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Announcements

•Logistics:
•Homework 1 is ongoing! 
•Due Oct. 2 end of day.

•Upcoming: presentation information

•Class roadmap: Thursday Sept. 25 Prompting 

Tuesday Sept. 30 Specialization

Thursday Oct. 2 Alignment

Tuesday Oct. 7 RLVR

Thursday Oct. 9 Efficient Training
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Outline

•Finish Improving and Extending Prompting
•Searching for good prompts, techniques for 
continuous/soft prompts, ensembling

•Intro to Chain-of-Thought
•Basic idea, zero-shot and few-shot, choosing examples 
for few-shot, tree-of-thoughts

•Ingredients For CoT + External Improvements
•Scale, manual vs. auto-rationales, rationale correctness. 
Programs, tools, etc.
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Hard Prompting: Discrete Optimization 

Sometimes, can avoid gradients 
•Random search
•Greedy 

Prasad et al ‘23



Auto-Prompting

LLMs as “prompt engineers” (Zhou et al, ‘23)
•Use an LLM to generate candidate instructions (prompts)
•Evaluate them externally
•Select best candidate. 
•Optionally iterate.

Example Output: 
• “Let’s work this out in a 

step by step way to be 
sure we have the right 
answer.”



Auto-Prompting

LLMs as “optimizers” (Yang et al, ‘23)
•Use the LLM to guess solutions to an optimization problem
•Evaluate them externally
•Run in a loop with few-shot

•Can use for
•Standard optimization problems
•Tougher settings like prompts 



LLMs as Optimizers: Example

Example:
Meta-instructions

Trajectory points

Problem to be solved



LLMs as Optimizers: Prompt Optimization

Resulting trajectory



More Auto-Prompting Work

Recall: search for hard prompts: tough optimization problem
• Lots of classic search methods only require notion of “neighbors” 

and evaluation function access
• Hill-climbing
• Simulated annealing
• Genetic algorithms

•“Promptbreeder”: an approach via genetic algorithms
• Show all your working. II. You should use the correct mathematical 
notation and vocabulary, where appropriate. III. You should write your 
answer in full sentences and in words. IV. You should use examples to 
illustrate your points and prove your answers. V. Your workings out 
should be neat and legible



More Auto-Prompting Work

“Promptbreeder”: an approach via genetic algorithms

Fernando et al ‘23



Prompting VLMs and Multimodal Models

Training and prediction in CLIP-style VLMs

OpenAI



How to Prompt VLMs?

Standard way: use pre-defined templates

•E.g., “a photo of a [X]” 

•But, might struggle…

OpenAI



LLMs to Improve VLMs: Description

Static class descriptions may fail…
•Replace with descriptive features (Menon and Vondrick, ‘23)
• Instead of “tiger”, include “stripes, claws, …”



LLMs to Improve VLMs: Spurious Features

This helped with positives.
•What about negatives (i.e., spurious features?)
•Example: waterbirds with CLIP

•Spurious correlations: generally a problem 
with all pretrained models
•But LLMs can also tell us about this (Adila ‘24)



LLMs to Improve VLMs: Spurious Features

Modify embeddings used for prediction:



In-Context Learning for VLMs

Surprisingly in-context/few-shot also applies to visual models

•Standard questions apply here too:
•How to select examples
•What makes for a good example?

Zhang et al ‘23



Break & Questions
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Chain-of-Thought

Performing complex reasoning is hard. Help the model:

Wei et al ‘22



Chain-of-Thought: Applications

Some things it can be used for:

• Math problems

• Commonsense 
reasoning

• Symbolic reasoning



Chain-of-Thought: Zero-Shot

No examples shown; encourage model to decompose
•Add to prompt: “Let’s think step by step” before each answer
•For answer extraction, add prompts like “Therefore, the 

answer (arabic numerals) is” (Kojima et al ‘23)



Chain-of-Thought: Few-Shot Examples

As before, we must choose few-shot examples. 
•More structured than simple semantic similarity
•Complexity-based prompting. 

• “[S]imply choose complex prompts over simple ones.”

•Prompting: include most steps. Ensembling: MV over set of 
most complex chains.

Fu et al ‘23



Chain-of-Thought: Generalizations

How do we really “reason”?
•Not really by sampling a bunch of chains… 

Yao et al ‘23



Chain-of-Thought: Generalizations

Tree-of-thoughts basic idea:
•Notation: thoughts z1, z2, …, zn bridge x and y
•Comparison to other methods:

• Vanilla CoT: sample zi ~ pθ(zi | x, z1,…,zi-1), y ~ pθ(y | x, z1,…,zn)

• CoT Self-Consistency: sample multiple times, take majority vote

• Idea: create a state s=[x,z1,…,zn]
•Generate multiple candidates for next state

• Then run standard search (i.e., BFS, DFS, A*)

Drichel (Wiki)



Chain-of-Thought: Generalizations

Tree-of-thoughts key aspects:
•Thought decomposition: how big zs should be
•Thought generation: obtaining the next sample

• Try to avoid duplication

•State evaluation: How close are we to solution?
• Recall heuristics for search from CS 540
• Either use LM itself, or vote/weighted vote across solutions

•Search: BFS or DFS
• Or more advanced search methods

Drichel (Wiki)



Chain-of-Thought: Generalizations

Tree-of-thoughts example:



Break & Questions
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What Matters for CoT? Scale?

Do all language models exhibit CoT behavior?

A: No. Shows up only at certain sizes
• “Emergent behavior”
•But… we can use RL to speed up appearance

•Example: CoT does not help until ~10B

  (Model: LaMDA, Dataset: Math)

Wei et al ‘23



What Matters for CoT? Correctness?

Does reasoning have to work in 
provided examples?

A: No. Invalid reasoning in CoT 
still helps

•Versus no CoT

•What does matter
•Relevant steps (still bridge gap)
•Steps follow each other 

Wang et al ‘23



Zhang et al ‘23

What Matters for CoT? Human signal?

Do examples have to be manually crafted?

A: No. Auto-CoT: generate examples to be used

•Need diversity: first cluster, then sample from each 
cluster 



What Matters for CoT? Pretraining? 

Does “reasoning” data in pretraining extend to other 
languages?

A: Not entirely. 

Shi et al ‘22



When Does CoT Actually Help?

A: Not always clear

•Mainly on math and symbolic reasoning?

Sprage et al ‘24



Beyond the Unaided Language Models

Even when we do CoT, the language model can get things 
wrong. 

•Often simple things… like arithmetic.

•How else can we help it?

•A: Use external tools



Tools: Program-aided LMs

Use external tools:
•Python interpreter

•How? Interleave the text 
explanations in CoT steps with 
lines of Python code

• LMs can already output code
• Just need to prompt the right 

way

Gao et al ‘23



Tools: Programs-aided LMs Prompts

Just need to prompt the right way
•Craft examples that interleave code and text



Tools: Program-of-Thoughts 

Similar idea: program-of-thoughts

Chen et al ‘22



Tools: More General Tools

Ideally, use more general external 
tools
•Without lots of human annotation
•Model should decide on its own 

which tool to use

•Toolformer: introduces API calls into 
the model
• But these API calls aren’t already there… 

so need to fine-tune

•Model context protocol (MCP) 
standardize!

Schick et al ‘23
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Thank You!
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