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Abstract—Example-based learning for computer vision can be
difficult when a large number of examples to represent each pat-
tern or object class is not available. In such situations, learning
from a small number of samples is of practical value. To study this
issue, the task of face expression recognition with a small number
of training images of each expression is considered. A new tech-
nique based on linear programming for both feature selection and
classifier training is introduced. A pairwise framework for feature
selection, instead of using all classes simultaneously, is presented.
Experimental results compare the method with three others: a sim-
plified Bayes classifier, support vector machine, and AdaBoost. Fi-
nally, each algorithm is analyzed and a new categorization of these
algorithms is given, especially for learning from examples in the
small sample case.

Index Terms—AdaBoost, Bayes decision, face expression recog-
nition, feature selection, large margin classifiers, learning by ex-
ample, linear programming, Gabor wavelets, small sample case,
statistical learning, support vector machine.

I. INTRODUCTION

EXAMPLE-BASED learning in computer vision and pat-
tern recognition is an important problem, however, it is

sometimes not easy to collect a large number of examples to rep-
resent each pattern or object class. Hence, learning in the small
sample case is of practical interest. One reason for this is the
difficulty in collecting image data for each object. For example,
in face recognition or face expression recognition (FER), it is
not easy to collect a database with a large number of images of
each individual or expression. Recently, some approaches use
only one training example for face recognition [22]. In image
retrieval, the user can give some positive and negative exam-
ples based on relevance feedback [10], but it is impractical to
expect the user to provide a large number of images. Further-
more, it is often difficult to collect training data to cover all pos-
sible cases. For instance, in face recognition, it is well known
that there are many factors, including illumination, expression,
pose, facial hair, eye glasses, and age that influence the image of
a face. Obviously, it is not practical to collect images covering
every possible situation. Consequently, learning from a small,
incomplete set of samples is an essential issue in computer vi-
sion. In this paper we use FER as an example task to study this
problem.
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A. Face Expression Recognition

FER by computer is useful for many applications such as
human behavior understanding, perceptual user interfaces, and
interactive computer games. In an automatic FER system, the
first step is face detection or localization in a cluttered scene.
Next, relevant features from the face must be extracted, and fi-
nally the expression can be classified based on the extracted fea-
tures. Unlike face recognition, FER focuses on how to discern
the same expressions from different individuals. Because dif-
ferent people may show the same expression in different ways,
the FER problem is more challenging.

There are two versions of the FER problem depending
on whether an image sequence is the input and the dynamic
characteristics of expressions are analyzed, or a single image
is the input and expressions are distinguished based on static
differences. See [25] for a review of different approaches for
FER. Here, we are interested in FER from single images. Pre-
vious work by Padgett and Cottrell [24] used seven pixel blocks
from feature regions to represent expressions. Cottrell and Met-
calfe [4] used principal component analysis and feed-forward
neural networks. Rahardja et al. [27] used a pyramid structure
with neural networks. Lanitis et al. [16] used parameterized
deformable templates to represent face expressions. Lyons et
al. [18], [19] and Zhang et al. [38], [37] demonstrated the
advantages of using Gabor wavelet coefficients to code face
expressions.

In this paper we use Gabor filters for facial feature extraction.
Our major focus is on the evaluation of some new methods for
FER. Recently, large margin classifiers such as support vector
machines (SVMs) [32] and AdaBoost [7], [29] were studied
in the machine learning community, and have been used for
solving some vision problems. Here, we are interested to see
if they are useful for FER learning in the small sample case. To
our knowledge, this is the first time large margin classifiers have
been evaluated for FER.

B. Feature Selection in Pattern Recognition

The goal of feature selection is to preprocess the image data
to obtain a small set of the most important properties while re-
taining the salient characteristics of the data. The benefits of
feature selection are not only to reduce recognition time by re-
ducing the amount of data that needs to be analyzed, but also,
in many cases, to produce better classification accuracy due to
finite sample size effects [14].

Most feature selection methods involve evaluating different
feature subsets using some criterion such as probability of error
[14]. One difficulty with this approach when applied to real
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problems with large feature dimensionality, is the high computa-
tional complexity involved in searching the exponential space of
feature subsets. Jain and Zongker [14] evaluated different search
algorithms for feature subset selection and found that the Se-
quential Forward Floating Selection (SFFS) algorithm proposed
by Pudil et al. [26] performed best. However, SFFS is very time
consuming when the number of features is large. For example,
Vailaya [31] used the SFFS method to select 67 features from
600 for a two-class problem and reported that SFFS required 12
days of computation time.

