pliang@cs.stanford.edu

---

**GPT Understands, Too**

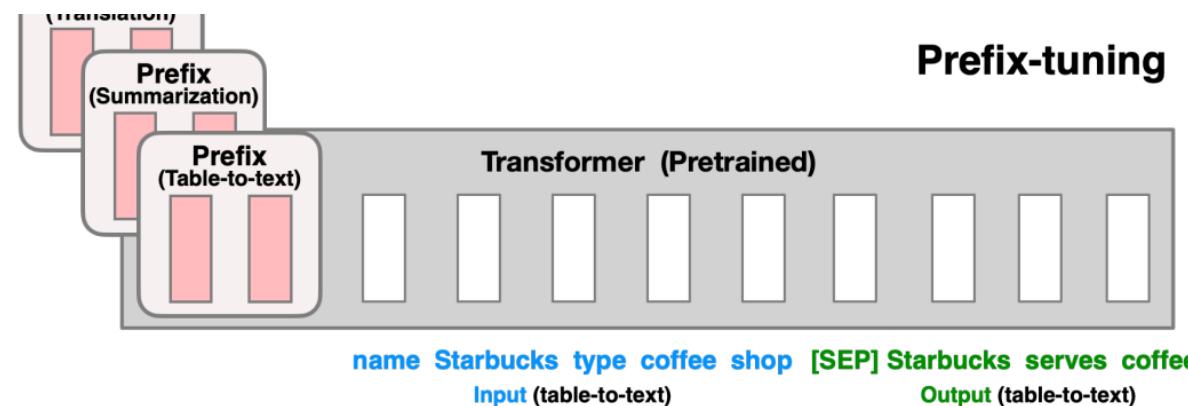
---

Xiao Liu <sup>\*12</sup> Yanan Zheng <sup>\*12</sup> Zhengxiao Du <sup>12</sup> Ming Ding <sup>12</sup> Yujie Qian <sup>3</sup> Zhilin Yang <sup>42</sup> Jie Tang <sup>12</sup>

# Soft Prompting: Prefix-Tuning

Goal: create prefixes that *steer* models

- Prefixes are trainable parameters
- Train one for each goal task, only store these new parameters
- Enables cheap adaptation of frozen language model



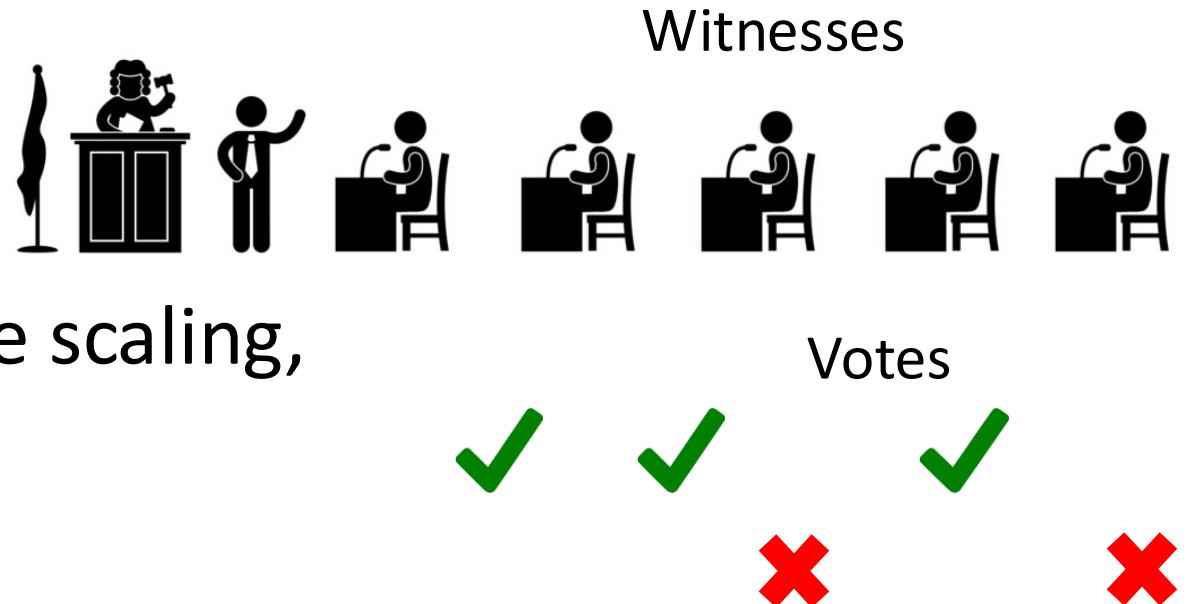
# Ensembling Prompts

One prompt can give you an answer... but might be wrong

- One simple approach: get multiple samples
- From?
  - Change temperature parameter
  - Vary your prompts

