
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Anonymous Authors1

Abstract
Modern semi-supervised learning (SSL) methods
rely on pseudolabeling and consistency regular-
ization. Pseudolabeling is typically performed
by comparing the model’s confidence scores and
a predefined threshold. While several heuristics
have been proposed to improve threshold selec-
tion, the underlying issues of overconfidence and
miscalibration in confidence scores remain largely
unaddressed, leading to inaccurate pseudolabels,
degraded test accuracy, and prolonged training.
We take a first-principles approach to learn con-
fidence scores and thresholds with an explicit
knob for error. This flexible framework addresses
the fundamental question of optimal scores and
threshold selection in pseudolabeling. Moreover,
it gives practitioners a principled way to control
the quality and quantity of pseudolabels. Such
control is vital in SSL, where balancing pseudola-
bel quality and quantity directly affects model
performance and training efficiency. Our exper-
iments show that, by integrating this framework
with modern SSL methods, we achieve significant
improvements in accuracy and training efficiency.
In addition, we provide novel insights on the trade-
offs between the choices of the error parameter
and the end model’s performance.

1. Introduction
The lack of high-quality labeled data is a major bottleneck
in training high-accuracy models. The semi-supervised
learning (SSL) paradigm tackles this problem by leveraging
abundant unlabeled data alongside a limited set of labeled
examples (Chapelle et al., 2006; Zhu, 2005; van Engelen
& Hoos, 2019). While SSL dates back decades and in-
cludes a wide variety of approaches, modern SSL methods
frequently rely on a pair of ideas: self-training or pseu-
dolabeling – where model generated labels are assigned to

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

unlabeled data for further training (McLachlan, 1975; Amini
et al., 2023; Rosenberg et al., 2005; Lee, 2013; Rizve et al.,
2021) – and consistency regularization to enforce stability
in predictions across perturbed inputs (Laine & Aila, 2017;
Bachman et al., 2014; Sajjadi et al., 2016; Fan et al., 2021;
Kukačka et al., 2017). SSL techniques with these ideas have
strongly performed on several benchmark datasets.

While pseudolabeling is a powerful technique, its effective-
ness hinges on a fundamental question: which points should
be labeled using the model’s predictions? Since pseudola-
bels are derived from a model being trained, they can be
highly unreliable. A naive approach that assigns pseudola-
bels too liberally risks injecting noisy labels into training,
amplifying the model’s existing errors – a phenomenon
known as confirmation bias. Conversely, an overly con-
servative approach that selects only the correct predictions
severely limits the amount of useful training data. Both ex-
tremes can degrade SSL performance, leading to either poor
generalization or slow convergence. To fully harness the
potential of pseudolabeling, we need a principled approach
for pseudolabeling with explicit control on these trade-offs.

A widely used strategy pseudolabels points on which the
model’s confidence score exceeds a threshold. This ap-
proach provides a simple mechanism for selecting points
while controlling the quality and quantity of pseudolabels
via thresholds. However, the prior works based on this ap-
proach suffer from two key limitations that restrict its effec-
tiveness. First, thresholding techniques are often heuristic-
driven, lacking a precise control for a target error level (Sohn
et al., 2020; Zhang et al., 2021; Wang et al., 2023; Xu et al.,
2021; Chen et al., 2023; Li et al., 2023). Second, commonly
used scores, such as the model’s softmax outputs, tend to
be unreliable. Recent studies in this vein (Loh et al., 2022;
Mishra et al., 2024; Rizve et al., 2021) have highlighted
issues of overconfidence and miscalibration in these scores,
leading to inefficiencies in pseudolabeling.

In addition to these problems with the choices of scores
and thresholds, an equally important question remains: how
much error should be allowed in pseudolabeling? As dis-
cussed earlier, a very low tolerance may pseudolabel too
few points and conversely a high tolerance may allow for
large errors, hurting the efficiency of pseudolabeling in both
cases. To solve these issues, we seek a principled solution

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

to get confidence scores and thresholds for pseudolabeling
at a given target level of error tolerance.

We take a first principles approach to formalize the pseudola-
beling objective: maximize the number of pseudolabeled
points while adhering to the given error tolerance. We for-
mulate this objective as an optimization problem over a
flexible space of confidence functions and thresholds. By
solving this optimization problem we obtain confidence
scores tailored to our objective of psuedolabeling. To ensure
the pseudolabeling error constraint is strictly followed, we
use a separate procedure to estimate thresholds on these
scores using part of the validation data. Pseudolabeling with
these scores and thresholds ensures we are pseudolabeling a
maximal set of points that can be pseudolabeled at the given
error tolerance level.

We integrate this approach into popular pseudolabeling-
based SSL methods, providing two benefits. First, it pro-
vides a principled way to derive confidence scores and
thresholds for any given error tolerance. Second, by en-
abling more precise pseudolabeling it improves the utiliza-
tion of the unlabeled data and is expected to yield an end
model with higher test accuracy compared to the ad-hoc
choices of scores and thresholds.

Our main contributions are summarized as follows,

1. Our work settles the question of the right choices of
confidence scores and thresholds in pseudolabeling-
based SSL methods by introducing a framework for
learning confidence scores and thresholds. Departing
from heuristic-driven or ad-hoc and unreliable choices
of scores and thresholds, this framework provides prin-
cipled choices of scores and thresholds for pseudolabel-
ing with any target error tolerance.

2. We show how this framework for learning confidence
scores and thresholds can work in concert with popu-
lar SSL methods such as Fixmatch (Sohn et al., 2020),
Freematch (Wang et al., 2023), etc., and conduct an
extensive empirical evaluation demonstrating that by
pseudolabeling using confidence scores and thresholds
learned from our method can yield significant improve-
ments in the test accuracy.

3. Leveraging our framework’s ability to pseudolabel at
any target error level, we study the impact of varying
pseudolabeling error levels—from fixed to dynamic
tolerance throughout training. Our results confirm the
intuition that lower pseudolabeling errors lead to bet-
ter end models compared to higher errors. Moreover,
among dynamic schedules, it is better to use a decreas-
ing schedule of error tolerances.

2. Background and Problem Setup
We begin with notation, then provide useful background and
a statement of our goal.

Notation. Consider a feature space X and label space Y =
{1, . . . , k} in a k-class classification task. As usual in semi-
supervised learning, we have access to a set Xu = {xu}nu

u=1

of unlabeled data drawn from the distribution Px over X .
We also have access to Dl = {(xl, yl)}Nl

l=1, a set of la-
beled data points drawn from the joint distribution Pxy,
with Nl ≪ nu. Let h : X → Y denote a model and
g : X → T k ⊆ Rk be an associated confidence function
giving a score g(x) indicating the confidence of h on its
prediction for any data point x. For any x the hard label
prediction is ŷ := h(x). When the prediction ŷ is used as
a pseudolabel we denote it as ỹ. In general, for a vector
v ∈ Rd, v[i] denotes its i−th component. The vector t
denotes thresholds over the scores k-classes, and t[y] is its
y−th entry, i.e., the threshold for class y.

2.1. Pseudolabeling-based Semi-Supervised Learning

Given, as above, a large collection of unlabeled data Xu and
a small set of labeled points Dl, inductive semi-supervised
learning (SSL) seeks to learn a classifier ĥssl from the model
classH. The promise of SSL is that by effectively using Xu

in the learning process it can learn a better classifier than its
supervised counterpart, which learns only from Dl.