Another issue associated with feature selection methods is the
curse of dimensionality, i.e., the problem of feature selection
when the number of features is large but the number of samples
is small [14]. This situation is common in many computer vision
tasks such as object recognition because there are often less than
tens of training samples (images) for each object, but there are
hundreds of candidate features extracted from each image.

Yet another associated problem is determining how many fea-
tures to select for a given data set. Traditional feature selection
methods do not address this problem and require the user to
choose the number of features. Consequently, this parameter is
usually set without a sound basis.

The AdaBoost1 method formulated by Tieu and Viola [30] in
image retrieval can heuristically select a subset of features while
learning the classifier. SVM cannot select features in its standard
dual formulation [32]. A simplified Bayes classifier can do fea-
ture selection in a heuristic way by assuming the features are
independent and all classes have the same covariance matrix in
order to simplify the density estimation problem for each class
in the small sample case. However, the heuristic strategy in Ad-
aBoost and the simplified Bayes classifier cannot truly solve the
feature selection problem. We will introduce a novel algorithm
based on linear programming (LP) that can address the feature
selection problem simultaneously in classifier training without
using heuristics such as those used in the simplified Bayes clas-
sifier or AdaBoost.

The organization of the paper is as follows. In Section II, the
Gabor filter bank design and feature extraction methods are de-
scribed. In Section III, three representative classifiers are pre-
sented. Section IV introduces a novel algorithm called FSLP
and analyzes why it can select features with a sound basis. In
Section V, we argue that a pairwise feature selection framework
is superior to selection using all classes. After presenting ex-
perimental results in Section VI, we give a general analysis of
learning techniques in Section VII.

II. FACIAL FEATURE EXTRACTION

For FER it is common to detect some fiducial points and
then compute features at these points instead of using the whole
image. Given a set of fiducial points detected or marked on a
face image, two approaches to facial feature extraction are to
use either: 1) the geometric positions of the fiducial points or
2) the Gabor filter coefficients [5] at the fiducial points. It has

1The AdaBoost method [7] is a meta-algorithm for classification or regression
that adaptively boosts a series of weak-learners to make the final decision. A
variant of AdaBoost [30] lets each weak-learner work on a single feature and
thus can also do feature selection. We refer to this variant of AdaBoost in this
paper.

Fig. 1. Filter set in the spatial-frequency domain. There are a total of 18 Gabor
filters shown at half-peak magnitude.

been shown [19], [38] that filter coefficients characterize face
expressions better than geometric positions. Therefore, in our
study, we use Gabor filtering for facial feature extraction.

A. The Gabor Filter Bank

A two-dimensional Gabor function and its Fourier
transform can be written as

(1)

(2)

where is the frequency of a sinusoidal plane wave along the
-axis, and and are the space constants of the Gaussian

envelope along the and axes, respectively.
and . Filtering a signal with this basis provides a
localized frequency characterization. Filters with arbitrary ori-
entations can be obtained by a rigid rotation of the - coordi-
nate system

(3)

where

(4)

and is the rotation angle.
In earlier applications of Gabor filtering [5] for face recog-

nition [15], [36] and face expression classification [18], [19]
[38], [37], investigators have only varied the scale and orien-
tation of the filters, but kept the Gaussian envelope parameter
fixed to or . This methodology is questionable because the
area of the energy distribution of the filters varies with scale, so
the Gaussian envelope should vary with the filter size. Conse-
quently, we designed the Gabor filter bank based on the filters
used perviously for texture segmentation and image retrieval
[13], [21].
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Fig. 2. Thirty-four fiducial points on a face image.

The Gabor filter bank is designed to cover the entire frequency
spectrum [13], [21]. In other words, the Gabor filter set is con-
structed such that the half-peak magnitude of the filters in the
frequency spectrum touch each other. This results in the fol-
lowing formulas to compute the filter parameters and

(5)

(6)

(7)

where and denote the lower and upper center frequencies
of interest. and
are the indices of scale and orientation, respectively. is the
number of orientations and is the number of scales.

In our experiments, we used ,
three scales , and six orientations . The half-

peak support of the Gabor filter bank is shown in Fig. 1. The
differences in the strength of the responses of different image
regions is the key to the multichannel approach to face image
analysis.

B. Feature Extraction

After Gabor filtering, the amplitude values at selected fiducial
points on the face images are used as the features. Automati-
cally extracting these points [15], [36] is still an open problem
[38]. In order to focus this study on the classifier performance,
we manually marked the fiducial points in each image. Typical
positions of 34 fiducial points are shown in Fig. 2. Thus, for
each face image, the extracted feature vector is of dimension

, where three scales and six directions for
Gabor filtering are used.