Then, run **majority vote**

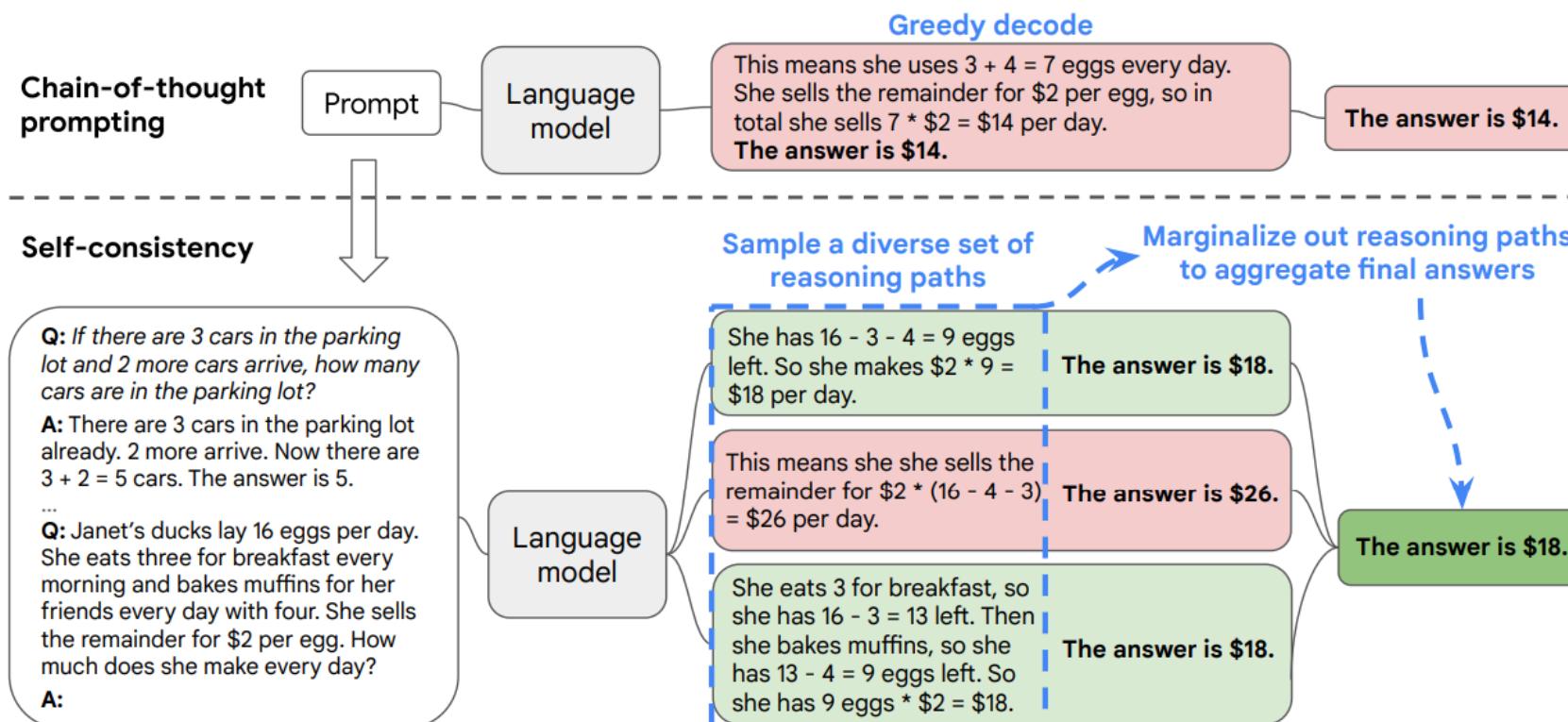
- New terminology: “test-time scaling, self-consistency”



# Chain-of-Thought

A form of prompting that helps break down the problem (more soon!)