In many recent pseudolabeling-based SSL techniques, in
each iteration of training, a batch of labeled and unlabeled
data is obtained, then the sum of the losses L̂ = L̂s +
λuL̂u + λrL̂r is minimized w.r.t to the model h. Here L̂s

is the supervised loss, L̂u unsupervised loss, and L̂r is (the
sum of) regularization term(s). The constants λu, λr are
hyperparameters controlling the relative importance of the
corresponding terms.

Supervised loss. Given a batch of labeled data, Db
l the

supervised loss is computed as follows, L̂s(h | Db
l) =

1
|Db

l |
∑

(x,y)∈Db
l
H(y, h,x). Here H(y, h,x) is the standard

cross-entropy loss between the 1-hot representation of y and
the softmax output of h on input x.

Unsupervised loss and consistency regularization. For
the unlabeled batch Xb

u, pseudolabels ỹ = h(x) are com-
puted for each x ∈ Xb

u. Then, a pseudolabeling mask,
S(x, g, t | h) = 1(g(x)[ỹ] ≥ t[ỹ]) is computed. It is 1
for points having confidence score g(x)[ỹ], bigger than pre-
determined threshold t[ỹ], corresponding to the predicted
class ỹ. Recent methods, couple this loss and consistency
regularization together by doing pseudolabeling on weakly
augmented data using weak transform ω : X 7→ X and then
defining the cross-entropy loss on the strongly augmented

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

data using strong transformation Ω : X 7→ X . The loss is,

L̂u :=
1

|D̃b
u|

∑
(x,ỹ)∈D̃b

u

S(ω(x), g, t|h) ·H(ỹ, h,Ω(x)).

Regularization. A regularization term (or a sum of mul-
tiple regularizers) is often included along with the above
two losses to encourage desired behavior(s). For instance,
Freematch (Wang et al., 2023) adds a self-adaptive class
fairness regularizer to encourage diverse predictions during
the initial training phase. Similarly, a regularizer is intro-
duced in (Mishra et al., 2024) to encourage calibration in
the model’s confidence scores. Including such regularizers
has been fruitful in pseudolabeling-based SSL.

2.2. Quality and Quantity of Pseudolabels

Given a classifier h, the quality and quantity of the pseu-
dolabels w.r.t. to score function g and thresholds t, are:

Pseudolabeling coverage (quantity). Given a set of points
X , the pseudolabeling coverage is the fraction of points
that are pseudolabeled using h, g and t. This measurement
captures the quantity of pseudolabels and is defined as

P̂(g, t | h,X) :=
1

|X|
∑

(x)∈X

S(x, g, t | h) (1)

P(g, t | h) := Ex[S(x, g, t | h)]. (2)

Pseudolabeling error (quality). This is the fraction of
pseudolabeled points that got incorrect labels. This metric
captures the quality of pseudolabels:

Ê(g, t | h,D) :=

∑
(x,y,ỹ)∈D S(x, g, t | h) · 1(h(x) ̸= y)∑

(x,y,ỹ)∈D S(x, g, t | h)
,

(3)

E(g, t | h) = Ex[S(x, g, t | h) · 1(h(x) ̸= y)]

P(g, t|h)
. (4)

2.3. Our Goals

Pseudolabeling-based SSL aims to learn a classifier ĥssl that
generalizes well on the unseen data, i.e., has high test ac-
curacy. This is typically achieved by pseudolabeling points
using confidence scores and thresholds and incorporating
them into training. However, existing choices of scores and
thresholding strategies are often ad-hoc and unreliable, lim-
iting their effectiveness. Departing from these unreliable
approaches, our goal is to:

(i) Design principled solutions for confidence scores and
thresholding to maximize the number of pseudolabeled
points while ensuring pseudolabeling error is at most ϵ.

(ii) Incorporate these in the existing pseudolabeling-based
SSL methods and assess whether this gives a better end
model ĥssl.

(iii) Study the sensitivity of the SSL pipeline to pseudola-
beling errors by leveraging the ability of our approach to
explicitly ensure the pseudolabeling error remains below ϵ.

3. Methodology
In this section, we discuss our principled framework to learn
scores and thresholds with explicit control of the pseudola-
beling errors and use them in pseudolabeling-based SSL.

3.1. Pseudolabeling Optimization Framework

Given current model ĥi in the ith iteration, can we obtain
confidence scores and thresholds using which we can iden-
tify a maximal set of points that can be pseudolabeled using
ĥi with at most ϵ error? We begin with a theoretical formu-
lation to learn such scores and thresholds and then introduce
its practical version.

Theoretical framework. Instead of improving calibration
or heuristics for thresholding, we propose to express the ob-
jective of pseudolabeling as an optimization problem over
the space of confidence functions and thresholds. The ob-
jective is to maximize the quantity, i.e., the pseudolabeling
coverage (eq. (2)) while keeping the pseudolabeling error
(eq. (4)) below a tolerance level ϵ ∈ (0, 1). More specifi-
cally, given the classifier ĥi in any iteration i of SSL,

g⋆i , t
∗
i ∈ argmax

g∈G,t∈Tk

P(g, t | ĥi) s.t. E(g, t | ĥi) ≤ ϵ, (5)

are the optimal confidence functions and thresholds for pseu-
dolabeling using ĥi’s predictions such that the pseudolabel-
ing error is bounded by ϵ. This frees us from arbitrary
choices of confidence scores, calibration techniques, and
thresholding heuristics. Instead, solving the optimization
problem over a flexible enough space will subsume specific
strategies. Next, we discuss how to make this framework
tractable to obtain scores and thresholds in practice.

Practical version. The optimization problem discussed ear-
lier involves population-level quantities which are usually
not accessible in practice. Thus we have to use their finite
sample estimates and smooth variations to make the opti-
mization problem tractable. Specifically, the coverage and
error are estimated using a small amount of held-out labeled
data (called calibration data Dcal) curated from the valida-
tion data. Then differentiable surrogates for the 0-1 vari-
ables are introduced. Let σ(α, z) := 1/(1 + exp(−αz))
denote the sigmoid function on R with scale parameter

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Minimize loss on groundtruth and
pseudolabeled data

Learn new
confidence scores

and thresholds

Pseudolabel points with
confidence >= threshold

Pseudolabel accumulation
(optional)

Trained Model

Groundtruth 
Labeled data

Unlabeled data

Pseudolabeled
data

(A) (B)

(C)(D)
Labeled

Unlabeled
Pseudolabeled

Data

Train Model

Figure 1. Workflow of pseudolabeling-based SSL with PabLO (A): Train model with standard supervised loss, consistency regularization,
and other regularizers (B): Learn new confidence scores and thresholds (C): Pseudolabel points with scores greater than the estimated
thresholds (D): An optional pseudolabeling accumulation to use previous pseudolabels for points that are not pseudolabeled in current
round. Note, that the pseudolabels can be noisy (incorrect). The training and pseudolabeling loop continues until a pre-specified number
of iterations. In the end, it outputs a model ĥssl that is expected to have higher test accuracy than the model trained only on the given
groundtruth training data. Note that in the end there might be points left unlabeled and the pseudolabels might be noisy.

α ∈ R. The surrogates are as follows,

P̃(g, t | h,Dcal) :=
1

|Dcal|
∑

(x,y,ỹ)∈Dcal

σ
(
α, g(x)[ỹ]− t[ỹ]

)
,

(6)

Ẽ(g, t | h,Dcal) :=
∑

(x,y,ỹ)∈Dcal
1

(
y ̸=ỹ

)
σ
(
α,g(x)[ỹ]−t[ỹ]

)
∑

(x,y,ỹ)∈Dcal
σ
(
α,g(x)[ỹ]−t[ỹ]

) (7)

Using these surrogates, the following practical optimization
problem is obtained. It is also converted into unconstrained
formulation by introducing the penalty term λ ∈ R+ con-
trolling the relative importance of the error and coverage.