C. The FER System

Our approach to FER is summarized in Fig. 3. Each input
face image is convolved with 18 Gabor filters and results in 18
filtered images. The amplitude of each filtered image at selected
fiducial points are used as feature values. The feature vector is
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Fig. 3. Framework of our FER system. Dashed blocks represent operations
while solid blocks contain the filtered images, feature vector, and class labels.

used for classification with different classifiers. In the learning
stage, some classifiers can also perform feature selection.

III. CLASSIFIERS

In this section, three standard classifiers for FER are de-
scribed. The first is the Bayes classifier [8], which is optimal
when the probability distribution is known for each class. To
use the Bayes classifier for the small sample case, one has
to make some assumptions to simplify the density estimation
problem given the training data [17]. We call this the simplified
Bayes classifier in this paper. The second classifier is the SVM,
and the third is the AdaBoost method (recall that it is a variant
of the AdaBoost [7]). The latter two are called large margin
classifiers in the machine learning community [29]. In the
remainder of this section, relevant details on these three classi-
fiers are reviewed. A new algorithm based on LP is introduced
in Section IV.

A. A Simplified Bayes Classifier

The Bayes classifier yields minimum error rates when the un-
derlying probability density function (pdf) is known [8]. The a
posteriori probability of pattern belonging to class is given
by Bayes’ rule

(8)

where is the a priori probability, the conditional
probability density function of , and is the mixture den-
sity. The maximum a posteriori (MAP) decision is

(9)

The Bayes classifier can be used for both two-class and multi-
class classifications.

In FER, there are often not enough training images of each
expression to reliably estimate the conditional density function

Fig. 4. Classification between two classes using hyperplanes. (a) Arbitrary
hyperplanes l, m, and n. (b) The optimal separating hyperplane with the largest
margin identified by the dashed lines, which go through the support vectors.

for each class. A compromise is to assume that the within-class
densities can be modeled as normal distributions, and all the
within-class covariance matrices are identical and diagonal. Liu
and Wechsler [17] used this simplification for face recognition.
Here we evaluate this approach for the problem of FER. The
parameters of the normal distributions are estimated as

(10)

where represents the samples from class
and

(11)

where is the feature dimension. Each component can be
estimated by the sample variance in the one-dimensional feature
subspace

(12)

where is the th element of the sample the th ele-
ment of , and the number of classes.

B. Support Vector Machine

Given a set of training vectors belonging to two sep-
arate classes, , where and

, one wants to find a hyperplane
to separate the data. Fig. 4(a) shows an example and several
possible hyperplanes, but there is only one [shown in Fig. 4(b)]
that maximizes the margin (i.e., the distance between the
hyperplane and the nearest data point in each class). This linear
classifier is called the optimal separating hyperplane (OSH).

The solution to the optimization problem of SVMs is given
by the saddle point of the Lagrange functional

(13)
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where are the Lagrange multipliers. Classical Lagrangian du-
ality enables the primal problem (13) to be transformed to its
dual problem

(14)

subject to

(15)

which is easier to solve. The solution is given by

(16)

where and are any two support vectors with
and .

To solve a nonseparable problem, Cortes and Vapnik [3] in-
troduced slack variables and a penalty function,

, where the measure the misclassification error. The
solution is identical to the separable case except for a modifica-
tion of the Lagrange multipliers as .
The choice of is not critical in practice, and we used

in all our experiments. See [32] for more details on the non-
separable case.

SVMs can realize nonlinear discrimination by kernel map-
ping [32]. When the samples in the input space cannot be sep-
arated by any linear hyperplane, they may be linearly separated
in a nonlinearly mapped feature space. Note that here the feature
space of the SVMs is different from the image feature space.

Several kernel functions have been used previously for non-
linear mapping [32], with the Gaussian radial basis function
(GRBF) the most commonly used. In our experiments we used
a GRBF kernel of the form ,
where parameter is the width of the Gaussian function.

For a given kernel function, the SVM classifier is now given
by

(17)

C. AdaBoost

Boosting is a method for combining a collection of weak clas-
sification functions (weak learners) to form a stronger classi-
fier. AdaBoost is an adaptive algorithm that boosts a sequence
of classifiers, in that the weights are updated dynamically ac-
cording to the errors in earlier learning [7]. AdaBoost belongs
to the class of large margin classifiers. The original AdaBoost
method [7] works on all given features. Tieu and Viola adapted
the AdaBoost algorithm for image retrieval [30] and for face

detection [33], using a single feature at a time. Thus each weak
learner uses a threshold to separate two classes, which is com-
puted by the midpoint between the two classes in one dimen-
sion. After rounds of boosting, features are selected to-
gether with the weak classifiers. Tieu and Viola’s AdaBoost
algorithm [30] is as follows.

