
CS 839: Foundation Models
Prompting

Fred Sala

University of Wisconsin-Madison

Sept. 25, 2025

Announcements

•Logistics:
•Homework 1 is ongoing!
•Due Oct. 2 end of day.

•Upcoming: presentation information

•Class roadmap: Thursday Sept. 25 Prompting

Tuesday Sept. 30 Specialization

Thursday Oct. 2 Alignment

Tuesday Oct. 7 RLVR

Thursday Oct. 9 Efficient Training

Lan
gu

age &
 Fo

u
nd

atio
n

 M
o

d
els

Outline

•Finish Improving and Extending Prompting
•Searching for good prompts, techniques for
continuous/soft prompts, ensembling

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples
for few-shot, tree-of-thoughts

•Ingredients For CoT + External Improvements
•Scale, manual vs. auto-rationales, rationale correctness.
Programs, tools, etc.

Outline

•Finish Improving and Extending Prompting
•Searching for good prompts, techniques for
continuous/soft prompts, ensembling

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples
for few-shot, tree-of-thoughts

•Ingredients For CoT + External Improvements
•Scale, manual vs. auto-rationales, rationale correctness.
Programs, tools, etc.

Hard Prompting: Discrete Optimization

Sometimes, can avoid gradients
•Random search
•Greedy

Prasad et al ‘23

Auto-Prompting

LLMs as “prompt engineers” (Zhou et al, ‘23)
•Use an LLM to generate candidate instructions (prompts)
•Evaluate them externally
•Select best candidate.
•Optionally iterate.

Example Output:
• “Let’s work this out in a

step by step way to be
sure we have the right
answer.”

Auto-Prompting

LLMs as “optimizers” (Yang et al, ‘23)
•Use the LLM to guess solutions to an optimization problem
•Evaluate them externally
•Run in a loop with few-shot

•Can use for
•Standard optimization problems
•Tougher settings like prompts

LLMs as Optimizers: Example

Example:
Meta-instructions

Trajectory points

Problem to be solved

LLMs as Optimizers: Prompt Optimization

Resulting trajectory

More Auto-Prompting Work

Recall: search for hard prompts: tough optimization problem
• Lots of classic search methods only require notion of “neighbors”

and evaluation function access
• Hill-climbing
• Simulated annealing
• Genetic algorithms

•“Promptbreeder”: an approach via genetic algorithms
• Show all your working. II. You should use the correct mathematical
notation and vocabulary, where appropriate. III. You should write your
answer in full sentences and in words. IV. You should use examples to
illustrate your points and prove your answers. V. Your workings out
should be neat and legible

More Auto-Prompting Work

“Promptbreeder”: an approach via genetic algorithms

Fernando et al ‘23

Prompting VLMs and Multimodal Models

Training and prediction in CLIP-style VLMs

OpenAI

How to Prompt VLMs?

Standard way: use pre-defined templates

•E.g., “a photo of a [X]”

•But, might struggle…

OpenAI

LLMs to Improve VLMs: Description

Static class descriptions may fail…
•Replace with descriptive features (Menon and Vondrick, ‘23)
• Instead of “tiger”, include “stripes, claws, …”

LLMs to Improve VLMs: Spurious Features

This helped with positives.
•What about negatives (i.e., spurious features?)
•Example: waterbirds with CLIP

•Spurious correlations: generally a problem
with all pretrained models
•But LLMs can also tell us about this (Adila ‘24)

LLMs to Improve VLMs: Spurious Features

Modify embeddings used for prediction:

In-Context Learning for VLMs

Surprisingly in-context/few-shot also applies to visual models

•Standard questions apply here too:
•How to select examples
•What makes for a good example?

Zhang et al ‘23

Break & Questions

Outline

•Finish Improving and Extending Prompting
•Searching for good prompts, techniques for
continuous/soft prompts, ensembling

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples
for few-shot, tree-of-thoughts

•Ingredients For CoT + External Improvements
•Scale, manual vs. auto-rationales, rationale correctness.
Programs, tools, etc.