ĝi, t̂
′
i ∈ argmin

g∈G,t∈Tk

−P̃(g, t | ĥi, Dcal)+λ Ẽ(g, t | ĥi, Dcal)

(P1)
We use 2-layer neural nets as a choice of G and T k =
[0, 1]k. The optimization problem (P1) is non-convex but
differentiable and we solve it using Stochastic Gradient
Descent (SGD). See Appendix C for more details on our
choice of G and training details and hyperparameters.

3.2. Threshold Estimation

While we can obtain both the confidence scores and thresh-
olds by solving (P1), we propose to estimate thresholds
separately on a held-out part of the validation data to avoid
potential generalization issues due to learning them simulta-
neously from the same data Dcal and ensure that the pseu-
dolabeling error constraint is strictly adhered to.

When dealing with datasets containing many classes there
may not be enough samples per class to estimate reliable
thresholds. Thus, to accommodate these possibilities we

consider two variations of the threshold estimation proce-
dure, (i) estimate a common (joint) threshold for all classes
and (ii) estimate separate (classwise) thresholds for each
class. The procedures are outlined in Algorithm 2 and Algo-
rithm 1 in the Appendix. We discuss them briefly here.

The procedure takes in a confidence function ĝi and part of
the held-out validation data referred to as Dth. The idea is
to estimate errors at several thresholds on this data and then
pick the smallest threshold. This can be done separately
for each class to obtain classwise thresholds or a common
threshold for all classes. We discuss classwise thresholding
here. First the data Dth is partitioned into k subsets D(y)

th
corresponding to each class y ∈ Y . Here, we slightly abuse
notation: instead of t ∈ T k, we use t ∈ T in the estimate
of pseudolabeling error at threshold t for class y. To obtain
threshold t̃[y] for class y, the procedure finds the smallest
t ∈ T such that Ê(ĝi, t | h,D(y)

th) + C1σ̂(Ê) ≤ ϵ. Here C1

is a constant (we use C1 = 0.25) and σ̂(z) =
√

z · (1− z)

and Ê is used for brevity in place of Ê(g̃i, t | h,D(y)
th). The

same process is used for joint threshold estimation where
a single threshold t is estimated using entire Dth and the
same t is used for all classes. Using the thresholds found
using these procedures ensures pseudolabeling error remains
below (or close to) the tolerance level ϵ.

Remarks. Departing from fixed thresholds as in (Sohn et al.,
2020), prior works have proposed adaptive and class-wise
heuristic thresholding schemes based on the model’s learn-
ing status, such as in (Djurisic et al., 2023; Zhang et al.,
2021; Wang et al., 2023) and others. In contrast, our ap-
proach is a principled way to estimate adaptive and class-
wise pseudolabeling thresholds while providing strict con-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Dataset Backbone Model h k nu Nval Ntest Nl Ncal Nth Augmentation

CIFAR-10 WRN-28-2 10 50K 6K 4K 250 1K 1K Weak, Strong
CIFAR-100 WRN-28-2 100 50K 6K 4K 2500 3K 3K Weak, Strong

SVHN WRN-28-2 10 604,388 15,620 10,412 250 3K 3K Weak, Strong

Table 1. Details of the dataset we use in our experiments. k is the number of classes. Nl is the number of labeled data points used for
training the backbone model h. nu is the number of unlabelled data points used for consistency regularization and pseudolabeling for all
the methods. Nval is the number of points used for model selection in all methods. Ntest is the number of test data points. Ncal is the
number of points used for learning the g function. Nth is the number of data points used for threshold estimation.

trol over the quality of pseudolabels. Similar procedures
have been used in the context of creating reliable datasets
and are backed by theoretical guarantees for the quality of
pseudolabels produced (Vishwakarma et al., 2023).

3.3. Pseudolabeling and Accumulation

In the usual pseudolabeling-based SSL setups, the pseudola-
bels inferred by the model for a mini-batch are discarded
after each iteration. Moreover, it is not guaranteed that a
previously pseudolabeled point will get pseudolabled in the
current iteration as well. Given the quality of pseudolabels
is high, it is appealing to reuse the past pseudolabel for a
point that did not get pseudolabeled in the current iteration.
We propose to do so for techniques where the quality of
pseudolabels is assured. We refer to this as “pseudolabel
accumulation”.

Mathematically, let ỹ(i−1)
j = Ỹ

(i−1)
u [j] and ỹ

(i)
j = Ỹ

(i)
u [j]

be the previous and current (fresh) pseudolabels for jth
unlabeled point. Let the corresponding masks (indicating
whether the score is above the threshold) for these psuedola-
bels be S

(i−1)
u [j] and S

(i)
u [j] = 1(ĝi(xj)[ỹ

(i)
j] ≥ t̂i[ỹ

(i)
j]).

Then with accumulation,

Ỹ (i)
u [j]← S(i)

u [j]Ỹ (i)
u [j] + (1− S(i)

u [j])Ỹ (i−1)
u [j],

S(i)
u [j]← S(i)

u [j] ∨ S(i−1)
u [j].

Here ∨ is the boolean or operation and the steps are exe-
cuted in the order. In words, if the point is pseudolabeled
in the current iteration (i.e. its current mask is 1), then it
will use the current pseudolabel o.w. if the point was pseu-
dolabeled in earlier iteration(s) it will use the pseudolabel
from that iteration and mark the point as pseudolabeld. In
case the point is not pseudolabeled in this iteration or any
other iteration in the past it will remain unlabeled. While
it is appealing to use this trick, its use is only warranted
in settings ensuring high-quality pseudolabels. We try to
understand the consequences of the inclusion and exclusion
of this trick in pseudolabeling-based SSL via experiments
discussed in the next section.

We put together the steps for learning scores, thresholds, and
performing (optional) accumulation in a common template
of pseudolabeling-based SSL algorithms. We refer to this

adapted method (Algorithm 3 in Appendix B) as PabLO .
The high-level steps are also illustrated in Figure 1. Next,
we discuss the empirical evaluation of PabLO and baselines.

4. Experiments
We conduct empirical evaluation over several settings to,

C1. Verify that the adaptations of popular pseudolabeling-
based SSL methods with PabLO output models with better
test accuracy.

C2. Study the effects of choice of error tolerance ϵ on test
accuracy of the final model.

C3. Understand the role of pseudolabel accumulation in our
method and baselines.

4.1. Experimental Setup

First, we briefly describe the experimental setup, with details
deferred to Appendix C.

Methods. We use two simple base methods that capture
the core ideas of pseudolabeling (PL) and consistency reg-
ularization (CR). The first is Fixmatch (Sohn et al., 2020),
which uses fixed thresholds on (maximum softmax proba-
bility) MSP scores for PL and CR. Freematch (Wang et al.,
2023) improves upon it by using adaptive, class-wise thresh-
olds and class fairness regularization (CFR) along with CR,
and is a promising method among others using dynamic
thresholds for PL. We include their combinations with re-
cently proposed Bayesian Model Averaging (BAM) (Loh
et al., 2023) and Margin Regularization (MR) 1 (Mishra
et al., 2024) to improve calibration in SSL. We replace the
pseudolabeling component by our method PabLO to ob-
tain Fixmatch + Ours (a combination of PabLO and CR)
and Freematch + Ours (a combination of PabLO , CR, and
CFR). We provide implementations of these in the code
submitted along with the paper.