AdaBoost Algorithm

Input: 1) training examples, , with or 0

2) the number of iterations,

Initialize weights or for or , respectively, with

Do for :

1. Train one hypothesis for each feature with , and error

2. Choose such that . Let

3. Update: , where or for example classified correctly

or incorrectly, respectively, with and

4. Normalize the weights so they are a distribution,

Output the final hypothesis

(18)

IV. DISCRIMINATION AND FEATURE SELECTION

WITH LINEAR PROGRAMMING

In contrast to the methods described in the last section, which
mainly deal with the classification problem, here we introduce
a new algorithm based on LP that can address both feature se-
lection and classifier training simultaneously. Furthermore, we
analyze why this LP technique circumvents the curse of dimen-
sionality problem for feature selection in the small sample case,
which is a novel and important result. Note that standard SVM
cannot do feature selection, and the simplified Bayes and Ad-
aBoost methods choose features heuristically but cannot deter-
mine how many (see Section V for details).

A. LP Formulation

In the early 1960s, the LP technique [20] was used to address
the pattern separation problem. Later, a robust LP technique was
proposed to deal with linear inseparability [1]. Recently, the LP
framework has been extended to cope with the feature selection
problem [2]. We briefly describe this new LP formulation below.

Given two sets of points, and , in , we seek a linear
function such that if and if .
This function is given by , and determines a
plane with normal that separates points
from . Let the set of points in be represented by a matrix

, and the set of points in be represented by a
matrix . After normalization, we want to satisfy

(19)
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where is a vector of all 1s with appropriate dimension. Prac-
tically, because of overlap between the two classes, one has to
minimize some norm of the average error in (19) [1]

(20)

where denotes the vector with components .
There are two main reasons for choosing the 1-norm in (20):
1) it is easy to formulate as a linear program (see (21) below)
with theoretical properties that make it computationally effi-
cient [1] and 2) the 1-norm is less sensitive to outliers such as
those occurring when the underlying data distributions have
pronounced tails [2].

Equation (20) can be modeled as a robust linear programming
(RLP) problem [1], as follows:

(21)

which minimizes the average sum of misclassification errors of
the points to two bounding planes, and ,
where '' represents transpose.

Problem (21) solves the classification problem without con-
sidering the feature selection problem. In [2] a feature selection
strategy was integrated into the objective function in order to
simultaneously select a subset of the features. Feature selection
is defined by suppressing as many components of the normal
vector to the separating plane as needed to obtain an ac-
ceptable discrimination between the sets and . To accom-
plish this, an extra term is added to the objective function of
(21), reformulating it as

(22)

where has components equal to 1 if the corre-
sponding components of are nonzero, and has components
equal to 0 if the corresponding components of are 0. So,
is actually a count of the nonzero elements in the vector . This
is the key to integrating feature selection with classifier training.
Problem (22) balances the error in discrimination between two
sets and , and the number of nonzero
elements of . Moreover, if an element of is 0, the
corresponding feature is removed. Thus only the features corre-
sponding to nonzero components in the normal are selected
after LP optimization.

Bradley and Mangasarian [2] developed a method called fea-
ture selection via concave minimization (FSV) to deal with the
last term in the objective function of (22). They first introduced

a variable to eliminate the absolute value in the last term by re-
placing with and adding a constraint ,
which models the vector . Because the step function is
discontinuous, they used a concave exponential to approximate
it, , in order to get a smooth solution.
This required introduction of an additional parameter, . Alter-
natively, instead of computing the concave exponential approx-
imation, we will use a simple term with only one parameter,

, and is the component-wise absolute value of . This pro-
duces our formulation, which we call feature selection via linear
programming (FSLP) [9]

(23)

Our FSLP formulation in (23) is slightly different from the
FSV method in that FSLP is simpler to optimize and is easier to
analyze in relation to the margin, which we do next. It should be
noted that the normal of the separating hyperplane in (23) has
a small number of nonzero components (about 18) and a large
number of 0 components (594) in our experiments. The features
corresponding to the 0 components in the normal vector can be
discarded, and only those with nonzero components are used.

B. Avoiding the Curse of Dimensionality

In [2], the authors did not address the curse of dimensionality
issue. Instead, they focused on developing the FSV method to
get a smooth solution, which is not explicitly connected with
the margin analysis we do here. Also, their experiments used
data sets in which the number of examples was much larger
than the number of feature dimensions. Here we show that our
FSLP method is actually related to margin maximization, which
makes it possible to avoid the curse of dimensionality problem
[14].