Chain-of-Thought

Performing complex reasoning is hard. Help the model:

Wei et al ‘22

Chain-of-Thought: Applications

Some things it can be used for:

• Math problems

• Commonsense
reasoning

• Symbolic reasoning

Chain-of-Thought: Zero-Shot

No examples shown; encourage model to decompose
•Add to prompt: “Let’s think step by step” before each answer
•For answer extraction, add prompts like “Therefore, the

answer (arabic numerals) is” (Kojima et al ‘23)

Chain-of-Thought: Few-Shot Examples

As before, we must choose few-shot examples.
•More structured than simple semantic similarity
•Complexity-based prompting.

• “[S]imply choose complex prompts over simple ones.”

•Prompting: include most steps. Ensembling: MV over set of
most complex chains.

Fu et al ‘23

Chain-of-Thought: Generalizations

How do we really “reason”?
•Not really by sampling a bunch of chains…

Yao et al ‘23

Chain-of-Thought: Generalizations

Tree-of-thoughts basic idea:
•Notation: thoughts z1, z2, …, zn bridge x and y
•Comparison to other methods:

• Vanilla CoT: sample zi ~ pθ(zi | x, z1,…,zi-1), y ~ pθ(y | x, z1,…,zn)

• CoT Self-Consistency: sample multiple times, take majority vote

• Idea: create a state s=[x,z1,…,zn]
•Generate multiple candidates for next state

• Then run standard search (i.e., BFS, DFS, A*)

Drichel (Wiki)

Chain-of-Thought: Generalizations

Tree-of-thoughts key aspects:
•Thought decomposition: how big zs should be
•Thought generation: obtaining the next sample

• Try to avoid duplication

•State evaluation: How close are we to solution?
• Recall heuristics for search from CS 540
• Either use LM itself, or vote/weighted vote across solutions

•Search: BFS or DFS
• Or more advanced search methods

Drichel (Wiki)

Chain-of-Thought: Generalizations

Tree-of-thoughts example:

Break & Questions

Outline

•Finish Improving and Extending Prompting
•Searching for good prompts, techniques for
continuous/soft prompts, ensembling

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples
for few-shot, tree-of-thoughts

•Ingredients For CoT + External Improvements
•Scale, manual vs. auto-rationales, rationale correctness.
Programs, tools, etc.

What Matters for CoT? Scale?

Do all language models exhibit CoT behavior?

A: No. Shows up only at certain sizes
• “Emergent behavior”
•But… we can use RL to speed up appearance

•Example: CoT does not help until ~10B

 (Model: LaMDA, Dataset: Math)

Wei et al ‘23

What Matters for CoT? Correctness?

Does reasoning have to work in
provided examples?

A: No. Invalid reasoning in CoT
still helps

•Versus no CoT

•What does matter
•Relevant steps (still bridge gap)
•Steps follow each other

Wang et al ‘23

Zhang et al ‘23

What Matters for CoT? Human signal?

Do examples have to be manually crafted?

A: No. Auto-CoT: generate examples to be used

•Need diversity: first cluster, then sample from each
cluster

What Matters for CoT? Pretraining?

Does “reasoning” data in pretraining extend to other
languages?

A: Not entirely.

Shi et al ‘22

When Does CoT Actually Help?

A: Not always clear

•Mainly on math and symbolic reasoning?

Sprage et al ‘24

Beyond the Unaided Language Models

Even when we do CoT, the language model can get things
wrong.

•Often simple things… like arithmetic.

•How else can we help it?

•A: Use external tools

Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text
explanations in CoT steps with
lines of Python code

• LMs can already output code
• Just need to prompt the right

way

Gao et al ‘23

Tools: Programs-aided LMs Prompts

Just need to prompt the right way
•Craft examples that interleave code and text

Tools: Program-of-Thoughts

Similar idea: program-of-thoughts

Chen et al ‘22

Tools: More General Tools

Ideally, use more general external
tools
•Without lots of human annotation
•Model should decide on its own

which tool to use

•Toolformer: introduces API calls into
the model
• But these API calls aren’t already there…

so need to fine-tune

•Model context protocol (MCP)
standardize!