Datasets. We experiment with three datasets: CIFAR-10
(Krizhevsky et al., 2009) is an image dataset with 10 classes.
CIFAR-100 (Krizhevsky et al., 2009) is an extended version

1We assign this name for convenience.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

5K 15K 25K 35K
0

25
50
75

100
To

p-
1

Ac
cu

ra
cy

CIFAR-10

Fixmatch Fixmatch + Ours Fixmatch + BAM Fixmatch + MR
10K 30K 50K 70K

0
25
50
75

100
CIFAR-100

0 50K 100K 150K
0

25
50
75

100
SVHN

5K 15K 25K 35K
Iterations

0
25
50
75

100

To
p-

1
Ac

cu
ra

cy

Freematch Freematch + Ours Freematch + BAM Freematch + MR

10K 30K 50K 70K
Iterations

0
25
50
75

100

0 50K 100K 150K
Iterations

0
25
50
75

100

Figure 2. Top-1 accuracy of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every 200 steps.

of CIFAR-10 with 100 classes. SVHN (Netzer et al., 2011)
is a 10-class image dataset of digits from Google Street
View. More details are summarized in Table 1. We use a
portion of the validation data (Dval) for our method, split
into Dcal, used to learn the function g, and Dth, used to
estimate the threshold.

Adjusted iterations for baselines. Empirically, our method
requires more time to run compared to base SSL techniques.
Therefore, we adopt the following strategy to ensure a fair
comparison between the baselines and our method: First, we
train our method for 25K iterations and obtain the average
per iteration time, denoted as αo. Then, we train each
baseline method b for 5K iterations and obtain the average
per iteration time, denoted as αb. Using these two values,
we obtain the adjusted number of iterations, αo

αb
×25000, for

baseline method b. Coincidently, baselines under the same
dataset have similar runtime. We, therefore, set the adjusted
number of iterations on a dataset level. For CIFAR-10, the
adjusted number of iterations for baselines is 37,000. For
CIFAR-100, the adjusted number of iterations for baselines
is 70,000. For SVHN, it is 145,000.

Models and training. The backbone encoder is a Wide
ResNet-28-2 for all the datasets. We use the default hy-
perparameters and dataset-specific settings (learning rates,
batch size, optimizers, and schedulers) following previous
baseline recommendations (Wang et al., 2022). For confi-
dence functions class G, we use a class of 2-layer neural
nets and provide the last two layers representations from
h as input. We train it using SGD. The hyperparameters

are deferred to Appendix C. Unless otherwise specified, our
method uses pseudolabeling error tolerance ϵ = 5%.

4.2. Results and Discussion

To verify our main claims, we compare the baselines, their
combinations with our method, and methods that induce
calibrated scores in SSL. We run all methods with three
random seeds and report (in Table 2) the mean and standard
deviation of accuracy across three runs.

C1. Test accuracy improvements. Since our method maxi-
mizes the pseudolabeling coverage and accuracy, it provides
more accurate pseudolabels for model training. Therefore,
we expect it to yield a model with better test accuracy than
the baselines. We report the test accuracies at the end of
25K iterations in Table 2 for our methods. For the baselines,
we report the test accuracies at the end of the corresponding
adjusted number of iterations (well above 25K). Figure 2
illustrates how the top-1 accuracy evolves during the SSL.
Similarly, Figure 4 and 5 show how batch pseudolabeling
accuracy and batch pseudolabeling coverage change.

First, as expected, integrating our method into the base
methods improves test accuracy across all settings. For
CIFAR-10, using it with Fixmatch provides almost 2% im-
provement over Fixmatch alone, and using it with Freematch
yields 1% improvement over Freematch. Much more signif-
icant improvements are observed in the much harder setting
of CIFAR-100: a nearly 10% improvement in top-1 ac-
curacy over Fixmatch and around 5% improvement over

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Dataset CIFAR-10 CIFAR-100 SVHN

Labels 250 2500 250

Fixmatch 90.8 ± 0.78 59.09 ± 1.10 97.57 ± 0.08
Fixmatch + MR 90.41 ± 0.83 54.16 ± 0.18 97.55 ± 0.08

Fixmatch + BaM 90.67 ± 0.90 56.60 ± 2.45 97.51 ± 0.13

Fixmatch + Ours 92.69 ± 0.74 69.10 ± 0.45 96.54 ± 0.13

Freematch 92.26 ± 0.18 63.13 ± 0.46 92.90 ± 2.76

Freematch + MR 92.17 ± 0.36 62.03 ± 0.82 93.26 ± 2.36

Freematch + BaM 92.32 ± 0.25 62.13 ± 2.93 91.08 ± 3.72

Freematch + Ours 93.10 ± 0.28 68.76 ± 1.38 96.65 ± 0.26

Table 2. Top-1 Accuracy for CIFAR-10, CIFAR-100 and SVHN averaged across 3 random seeds. The best accuracy is bolded.

0.01 0.10 0.20 0.40
Error tolerance ()

0
25
50
75

100

To
p-

1
Ac

cu
ra

cy

(a) CIFAR-10

0.01 0.10 0.20 0.40
Error tolerance ()

0
25
50
75

100

(b) CIFAR-100

Fixmatch + Ours Freematch + Ours

Figure 3. Top-1 accuracy of our method with different error toler-
ance ϵ on (a) CIFAR-10 and (b) CIFAR-100 dataset.

Freematch. SVHN is an easier setting; here, the improve-
ments are marginal. With Fixmatch, our performance is
similar to that of the baselines. But, using PabLOwith
Freematch improves the performance by 3%.

C2. Error tolerance affects performance. In our method,
the error tolerance parameter ϵ is a knob to control the
amount of noise in pseudolabels. A common wisdom in
pseudolabeling is that higher noise will lead to worse per-
formance, which is our expectation. To see this, we run our
method with ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.4} in CIFAR-10
and CIFAR-100 settings, each with three random seeds, and
report the results in Figure 3. The results are as expected
— higher values of ϵ lead to degraded test accuracy due to
high noise in the pseudolabels and with decreasing ϵ leads
to improved accuracy. These results also suggest that priori-
tizing the quality (accuracy) of pseudolabels over quantity
is a better choice in pseudolabeling. The results are also
summarized in Table 7 and Table 8 in the Appendix.

To investigate the error tolerance further, we designed error
tolerance scheduling using different error tolerances during
various stages of SSL training. Table 3 summarizes the error
tolerance we set at different iterations of SSL training and
the corresponding top-1 accuracy for the CIFAR-10 and
CIFAR-100 datasets. As we see, starting SSL with a small
error tolerance and ending with a large tolerance severely

CIFAR-10
Top-1 Accuracy

CIFAR-100
Top-1 Accuracy

Schedule 1
Fixmatch + Ours 91.11 ± 1.31 65.78 ± 1.36

Schedule 1
Freematch + Ours 91.09 ± 1.01 66.13 ± 0.48

Schedule 2
Fixmatch + Ours 35.38 ± 29.27 19.56 ± 3.07

Schedule 2
Freematch + Ours 30.48 ± 10.52 24.80 ± 3.49

Table 3. Top-1 accuracy for the two error tolerance (ϵ) schedul-
ing. The table reports the ϵ we use between each iteration inter-
val and the top-1 accuracy yielded by the corresponding sched-
ule. For schedule 1, we set ϵ = 0.4, 0.2, 0.1, 0.05, 0.01 when
the number of iterations is in the following interval, respec-
tively: [0, 5K), [5K, 10K), [10K, 15K), [15K, 20K), [20K, 25K).
For schedule 2, we set ϵ = 0.01, 0.05, 0.1, 0.2, 0.4, for the same
intervals, respectively.

impacts the performance on both CIFAR-10 and CIFAR-100
datasets. While our findings suggest a lower error tolerance
is preferable, this may not hold in general. Nevertheless, our
framework provides the flexibility to control this explicitly
and thus can be tuned by practitioners for the setting at hand.