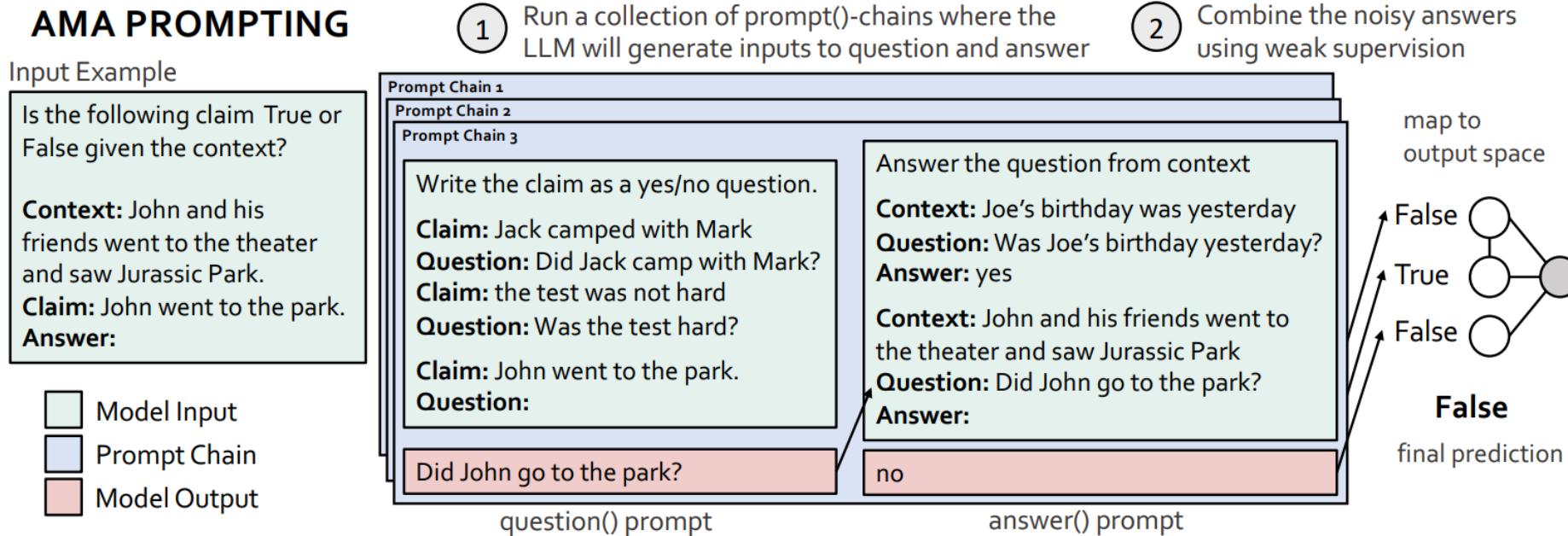
- Produces more answers to run majority vote on



# Ensembling Prompts: Weighted Version

Downside of majority vote... most responses might be wrong

- Should weight them by how accurate they are



# Bibliography

- Brown et al '20: Brown+many others, "Language Models are Few-Shot Learners" (<https://arxiv.org/abs/2005.14165>)
- Dubey et al '24: Dubey+many others, "The Llama 3 Herd of Models" (<https://arxiv.org/abs/2407.21783>)
- Nvidia '25: Nvidia team, "Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models" (<https://arxiv.org/pdf/2504.03624>)
- Zhao et al '21: Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, Sameer Singh, "Calibrate Before Use: Improving Few-Shot Performance of Language Models" (<https://arxiv.org/abs/2102.09690>)
- Dong et al '23: Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui, "A Survey on In-context Learning" (<https://arxiv.org/abs/2301.00234>)
- Zhou et al '23: Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, Jimmy Ba, "Large Language Models Are Human-Level Prompt Engineers" (<https://arxiv.org/abs/2211.01910>)
- Yang et al '23: Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen, "Large Language Models as Optimizers" (<https://arxiv.org/abs/2309.03409>)
- Menon and Vondrick '23, "Visual Classification via Description from Large Language Models" (<https://arxiv.org/abs/2210.07183>)
- Adila '23: Dyah Adila, Changho Shin, Linrong Cai, Frederic Sala, "Zero-Shot Robustification of Zero-Shot Models With Foundation Models" (<https://arxiv.org/pdf/2309.04344.pdf>)
- Gal et al '22: Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or, "An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion" (<https://arxiv.org/abs/2208.01618>)
- Zhang et al '23: Yuanhan Zhang, Kaiyang Zhou, Ziwei Liu, "What Makes Good Examples for Visual In-Context Learning?" (<https://arxiv.org/abs/2301.13670>)
- Wei et al '22: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models" (<https://arxiv.org/abs/2201.11903>)
- Kojima et al '23: Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa, "Large Language Models are Zero-Shot Reasoners" (<https://arxiv.org/abs/2205.11916>)
- Fu et al '23: Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, Tushar Khot, "Complexity-Based Prompting for Multi-Step Reasoning" (<https://arxiv.org/abs/2210.00720>)
- Yao et al '23: Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan, "Tree of Thoughts: Deliberate Problem Solving with Large Language Models" (<https://arxiv.org/abs/2305.10601>)



**Thank You!**