Consider the last term in the objective function of (23),
where is the absolute value of the normal due to the con-
straint . To minimize the objective function in (23)
requires minimizing the term too. Since

(24)

this means minimizing , which is the 1-norm of the
normal . Because minimizing is equivalent to max-
imizing , the objective function in (23) maximizes

.
Recall from (19) there are two bounding hyperplanes,

and . The discriminating
hyperplane is midway between these two hyperplanes, i.e.,

. The distance of any point to the hyperplane
is defined as . From (19)

, so any point that is outside the two bounding
hyperplanes, and satisfies .
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The minimum distance between the two bounding hyper-
planes is , which is defined as the margin, similar to that
used in developing SVMs [32]. The -norm is nonincreasing
monotonic for , so , which
is equivalent to

(25)

The -norm, , is convex on [28]. So,
by maximizing , we approximately maximize .
As a result, the last term, , in the objective function of (23)
has the effect of maximizing the margin.

Maximizing the margin can often circumvent the curse of di-
mensionality problem, as seen in SVMs, which can classify data
in very high-dimensional feature spaces [32]. Our FSLP method
has a similar advantage because it incorporates a feature selec-
tion process based on margin size.

In fact, when the last term in the objective function of
(23) disappears. In this case classification performance worsens
in our experiments because the remaining two terms do not
have the property of maximizing the margin. Actually, the item

only encodes the classification error rate which
usually leads to overfitting, especially in the small sample case.
So, the last term, , has two effects: 1) feature selection and 2)
margin maximization. These two effects are inseparable. Thus,
feature selection in FSLP is based on maximizing the margin
[32] instead of heuristics [30].

Because the curse of dimensionality problem occurs in so
many computer vision tasks where the number of training
examples is much smaller than the feature dimension of each
example, our analysis that FSLP circumvents this problem is
an important result. Further demonstration of this property is
shown empirically in Section VI.

V. PAIRWISE FEATURE SELECTION

For a multiclass classification problem, the typical strategy
is to select a fixed subset of features for each class to discrim-
inate it from all other classes. However, this simple strategy is
not optimal in discriminating between many classes. Intuitively,
features useful to distinguish the letter “E” from “F” may differ
from those features distinguishing “E” from “R”, for example.
If features are selected for all classes simultaneously, two prob-
lems can occur: 1) it is much more complex to select features
to separate one class from all other classes, and 2) even if this
approach works, the number of selected features will be large.

A better strategy is to select a feature subset for each pair of
classes. Pairwise feature selection is useful for many multiclass
classification problems in computer vision, e.g., face recog-
nition [12]. The basic idea of pairwise feature selection is
to choose the most relevant features for each pair of classes
given the original high-dimensional data. A feature index table
is created and stored for each pair of classes after using any
feature selection method. For a -class classification problem,
there are pairs. Hence, the system needs to store
a table with items and each item is an array
of indices of the features selected for the pair of classes and
. Suppose the original feature dimension is , the average

number of features for all pairs is , and the number of features
selected by traditional techniques2 is . Usually, we have the
relation . Then the system stores
integers to index the features. In recognition, however, there are
only features under the pairwise comparison frame-
work or binary tournament scheme [11], [12], while one needs

features for traditional feature selection schemes3.
no matter what is the size of . On

the other hand, when the one-versus-the-remaining scheme is
used for recognition, it uses features, and .
Note that the pairwise feature selection framework cannot use
the one-versus-the-remaining recognition scheme. The only
requirement for pairwise feature selection is the space to store
the index table .

Note that the feature indices for classes and are the same as
and , and the indices for classes and may partially overlap

with those for and , but usually they are not exactly
the same. After pairwise feature selection, one may count the
number of occurrence of each feature for all pairs.

In this research, we let the simplified Bayes classifier, Ad-
aBoost, and FSLP do pairwise feature selection. As shown in the
experiments, different features are selected for different pairs.
The top most discriminating features are used by the simpli-
fied Bayes classifier during training. In AdaBoost, features are
selected one by one according to the classification error of the
weak learner in the previous step [30]. For SVMs, feature selec-
tion is not trivial [10]; while the general framework of pairwise
feature selection [12] should work, the problem is how to select
the features for the SVMs for each pair of classes. The ranking
strategy is too simple to select appropriate features for SVMs
[10]. The reason may be the difference in the optimization cri-
terion used in SVMs versus other methods such as a Bayes clas-
sifier. Consequently, in our study all the features were used with
SVMs in both training and classification.

The FSLP technique can automatically determine the number
of features to select for each pair of classes, while the heuristics
used for both the Bayes classifier and AdaBoost cannot deter-
mine the number of features. Feature selection is even more dif-
ficult in the case of a small number of examples because of bias
[14]. In contrast, the FSLP method can select features by max-
imizing the margin, circumventing the curse of dimensionality
problem.

VI. EXPRESSION RECOGNITION EXPERIMENTS

In this section we experimentally compare the four methods
for FER for the case where there are a small number of training
images for each expression.