C3. Is pseudolabel accumulation helpful? Accumulation
allows the methods to use old pseudolabel for points that
couldn’t get pseudolabeled in the current iteration. Thus, we
expect accumulation to help improve the utilization of un-
labeled data and lead to better test accuracy in cases where
the pseudolabel quality is assured to be high in all itera-
tions. We run two variations of our method and baselines
— with and without accumulation and report the results in
Table 4. We observe that our method has similar test accu-
racy irrespective of accumulation. However, accumulation
achieves better coverage in early iterations, as observed
in Figure 6 in Appendix C. These results are unsurprising
since our method ensures high quality of pseudolabels while
maximizing coverage; it can eventually catch up with the
version using accumulation, leading to similar final test ac-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Method Acc—True Acc—False

Fixmatch 67.62 ± 2.10 90.08 ± 0.78

Fixmatch + MR 64.78 ± 4.64 90.41 ± 0.83

Fixmatch + BaM 68.10 ± 2.02 90.67 ± 0.90

Freematch 85.40 ± 1.36 92.26 ± 0.18

Freematch + MR 83.59 ± 2.59 92.17 ± 0.36

Freematch + BaM 85.48 ± 3.02 92.32 ± 0.25

Fixmatch + Ours 92.69 ± 0.74 92.80 ± 0.56

Freematch + Ours 93.10 ± 0.28 91.80 ± 1.08

Table 4. Results on CIFAR-10 with and without pseudolabel accu-
mulation (Acc) for all the methods.

curacies. On the other hand, having accumulation hurts the
performance of baseline models. This might be because the
pseudolabels generated by the baseline models are inaccu-
rate, especially in the earlier iterations, thus degrading the
overall performance. Overall, we believe accumulation will
be helpful when we have pseudolabels with high accuracy.
The plots for pseudolabeling coverage and accuracy over
the entire run are in Figures 6, 7 in Appendix C.

5. Related Work
Semi-supervised learning (SSL). There is a rich literature
on SSL (Zhu, 2005; Chapelle et al., 2006; Singh et al., 2008;
Oliver et al., 2018). This literature comprises of a wide vari-
ety of approaches. Among these, significant focus has been
placed on self-training (also called pseudolabeling) (Scud-
der, 1965; Blum & Mitchell, 1998; Rosenberg et al., 2005;
Lee, 2013; Oymak & Gulcu, 2020; Amini et al., 2023), gen-
erative models (Nigam et al., 2000; Adams & Ghahramani,
2009; Kingma et al., 2014), graph-based strategies (Blum
& Chawla, 2001; Niyogi, 2013; Subramanya & Talukdar,
2022), and transductive approaches (Vapnik et al., 1998;
Joachims, 1999). Due to their simplicity, pseudolabeling-
based approaches have gained prominence and are widely
used in application areas such as NLP (Karamanolakis et al.,
2021), speech recognition (Kahn et al., 2020), and protein
prediction (El-Manzalawy et al., 2016). Our paper focuses
on recent variants of this, discussed next.

Pseudolabeling based SSL. These methods generate arti-
ficial labels for unlabeled data and use them for training
the model. A crucial challenge here is the issue of confir-
mation bias (Arazo et al., 2020), i.e., when a model starts
to reinforce its own mistakes. To overcome this and to
maintain a high quality of pseudolabels, confidence-based
thresholding is applied. Here, only the unlabeled data with
confidence higher than a particular threshold is used (Sohn
et al., 2020). Due to the limitations of fixed thresholds, adap-
tive thresholds based on the classifier’s learning status have
been introduced to improve performance (Xu et al., 2021;
Zhang et al., 2021; Wang et al., 2023). Nearly all of these

methods also use some form of consistency regularization
(Laine & Aila, 2017; Bachman et al., 2014; Sajjadi et al.,
2016; Fan et al., 2021; Kukačka et al., 2017) where the core
idea is that the model should produce similar prediction
when presented with different versions (perturbations) of
inputs and all the present SSL methods (Xie et al., 2020;
Wang et al., 2023; Sohn et al., 2020; Zhang et al., 2021;
Chen et al., 2023; Xu et al., 2021).

Confidence functions and calibration. Miscalibration
(overconfidence) in neural networks plagues various ap-
plications (Nguyen et al., 2015; Hendrycks & Gimpel, 2017;
Guo et al., 2017), including SSL. To mitigate this in gen-
eral, a range of solutions have been proposed, including
training-time methods (Moon et al., 2020; Kumar et al.,
2018; Hui et al., 2023; Corbière et al., 2019; Foret et al.,
2021) and post-hoc methods (Guo et al., 2017; Kumar et al.,
2019; Gupta & Ramdas, 2022; Kull et al., 2019; Zadrozny
& Elkan, 2002). In pseudolabeling based SSL, recent works
(Rizve et al., 2021; Loh et al., 2023; Mishra et al., 2024)
noted the issue of miscalibration. To promote calibration,
Loh et al. (2023) use Bayesian neural nets by replacing the
model’s final layer with a Bayesian layer. Rizve et al. (2021)
utilize negative labels and an uncertainty-aware pseudola-
bel selection technique. Mishra et al. (2024) incorporate a
regularizer to encourage calibration.

While calibration is a reasonable goal in general, it may not
be sufficient to address the overconfidence problem in SSL
and other applications. In pseudolabeling, we seek the use
of scores that can easily segregate the model’s correct and
incorrect predictions, which is closely related to the ordinal
ranking criterion (Hendrycks & Gimpel, 2017; Moon et al.,
2020; Foret et al., 2021; Corbière et al., 2019). Rather
than experimenting with several such choices, ideally, we
would have a flexible framework that can learn confidence
functions explicitly optimizing pseudolabeling objectives.

6. Conclusion
Common semi-supervised learning (SSL) methods rely on
pseudolabeling, but their effectiveness is limited by unreli-
able confidence scores and heuristic thresholding strategies.
We address these issues by introducing a principled frame-
work for learning confidence scores and thresholds with
explicit control over pseudolabeling error. We adapt ex-
isting SSL methods with this framework and empirically
show that the adapted methods achieve a higher test accu-
racy compared to their standard versions. Additionally, we
introduce pseudolabel accumulation and analyze its impact,
showing that it benefits methods with reliable pseudolabels,
such as those using our framework. In sum, by provid-
ing a principled, data-driven approach to obtaining scores
and thresholds for pseudolabeling, our work enhances SSL
methods and opens the door to more reliable and efficient
pseudolabeling-based SSL.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

7. Impact Statement
This research improves semi-supervised learning, enabling
more accurate and efficient machine learning in settings
where labeled data is hard to obtain by following first princi-
ples in designing thresholds and confidence functions. Our
work has various potential societal implications, with no
specific concerns that require special attention in this con-
text.

References
Adams, R. P. and Ghahramani, Z. Archipelago: nonparamet-

ric bayesian semi-supervised learning. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pp. 1–8, 2009.

Amini, M.-R., Feofanov, V., Pauletto, L., Hadjadj, L., Devi-
jver, E., and Maximov, Y. Self-training: A survey, 2023.