Schick et al ‘23

Bibliography
• Fernando et al ‘23: Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, Tim Rocktäschel, “Promptbreeder: Self-Referential Self-

Improvement Via Prompt Evolution” (https://arxiv.org/abs/2309.16797)

• Wei et al ’22: Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, “Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models” (https://arxiv.org/abs/2201.11903)

• Kojima et al ‘23: Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa, “Large Language Models are Zero-Shot Reasoners”
(https://arxiv.org/abs/2205.11916)

• Fu et al ‘23: Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, Tushar Khot, “Complexity-Based Prompting for Multi-Step Reasoning”
(https://arxiv.org/abs/2210.00720)

• Yao et al ’23: Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan, “Tree of Thoughts: Deliberate
Problem Solving with Large Language Models” (https://arxiv.org/abs/2305.10601)

• Wei et al ‘22: Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald
Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, William Fedus, “Emergent Abilities of Large Language Models”,
(https://arxiv.org/abs/2206.07682)

• Wang et al ‘22: Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, Huan Sun, “Towards Understanding Chain-of-Thought
Prompting: An Empirical Study of What Matters”, (https://arxiv.org/abs/2212.10001)

• Shi et al ’22: Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny
Zhou, Dipanjan Das, Jason Wei, “Language Models are Multilingual Chain-of-Thought Reasoners”, (https://arxiv.org/abs/2210.03057)

• Zhang et al ‘23: Zhuosheng Zhang, Aston Zhang, Mu Li, Alex Smola, “Automatic Chain of Thought Prompting in Large Language Models”
(https://openreview.net/forum?id=5NTt8GFjUHkr)

• Sprague et al ‘24: Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu Zhao, Xi Ye, Kyle
Mahowald, Greg Durrett “To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning” (https://arxiv.org/abs/2409.12183)

• Gao et al ’23: Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, Graham Neubig, “PAL: Program-aided Language
Models” (https://arxiv.org/abs/2211.10435)

• Chen et al ‘22: Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen, “Program of Thoughts Prompting: Disentangling Computation from
Reasoning for Numerical Reasoning Tasks” (https://arxiv.org/abs/2211.12588)

• Schick et al ’23: Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom,
“Toolformer: Language Models Can Teach Themselves to Use Tools” (https://arxiv.org/abs/2302.04761)

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2212.10001
https://arxiv.org/abs/2210.03057
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2302.04761

Thank You!

	Slide 1: CS 839: Foundation Models Prompting
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Hard Prompting: Discrete Optimization
	Slide 6: Auto-Prompting
	Slide 7: Auto-Prompting
	Slide 8: LLMs as Optimizers: Example
	Slide 9: LLMs as Optimizers: Prompt Optimization
	Slide 10: More Auto-Prompting Work
	Slide 11: More Auto-Prompting Work
	Slide 12: Prompting VLMs and Multimodal Models
	Slide 13: How to Prompt VLMs?
	Slide 14: LLMs to Improve VLMs: Description
	Slide 15: LLMs to Improve VLMs: Spurious Features
	Slide 16: LLMs to Improve VLMs: Spurious Features
	Slide 17: In-Context Learning for VLMs
	Slide 18: Break & Questions
	Slide 19: Outline
	Slide 20: Chain-of-Thought
	Slide 21: Chain-of-Thought: Applications
	Slide 22: Chain-of-Thought: Zero-Shot
	Slide 23: Chain-of-Thought: Few-Shot Examples
	Slide 24: Chain-of-Thought: Generalizations
	Slide 25: Chain-of-Thought: Generalizations
	Slide 26: Chain-of-Thought: Generalizations
	Slide 27: Chain-of-Thought: Generalizations
	Slide 28: Break & Questions
	Slide 29: Outline
	Slide 30: What Matters for CoT? Scale?
	Slide 31: What Matters for CoT? Correctness?
	Slide 32: What Matters for CoT? Human signal?
	Slide 33: What Matters for CoT? Pretraining?
	Slide 34: When Does CoT Actually Help?
	Slide 35: Beyond the Unaided Language Models
	Slide 36: Tools: Program-aided LMs
	Slide 37: Tools: Programs-aided LMs Prompts
	Slide 38: Tools: Program-of-Thoughts
	Slide 39: Tools: More General Tools
	Slide 40: Bibliography
	Slide 41: Thank You!