A. Face Expression Database

The face expression database [18] used in our experiments
contains 213 images of ten Japanese women. Each person
has two to four images for each of seven expressions: neutral,
happy, sad, surprise, anger, disgust and fear. Each image size

2Traditional techniques for feature selection choose features to discriminate
among all classes, so they return the same number of features for each class.

3There are (c� 1)A computations if the recognition scheme is pairwise, or
cA computations if the recognition is one-versus-the-remaining.
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Fig. 5. Some images in the face expression database. From left to right: angry, disgust, fear, happy, neutral, sad, and surprise.

TABLE I
COMPARISON OF THE RECOGNITION ACCURACY AND THE NUMBER OF FEATURES USED BY THE BAYES CLASSIFIER WITHOUT FEATURE SELECTION (BAYES ALL),

BAYES WITH PAIRWISE-GREEDY FEATURE SELECTION (BAYES FS), ADABOOST, LINEAR SVM (L-SVM), NONLINEAR SVM (NL-SVM), AND FSLP

is 256 256 pixels. A few examples are shown in Fig. 5. For
more information on the database such as image collection,
data description, and human ranking, see [18]. This database
was also used in [19], [38], and [37].

B. Experimental Results

Our experimental procedure used tenfold cross-validation to
deal with the small sample size. That is, the database was di-
vided randomly into ten roughly equal-sized parts, from which
the data from nine parts were used for training the classifiers and
the last part was used for testing. This procedure was repeated
ten times so that each part was used once as the test set. This is
the standard methodology used in machine learning [34].

1) Bayes Classifier and AdaBoost: The AdaBoost method
[7] was adapted by Viola for solving computer vision prob-
lems such as image retrieval [30] and face detection [33], so
that it uses a greedy strategy to select features in the learning
phase. Greedy feature selection can also be used with a Bayes
classifier by assuming feature independence and incrementally
adding the most discriminating features [17]. Fig. 6 shows the
recognition performance of the AdaBoost and Bayes classifiers
as a function of the number of features selected. Less than 100
features are sufficient for both algorithms (the performance of
the AdaBoost algorithm does not improve when more features
are added). The Bayes classifier reached its best performance
of 71.0% with 60 features, and the performance deteriorated
slightly if more features were used. The recognition accuracy
of the Bayes classifier was 63.3% (shown in Table I) when all
612 features were used. Overfitting the training data is a serious
problem for the Bayes method, so feature selection is necessary.
For the AdaBoost method, peak performance was 71.9% using

Fig. 6. Recognition accuracies of a Bayes classifier and Adaboost as a function
of the number of features selected.

80 features (see Table I) for each pair of classes. As shown in
Fig. 6, using more features slightly lowered recognition accu-
racy. In summary, both the AdaBoost and Bayes classifiers com-
bined with a greedy feature selection strategy, selected a large
number of features and their recognition accuracies were low.

2) FSLP and SVM: For our FSLP algorithm, we found that
the parameter in (23) is best set to a small value, and we used

in all experiments. A larger number for will
slightly worsen the performance of FSLP but not too much. Ac-
tually, the value balances the error minimization and margin
maximization in (23) in order to accomplish feature selection
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TABLE II
PERFORMANCE OF FSLP COMPARED TO LINEAR SVM (L-SVM) AND GRBF

NONLINEAR SVM (NL-SVM) USING TENFOLD CROSS-VALIDATION. THE

AVERAGE NUMBER OF SELECTED FEATURES (AVE. #) FOR EACH PAIRWISE

CLASSIFIER AND THE TOTAL NUMBER OF SELECTED FEATURES (TOTAL #)
USED FOR ALL PAIRS ARE SHOWN IN ADDITION TO THE NUMBER OF ERRORS

OUT OF 21 TEST EXAMPLES IN EACH RUN

and classifier training. An open problem is how to set the value
of automatically given the training data so as to make the
whole system completely automatic. To solve this 7-expression
classification problem we used a simple binary tree tournament
scheme with pairwise comparisons.

Experimental results using the FSLP method are shown
in Table II. Feature selection was performed for each pair of
classes, resulting in a total of 21 pairs for the 7-expression
classification problem. The second column in Table II shows
the number of selected features on average for the 21 pairwise
classifiers, ranging from 16.0 to 19.1 for the ten runs. The
average number of features selected over the ten runs was 17.1.
Thus, a very sparse set of features was automatically selected
out of the original 612 features extracted from each face image.
This demonstrates that FSLP can significantly reduce the
number of feature dimensions without any user interaction.