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and
McGuinness, K. Pseudo-labeling and confirmation bias
in deep semi-supervised learning. In 2020 International
joint conference on neural networks (IJCNN), pp. 1–8.
IEEE, 2020.

Bachman, P., Alsharif, O., and Precup, D. Learning with
pseudo-ensembles. In Advances in Neural Information
Processing Systems, volume 27, 2014.

Blum, A. and Chawla, S. Learning from labeled and unla-
beled data using graph mincuts. 2001.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proc. of the eleventh annual
conference on Computational learning theory, pp. 92–
100. ACM, 1998.

Chapelle, O., Schölkopf, B., and Zien, A. (eds.). Semi-
Supervised Learning. The MIT Press, 2006. ISBN
9780262033589.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B.,
Xie, X., Raj, B., and Savvides, M. Softmatch: Addressing
the quantity-quality tradeoff in semi-supervised learning.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=ymt1zQXBDiF.

Corbière, C., THOME, N., Bar-Hen, A., Cord, M., and
Pérez, P. Addressing failure prediction by learning model
confidence. In Advances in Neural Information Process-
ing Systems 32, pp. 2902–2913. 2019.

Djurisic, A., Bozanic, N., Ashok, A., and Liu, R. Extremely
simple activation shaping for out-of-distribution detection.
In The Eleventh International Conference on Learning
Representations, 2023.

El-Manzalawy, Y., Munoz, E. E., Lindner, S. E., and
Honavar, V. Plasmosep: Predicting surface-exposed pro-
teins on the malaria parasite using semisupervised self-
training and expert-annotated data. Proteomics, 16(23):
2967–2976, 2016.

Fan, Y., Kukleva, A., and Schiele, B. Revisiting consistency
regularization for semi-supervised learning, 2021.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Gupta, C. and Ramdas, A. Top-label calibration and
multiclass-to-binary reductions. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=WqoBaaPHS-.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Rep-
resentations, 2017.

Hui, L., Belkin, M., and Wright, S. Cut your losses with
squentropy. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 14114–14131, 2023.

Joachims, T. Transductive inference for text classification
using support vector machines. In Bratko, I. and Dzeroski,
S. (eds.), Proceedings of ICML-99, 16th International
Conference on Machine Learning, pp. 200–209, 1999.

Kahn, J., Lee, A., and Hannun, A. Self-training for end-
to-end speech recognition. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 7084–7088. IEEE, 2020.

Karamanolakis, G., Mukherjee, S., Zheng, G., and Awadal-
lah, A. H. Self-training with weak supervision. arXiv
preprint arXiv:2104.05514, 2021.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. Semi-supervised learning with deep genera-
tive models. In Advances in Neural Information Process-
ing Systems, volume 27, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kukačka, J., Golkov, V., and Cremers, D. Regularization
for deep learning: A taxonomy, 2017.

9

https://openreview.net/forum?id=ymt1zQXBDiF
https://openreview.net/forum?id=ymt1zQXBDiF
https://openreview.net/forum?id=WqoBaaPHS-
https://openreview.net/forum?id=WqoBaaPHS-

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho,
T., Song, H., and Flach, P. Beyond temperature scaling:
Obtaining well-calibrated multi-class probabilities with
dirichlet calibration. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Kumar, A., Sarawagi, S., and Jain, U. Trainable calibration
measures for neural networks from kernel mean embed-
dings. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 2805–2814. PMLR,
10–15 Jul 2018.

Kumar, A., Liang, P. S., and Ma, T. Verified uncertainty
calibration. Advances in Neural Information Processing
Systems, 32, 2019.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. Fifth International Conference on
Learning Representations, 2017.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
ICML Workshop on Challenges in Representation Learn-
ing, 2013.

Li, M., Wu, R., Liu, H., Yu, J., Yang, X., Han, B., and
Liu, T. Instant: Semi-supervised learning with instance-
dependent thresholds. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Loh, C., Dangovski, R., Sudalairaj, S., Han, S., Han, L.,
Karlinsky, L., Soljacic, M., and Srivastava, A. On the
importance of calibration in semi-supervised learning,
2022.

Loh, C., Dangovski, R., Sudalairaj, S., Han, S., Han, L.,
Karlinsky, L., Soljacic, M., and Srivastava, A. Mitigating
confirmation bias in semi-supervised learning via efficient
bayesian model averaging. Transactions on Machine
Learning Research, 2023.

McLachlan, G. J. Iterative reclassification procedure for con-
structing an asymptotically optimal rule of allocation in
discriminant analysis. Journal of the American Statistical
Association, 70(350):365–369, 1975.

Mishra, S., Murugesan, B., Ayed, I. B., Pedersoli, M., and
Dolz, J. Do not trust what you trust: Miscalibration in
semi-supervised learning, 2024.

Moon, J., Kim, J., Shin, Y., and Hwang, S. Confidence-
aware learning for deep neural networks. In Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119, pp. 7034–7044, 2020.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with

unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 7. Granada, Spain, 2011.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural net-
works are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
427–436, 2015.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T.
Text classification from labeled and unlabeled documents
using em. Machine learning, 39:103–134, 2000.

Niyogi, P. Manifold regularization and semi-supervised
learning: Some theoretical analyses. Journal of Machine
Learning Research, 14(5), 2013.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and Good-
fellow, I. Realistic evaluation of deep semi-supervised
learning algorithms. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Oymak, S. and Gulcu, T. C. Statistical and algorithmic
insights for semi-supervised learning with self-training.
arXiv preprint arXiv:2006.11006, 2020.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
In International Conference on Learning Representations,
2021.

Rosenberg, C., Hebert, M., and Schneiderman, H. Semi-
supervised self-training of object detection models. In
Seventh IEEE Workshops on Applications of Computer
Vision (WACV/MOTION’05) - Volume 1, volume 1, pp.
29–36, 2005. doi: 10.1109/ACVMOT.2005.107.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regulariza-
tion with stochastic transformations and perturbations
for deep semi-supervised learning. In Proceedings of
the 30th International Conference on Neural Information
Processing Systems, pp. 1171–1179, 2016.

Scudder, H. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3):363–371, 1965.

Singh, A., Nowak, R., and Zhu, J. Unlabeled data: Now it
helps, now it doesn't. In Advances in Neural Information
Processing Systems, volume 21. Curran Associates, Inc.,
2008.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in neural informa-
tion processing systems, 33:596–608, 2020.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Subramanya, A. and Talukdar, P. P. Graph-based semi-
supervised learning. Springer Nature, 2022.

van Engelen, J. E. and Hoos, H. H. A survey on semi-
supervised learning. Machine Learning, 109:373 – 440,
2019.

Vapnik, V. N., Vapnik, V., et al. Statistical learning theory.
1998.

Vishwakarma, H., Lin, H., Sala, F., and Vinayak, R. K.
Promises and pitfalls of threshold-based auto-labeling. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Wang, Y., Chen, H., Fan, Y., Sun, W., Tao, R., Hou, W.,
Wang, R., Yang, L., Zhou, Z., Guo, L.-Z., Qi, H., Wu, Z.,
Li, Y.-F., Nakamura, S., Ye, W., Savvides, M., Raj, B.,
Shinozaki, T., Schiele, B., Wang, J., Xie, X., and Zhang,
Y. Usb: A unified semi-supervised learning benchmark
for classification. In Thirty-sixth Conference on Neural In-
formation Processing Systems, Datasets and Benchmarks
Track, 2022.

Wang, Y., Chen, H., Heng, Q., Hou, W., Fan, Y., Wu, Z.,
Wang, J., Savvides, M., Shinozaki, T., Raj, B., Schiele,
B., and Xie, X. Freematch: Self-adaptive threshold-
ing for semi-supervised learning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=PDrUPTXJI_A.