The third column in Table II shows the total number of fea-
tures selected by FSLP for all 21 pairwise classifiers in each
test set. Because some features are useful in discriminating be-
tween one pair, say “angry” and “happy,” but not for separating
another pair, say “angry” and “sad,” the number of features se-
lected for all pairs is larger than that for each pair. For instance,
there were 82 features selected for 21 pairwise classifiers in Set
1. This number is still much smaller than all 612 features. On
the other hand, the frequency of occurrence of the 82 features
over all pairs of classes was very variable, as shown by the his-
togram in Fig. 7. Note that some features are used much more
frequently (e.g., 15 times among 21 pairs) than others because
they are discriminative in many pairs of classes. Never does a
feature appear in all 21 pairs, however. Column 4 in Table II
lists the number of classification errors out of 21 test examples
by FSLP on each data set. The average over ten runs was 1.9.

SVMs [32] are known to give high recognition accuracy when
a large number of training examples are provided. Here, we are
interested in its performance in the small sample case. The clas-

Fig. 7. Histogram of the frequency of occurrence of the 612 features used in
training Set 1 for all 21 pairwise FSLP classifiers.

sification errors of both linear and nonlinear SVMs (using all
612 features) are shown in columns 5 and 6 of Table II. For
nonlinear SVM, we used the GRBF kernel and empirically set
the width parameter. The maximum error of FSLP was 3 over
the ten runs, which was never larger than the errors by linear
SVMs and nonlinear SVMs. The average number of errors over
ten runs was very similar for FSLP, linear SVM (1.6 errors) and
nonlinear SVM (1.7 errors). The recognition accuracies of the
three methods were 91.0%, 92.4%, and 91.9%, respectively (see
Table I), which are comparable. Notice, however, that the av-
erage number of features selected by FSLP was 17.1, much less
than that used by the SVMs. Furthermore, the computation time
of FSLP was short in both the training and recognition phases,
with run times of several minutes to train all 21 classifiers on
a Linux machine with a 1.2-GHz Pentium processor using a
Matlab implementation and CPLEX 6.6 for the LP.

While the recognition accuracy of SVMs is comparable to
FSLP, one major weakness of SVMs is their high computational
cost, which precludes real-time applications. In addition, SVMs
are formulated as a quadratic programming problem and, there-
fore, it is difficult to use SVMs to do feature selection directly.
(Some researchers have proposed approximations to SVM for
feature selection [35] by first training the SVM using the whole
training set, and then computing approximations to reduce the
number of features. This two-step approach cannot guarantee
selection of the best feature subset, however.) Finally, SVM ap-
proximations [35] cannot determine automatically how many
features to use. On the contrary, FSLP addresses all of these is-
sues at once.

3) Comparison With Previous Approaches: Since our face
expression database was used by others [38], [37], [19], we also
compared recognition performance with previously published
results. In [38], [37] a Neural Network was used with 90.1%
recognition accuracy. When some problematic images in the
database were discarded, the accuracy was 92.2%. In [19] a re-
sult of 92% using linear discriminant analysis (LDA) was re-
ported, but they only included nine people’s face images and,
hence, only 193 of the 213 images were used. In conclusion,
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FSLP gives comparable results to Neural Network and LDA
methods, but FSLP can select a small number of features au-
tomatically.

C. Summary

Based on the experiments presented, several conclusions can
be made: 1) the simplified Bayes classifier and the AdaBoost
method [30] do not perform well in the small sample case; 2)
SVMs can solve the recognition problem well but without fea-
ture selection capability; and 3) the FLSP algorithm can effi-
ciently solve both the feature selection and classifier training
problems simultaneously. A more general analysis of these al-
gorithms is given in next section.

VII. DISCUSSION

Based on the experimental results in the last section, we now
present a more general analysis of learning from a small number
of examples. Both FSLP and SVMs have high recognition ac-
curacy (above 90%), while the AdaBoost [30] and the simpli-
fied Bayes classifiers gave a much lower accuracy (lower than
72%). Why such a difference? To answer this question, we think
it is better to divide these algorithms into two broad categories:
1) probability distribution based methods, including the simpli-
fied Bayes classifier and AdaBoost [30] and 2) margin- based
methods, such as FSLP and SVMs. Although general AdaBoost
[7] is called a large margin classifier in machine learning, be-
cause there is a probability distribution in AdaBoost it is sensi-
tive to the number of examples. Our categorization reflects the
large difference in the experimental results for the small sample
case.

A. Probability Distribution Based Learning

For a Bayes classifier, one needs to estimate the probability
distribution for each class . In the small sample case
it is hard, if not impossible, for the small number of exam-
ples to “span” the underlying distribution of the unseen exam-
ples. Thus the estimated probability distribution may be biased
far away from the real one. As a consequence, low accuracy
can often occur. The simplified Bayes decision used with (10),
(11), and (12) assumes independent and Gaussian distributions,
which simplified the problem of class density estimation. How-
ever, from our experiments, the estimation is still biased, and the
problem of overfitting is serious. Our pairwise feature selection
framework improves the classification accuracy to some extent,
but is not enough.