Xie, Q., Dai, Z., Hovy, E., Luong, T., and Le, Q. Un-
supervised data augmentation for consistency training.
In Advances in Neural Information Processing Systems,
volume 33, 2020.

Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y.-F., Sun, B., Li, H.,
and Jin, R. Dash: Semi-supervised learning with dynamic
thresholding. In International Conference on Machine
Learning, pp. 11525–11536. PMLR, 2021.

Zadrozny, B. and Elkan, C. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 694–699,
2002.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling. Ad-
vances in Neural Information Processing Systems, 34:
18408–18419, 2021.

Zhu, X. Semi-supervised learning literature survey. In Uni-
versity of Wisconsin-Madison, Department of Computer
Sciences, 2005.

11

https://openreview.net/forum?id=PDrUPTXJI_A
https://openreview.net/forum?id=PDrUPTXJI_A

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Supplementary Material
The supplementary material is organized as follows. First, we summarize the notations in Table 5 in Appendix A, then we
provide formal algorithms in Appendix B and additional experimental results and details are provided in Appendix C.

A. Glossary
The notations are summarized in Table 5 below.

B. Detailed Algorithms

Algorithm 1 Estimate Pseudolabeling Thresholds Classwise

Input: Confidence function ĝi, classifier ĥi, Part of validation data D
(i)
th for threshold estimation, pseudolabeling error

tolerance ϵ, space of thresholds T , label space Y .
Output: Pseudolabeling thresholds t̂i, where t̂i[y] is the threshold for class y.
for y ∈ Y do

Extract the set of points D(y)
th for which the groundtruth class is y.

D
(y)
th ← {(x′, y′) ∈ Dth : y′ = y}

T ′
y ← T ∪ {∞}.

Estimate pseudolabeling error at each threshold on class specific data D
(y)
th . Pick the smallest threshold with the sum

of the estimated error and C1 times the std. deviation is below ϵ. Here C1 is set to 0.25 and σ̂(z) =
√
z(1− z).

t̂i[y] ← min{t ∈ T ′
y : Ê(ĝi, t | ĥi, D

(y)
th) + C1σ̂(Ê(ĝi, t | ĥi, D

(y)
th)) ≤ ϵ},

end for
return t̂i

Algorithm 2 Estimate Pseudolabeling Threshold Jointly for All Classes

Input: Confidence function ĝi, classifier ĥi, Part of validation data D
(i)
th for threshold estimation, pseudolabeling error

tolerance ϵ, space of thresholds T , label space Y .
Output: Pseudolabeling thresholds t̂i, where t̂i[y] is the threshold for class y.
T ′ ← T ∪ {∞}
Estimate pseudolabeling error at each threshold on the entire set Dth. Pick the smallest threshold with the sum of the
estimated error and C1 times σ̂ is below ϵ. Here C1 is set to 0.25 and σ̂(z) =

√
z(1− z).

t← min{t ∈ T ′ : Ê(ĝi, t | ĥi, Dth) + C1σ̂(Ê(ĝi, t | ĥi, Dth)) ≤ ϵ}.
for y ∈ Y do

t̂i[y]← t
end for
return t̂i

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Algorithm 3 Pseudolabeling Based SSL with PabLO

Input: Labeled data for training Dl, validation data Dval, unlabeled pool Xu, error tolerance ϵ, use-accumulation flag,
num iters, batch size B, replication factor µ, weak ω and strong Ω augmentations, number of calibration points Ncal, num.
of threshold estimation points Nth, frequency of invoking PabLO F , space of thresholds T , label space Y .

Output: ĥssl, model with the best validation accuracy.
Set initial pseudolabels and masks to 0.
Ỹ

(0)
u ← [0, 0, . . . , 0], S(0)

u ← [0, 0, . . . , 0], i← 1
Draw calibration and threshold estimation sets from Dval.
Dcal, Dth ← DrawRandomly(Dval, Ncal, Nth).
Training loop with pseudolabeling.
while i ≤ num iters do

Draw batches Db
l , Xb

u of labeled and unlabeled points, Ibu denotes the indices corresponding to points in Xb
u.

Db
l , X

b
u, I

b
u ← DrawRandomBatch(µDl, µXu, B)

Create weak and strong augmentations of Xb
u.

Xb
u,w, X

b
u,s ← ω(Xb

u), Ω(X
b
u)

/** Begin Pseudolabeling Block **/
Perform pseudolabeling using PabLO .
if i%F = 0 then

Get ĝi by solving optimization (P1).
ĝi, t̂

′
i ← SolveOptProblemP1(ĥi, Dcal)

Estimate pseudolabeling thresholds.
if estimate threshold classwise then

Use Algorithm 1.
t̂i ← ClasswiseThreshold(ĝi, ĥi, Dth, ϵ, T,Y)

else
Use Algorithm 2.
t̂i ← JointThreshold(ĝi, ĥi, Dth, ϵ, T,Y)

end if
Compute fresh psuedolabels Ỹ (i)

u and pseudolabeling masks S(i)
u for all points in Xu.

Ỹ
(i)
u ← ĥi(ω(Xu)), S

(i)
u ← 1(ĝi(ω(Xu)) ≥ t̂)

if use-accumulation then
Apply pseudolabel accumulation if enabled.
Ỹ

(i)
u ← S

(i)
u Ỹ

(i)
u + (1− S

(i)
u)Ỹ

(i−1)
u

S
(i)
u ← S

(i)
u ∨ S

(i−1)
u

end if
else
ĝi, t̂i = ĝi−1, t̂i−1

end if
/** End Pseudolabeling Block **/

Extract pseudolabels and masks for the current unlabeled batch. Then compute supervised and unsupervised losses.
Ỹ b
u , S

b
u ← Ỹu[I

b
u], Su[I

b
u]

L̂s(ĥi)← supervised loss(h,Db
l)

L̂u(ĥi)← unsupervised loss(h,Xb
u,wX

b
u,s, Ỹ

b
u , S

b
u)

L̂(ĥi)← L̂s(ĥi) + λuL̂u(ĥi)

Perform a gradient descent step to get new model ĥi+1.
ĥi+1 ← SGD update(L̂(ĥi)); i← i+ 1

Evaluate model on Dval to keep track of the best model.
if i%eval freq = 0 then

eval acc← evaluate model(ĥi, Dval)

If eval acc is best so far then ĥssl = ĥi

end if
end while

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

5K 15K 25K 35K
0

25
50
75

100

Ba
tc

h
Pl

. A
cc

ur
ac

y CIFAR-10

Fixmatch Fixmatch + Ours Fixmatch + BAM Fixmatch + MR
10K 30K 50K 70K

0
25
50
75

100
CIFAR-100

0 50K 100K 150K
0

25
50
75

100
SVHN

5K 15K 25K 35K
Iterations

0
25
50
75

100

Ba
tc

h
Pl

. A
cc

ur
ac

y

Freematch Freematch + Ours Freematch + BAM Freematch + MR

10K 30K 50K 70K
Iterations

0
25
50
75

100

0 50K 100K 150K
Iterations

0
25
50
75

100

Figure 4. Batch pseudolabel accuracy of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every
200 steps.