AdaBoost is a technique to combine weak learners that work
on different distributions of the training examples. Theoret-
ically, the only requirement for AdaBoost is that each weak
learner has a performance better than 50%. However, when we
look at the algorithm in detail, there is a probability distribution

for each example at each round .
This distribution is updated for each example at each round
by , where and is the
error rate at round . In the small sample case, when the small
number of examples is not distributed in “general” positions
(i.e., is biased away from the positions of the unseen exam-
ples), the estimated error rate is biased away from the error

rate estimated when a large number of examples is available.
Therefore, the distribution will also be biased. This bias
can accumulate through each round. As a result, one cannot
achieve the original goal of boosting, which focuses on the
“hard” but “general” examples. In an extreme case, consider
a small number of examples that are completely separated
into two classes. If we add some outliers that overlap the two
classes, AdaBoost will concentrate on these “hard” outliers in
successive boosting rounds. As a result, the final classifier is
biased by the outliers. On the contrary, margin-based SVMs
and FSLP deal with outliers using slack variables.

Now look at the margin definitions of AdaBoost and SVM.
In AdaBoost, the margin of example is defined [29] by

(26)

where . Hence, the margin of
AdaBoost is biased in the small sample case because is a bi-
ased estimation. (Note: AdaBoost may have good performance
when a large number of examples are available.) In contrast, the
margin in SVM is defined [32] by , where is the linear
combination of support vectors as in (16). The margin in SVM
has no relation to any probability distribution or error rate.

In our experiments, the accuracy of AdaBoost is low and sim-
ilar to the simplified Bayes classifier where the decision in each
feature dimension is similar to the weak learner in AdaBoost
[30]. This demonstrates that AdaBoost cannot work well in the
small sample case. In fact, we also observed that the perfor-
mance of AdaBoost is much lower than SVM for image retrieval
with relevance feedback [10], another learning problem with a
small number of samples.

Based on the above discussion, we consider the Bayes and
AdaBoost methods as probability distribution based learning
schemes. Because probability estimation is sensitive to the
number of examples or, more precisely, the distribution of the
examples, these methods cannot in general solve the learning
problem in the small sample case.

B. Margin-Based Learning

SVMs are well-known for margin-based discrimination.
SVMs have been applied to vision problems such as face
detection [23] where a large number of examples is provided
for training. Our experiments demonstrate their good general-
ization ability in the small sample case. Maximizing the margin

is not sensitive to the number of training examples
because of its nonparametric characteristic. The reader can find
other analysis of the generalization capability of SVMs in [32],
and see some additional experiments for the small sample case
in [6].

The FSLP algorithm maximizes the 1-norm margin ,
which approximates the 2-norm margin in SVMs. We described
earlier why FSLP can select features and avoid the curse of di-
mensionality problem in the small sample case (Section IV). As
with SVMs, the FSLP algorithm maximizes the margin and is
therefore usually insensitive to the number of examples, in con-
trast to the probability estimation based methods.
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The FSLP method is similar to SVMs in that both maxi-
mize the margin. However, FSLP is formulated directly with
the primal problem using the 1-norm, resulting in a LP problem
(23). SVMs are usually transformed into a dual problem with
the 2-norm [see (14)], resulting in a quadratic programming
problem. The direct solution of SVMs is the dual variables in
(14), defining the support vectors when . It is this differ-
ence that allows FSLP to solve the feature selection problem to-
gether with the discrimination function, whereas SVMs cannot.

In short, margin-based learning is not sensitive to the number
of examples and therefore can perform well in the small sample
case. The FSLP method can further deal with the feature selec-
tion problem.

VIII. CONCLUDING REMARKS

In this paper, several classification methods have been com-
pared in the case of a small number of training examples per
class. Probability distribution based learning methods such as
the simplified Bayes classifier and AdaBoost cannot solve this
problem. Margin-based methods such as FSLP and SVMs can
accurately solve the recognition problem in the small sample
case. Furthermore, FSLP can also address the feature selection
problem, avoiding the curse of dimensionality.

Our major contributions are: 1) systematic evaluation of sev-
eral popular methods in machine learning for a vision problem
in the small sample case; 2) introduction of a novel algorithm
called FSLP, and an analysis of how it can do feature selec-
tion together with classifier training while also circumventing
the curse of dimensionality problem; and 3) analysis of the ex-
pected relative performance of these algorithms for learning in
the small sample case, regardless of the classification task.
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