C. Additional Experiments and Details
Compute. We ran all of our experiments on a high-throughput system with various GPUs. Therefore, each individual
experiment task may be scheduled among NVIDIA A100 SXM4-40GB, NVIDIA A100 SXM4-80GB, NVIDIA L40, and
NVIDIA H100 80GB HBM3. We measured the runtime of our algorithm on a desktop with a single NVIDIA RTX 4090.
On CIFAR-10, it took about 0.203 seconds for each iteration for our method and around 0.140 seconds for the baselines. On
CIFAR-100, it took about 0.396 seconds for each iteration for our method and around 0.143 seconds for the baselines. On
SVHN, it took about 1.275 seconds for each iteration for our method and around 0.225 seconds for the baselines.

Hyperparameters. For the baselines, we have used their default settings. To maintain consistency and experiment the
efficiency of method, we used WRN-28-2 which is 1.4M parameter model for all the datasets. We summarize the main
hyperparameters we have used in our method in Table 9.

Note that the number of epochs we used to train the function g and to estimate t is dynamic. That is, its actual value depends
on and is proportional to the current number of iterations of the SSL training. More concretely, at iteration i of SSL training,
we use min(⌊i/25⌋,max epoch) number of epochs to find g and t.

We additionally conduct the following ablation study to study our technique’s dependence on the amount of data used in
learning g and thresholds.

A2. How much data is needed to learn the g and t? We take Ncal and Nth from the validation data to learn the confidence
function g and estimate the thresholds t respectively. Intuitively larger values of these should lead to good g and t that can
extract the expected level of pseudolabeling coverage and accuracy from the classifier at hand. However, the task of learning
good g and estimating thresholds is not super hard and we expect it will take fewer samples to be successful. To understand
this better we run our method with Ncal and Nth in {250, 500, 750, 1000} on CIFAR-10 setting for 3 random seeds and
report the result in Fig 8. We observe that our method can achieve desired performance with just 500 labeled points (i.e 50
labels per class). This is interesting because we can achieve 90% accuracy by just using 250 points (Nl) for training h and a
total of 1K for learning g. Refer to Table 6 for more details.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

5K 15K 25K 35K
0

25
50
75

100

Ba
tc

h
Pl

. C
ov

er
ag

e CIFAR-10

Fixmatch Fixmatch + Ours Fixmatch + BAM Fixmatch + MR
10K 30K 50K 70K

0
25
50
75

100
CIFAR-100

0 50K 100K 150K
0

25
50
75

100
SVHN

5K 15K 25K 35K
Iterations

0
25
50
75

100

Ba
tc

h
Pl

. C
ov

er
ag

e

Freematch Freematch + Ours Freematch + BAM Freematch + MR

10K 30K 50K 70K
Iterations

0
25
50
75

100

0 50K 100K 150K
Iterations

0
25
50
75

100

Figure 5. Batch pseudolabel coverage of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every
200 steps.

10K 20K 30K
Iterations

20

40

60

80

100
Top-1 Accuracy

Fixmatch (no accu.)
Fixmatch + BAM (no accu.)

Fixmatch + MR (no accu.)
Fixmatch (accu.)

Fixmatch + BAM (accu.)
Fixmatch + MR (accu.)

10K 20K 30K
Iterations

20

40

60

80

100
Batch Pl. Accuracy

10K 20K 30K
Iterations

20

40

60

80

100
Batch Pl. Coverage

Figure 6. (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy, and batched pseudolabeling coverage of Fixmatch with
and without pseudolabeling accumulation enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the
performance of baseline methods in terms of accuracy and coverage.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Symbol Definition

X feature space.
Y label space i.e. 1, 2, . . . k.
H hypothesis space (model class for the classifiers).
G space of confidence functions.
k number of classes.
x, y x is a datapoint in X and y is its true label (if available).
h a model h : X → Y .
g confidence function g : X → T k ⊆ Rk

ŷ hard label prediction.
ỹ ŷ is used as pseudolabel.
ĥssl a best learned model using SSL.
ϵ pseudolabeling error tolerance.
g⋆i optimal confidence function at i iteration.
t∗i optimal threshold at i iteration.

Xu available unlabeled data drawn from the distribution Px over X .
Xb

u batch of unlabeled data.
Dl set of labeled data points drawn from the distribution Pxy .
Db

l batch of labeled data.
Dval validation data.
Dcal calibration data; part of validation data used to optimize surrogate functions.
Dth part of validation data to estimate threshold t.
t k dimensional vector of thresholds representing for k classes.
t[y] yth entry of t i.e. the threshold for class y.
nu number of unlabeled points, i.e. size of Xu used for consistency regularization and pseudolabeling.
Nl number of labeled points, i.e. size of Dl. Usual SSL setting has, Nl ≪ nu.
Nval number of points used for model selection.
Ntest number of test data points.
Ncal number of points used for learning the g function.
Nth number of data points used for threshold estimation.
L̂s supervised loss.
L̂u unsupervised loss with weighted importance λu.
L̂r sum of regularization terms for supervised and unsupervised loss with weighted importance λr.
H(y, h,x) standard cross-entropy loss.
S(x, g, t | h) pseudolabeleing mask.
ω weak transformation, ω : X 7→ X .
Ω strong transformation, Ω : X 7→ X .
αo, αb average time taken by our method and baseline methods. These are used for adjusted iterations for baselines.

P̂(g, t | h,X) estimated pseudolabeling coverage, see eq. (1).
P(g, t | h) population level pseudolabeling coverage, see eq. (2).
Ê(g, t | h,D) estimated pseudolabeling error, see eq. (3).
E(g, t | h) population level pseudolabeling error, see eq. (4).
P̃(g, t | h,D) surrogate estimated pseudolabeling coverage, see eq. (6).
Ẽ(g, t | h,D) surrogate estimated pseudolabeling error, see eq. (7).
λ hyperparamter controlling the importance of pseudolabeleing coverage and error in (P1).

Table 5. Glossary of variables and symbols used in this paper.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

10K 20K 30K
Iterations

20

40

60

80

100
Top-1 Accuracy

Freematch (no accu.)
Freematch + BAM (no accu.)

Freematch + MR (no accu.)
Freematch (accu.)

Freematch + BAM (accu.)
Freematch + MR (accu.)

10K 20K 30K
Iterations

20

40

60

80

100
Batch Pl. Accuracy

10K 20K 30K
Iterations

20

40

60

80

100
Batch Pl. Coverage

Figure 7. (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy, and batched pseudolabeling coverage of Freematch
with and without pseudolabeling accumulation enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen
the performance of baseline methods in terms of accuracy and coverage.

Figure 8. Top-1 accuracy of our method with different Nth and Ncal.

Method Ncal = Nth = 250 Ncal = Nth = 500 Ncal = Nth = 750

Fixmatch + Ours 82.67 ± 7.08 91.74 ± 0.41 91.66 ± 2.11

Freematch + Ours 82.13 ± 7.93 92.33 ± 0.49 93.20 ± 0.53

Table 6. Results on CIFAR-10 with varying Ncal and Nth.

Method ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Fixmatch + Ours 93.05 ± 0.54 91.54 ± 0.95 88.35 ± 2.90 56.72 ± 22.25

Freematch + Ours 92.11 ± 1.18 92.31 ± 0.16 83.89 ± 10.36 52.17 ± 25.36

Table 7. Results on CIFAR-10 with varying ϵ.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Method ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Fixmatch + Ours 69.19 ± 1.13 65.01 ± 0.34 53.88 ± 8.15 23.58 ± 18.21

Freematch + Ours 70.13 ± 0.67 64.95 ± 1.41 59.83 ± 1.32 24.09 ± 17.22

Table 8. Results on CIFAR-100 with varying ϵ.

Method Hyperparameter Values

Learning g function

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Estimating t

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Table 9. Hyperparameters used for our method.

18

