
Better Control Over Memory Management: Hinting with Love/Hate

J. Neubert D. Gekiere

Computer Science,

University of Wisconsin

Madison, WI, USA 53706

neubert@robios6.me.wisc.edu gekiere@cs.wisc.edu

Abstract

Current memory management policy is, on most sys-

tems, global and inflexible. Current systems provide

poor mechanisms to allow the programmer to share

knowledge of access patterns that may generate im-

proved page swapping and caching. In this paper we

modify a popular operating system’s memory manage-

ment policy to take into account hints given by the pro-

grammer. The system consists of love and hate hints

given to the kernel via system calls. It gives the pro-

grammer the option of moving a page to the front of

the swap line or informing the operating system that

the page should be kept on the active list. The paper

demonstrates the improved performance that a system

can gain through the use of the love and hate hints.

Keywords: Memory Management, OS Hints

1 Introduction

Memory management presents a rather difficult op-
timization problem with no best solution. Current
systems tend to use a global policy needs to balance
factors like the amount of state, the type of policy
(i.e. LRU, MRU), hardware, and system complexity.
The designer attempts to produce a system that per-
forms well in most situations. A more optimal policy
may be created if the operating system (OS) can ob-
tain knowledge from the applications. In this paper
we will propose a mechanism to allow applications to
share their knowledge with the global policy in a at-
tempt to decrease the paging in the system.

Some modern operating systems such as Unix and
Linux provide a madvise system call. The system call
allows the user to specify the way that the memory will
be accessed (or not accessed for that matter). The OS
then assigns the memory the policy it thinks best fits
the hint the user supplied. This system does not allow
for the kind of flexibility that an application may need,

performance wise.
Unix and Windows 2000 provide the ability to lock

pages into memory. This prevents the pages from be-
ing swapped out altogether. If the memory is needed
and the only way to acquire it is to remove a locked
page from memory, the entire process that holds the
locked page is removed from memory and stored on
disk. The process will only be run after enough mem-
ory becomes available. This can lead to an excessive
amount of paging especially in cases where the com-
puter’s memory is limited, and more importantly it
can stop the application dead in its tracks.

Micro-kernels like Mach [8] and Exokernel [4] have
purposed that each application provide its own swap-
ping policy or accept a policy provided by a user li-
brary. The difficulty with these systems is that it is
a rather involved process to write a swapper. A user
may be interested in what happens to a small percent-
age of the pages her application is using, and might
not want to provide a complete swapping policy - it
simply is not a cost effective solution. Micro-kernels
also tend to have a rather large overhead because these
self-implemented policies occur at user (as opposed to
kernel) level, which can generate an excessive amount
of kernel/user interaction.

An adaptive system could be required to learn from
the memory access patterns of the applications run-
ning on top of it. Generic, fixed global policies could
evolve according to the needs of these applications.
This would likely involve complicated prediction and
learning techniques as an application’s behavior will
likely evolve over time. It would also require both
time and space overhead (disk and memory space to
trace behavior, and CPU time for analysis). Work on
adaptive caching has been done, but in the context of
distributed memory architectures [1], and distributed
systems [2].

In this paper we propose using a modified version of
a global, fixed memory management policy. This pa-

per purposes a simple hinting mechanism. The hints
provide a conduit for the programmer to influence the
decisions made by the swapping daemon. This has
several advantages over the policies discussed above.
Unlike the Windows 2000 or Unix systems, which offer
only a lock, the system presented in this paper pro-
vides 255 hinting levels with the maximum level simi-
lar to locking a page. Also our system does not require
that an entire process be swapped out if a locked page
is swapped out. The hinting system also provides users
with the flexibility of using hints on as many pages as
desired (or none at all), without having to implement
an entire swapping system. The hinting system adds
a minor overhead cost to the present system requir-
ing only two system calls be implemented and small
modifications to the system’s swap daemon be made.

The outline of the paper is as follows. Section 2
briefly describes the idea behind love/hate hints. Sec-
tion 3 describes the current Linux memory manage-
ment system. Section 4 explains the different changes
we made to this system in order to implement hint-
ing. Section 5 describes the experiments we used to
test our modified system and measure performance im-
provements. Related works are presented in section 6.
Finally, the paper in summarized in section 7.

2 The Love/Hate System

Most memory management systems attempt to evict
the LRU (least recently used) pages when there are
processes contending for memory. The love/hate
mechanism is intended to manipulate the order of the
pages. This system supplies two system calls: love and
hate. When love is called on a region of memory the
pages containing the memory will de facto become the
most recently used. Conversely the hate call manipu-
lates the memory management system into believing
the page or region of pages are the least recently used.
Hated pages are then most likely to be swapped to
the backing store. This would allow a program to
emulate a MRU (most recently used) memory man-
agement policy. Hating every page after it is accessed
so that the most recently accessed page is the first to
be evicted when space is needed.

3 Linux Memory Management

In order to understand how the Linux 2.4.19 ker-
nel was modified, a basic understanding of the Linux
memory management system is required. The cur-
rent Linux system is based on the clock algorithm. It
maintains three doubly linked lists of pages: a free,

Figure 1: The three lists that the kswapd daemon uses
to manage the memory in the Linux 2.4 kernel. The
functions used by kswapd are listed in the figure above
and below the arrows, which indicate the movements
that they facilitate.

an inactive, and an active list. The movement ratio
between the lists are facilitated by the kswapd dae-
mon. Figure 3 shows the lists and the functions in the
daemon responsible for the movement of the pages be-
tween the lists.

The kswapd daemon uses these functions to keep
the lists in balance. The balance is achieved by main-
taining an approximately two to one ratio between
the number of active pages and that of inactive pages.
The kswap daemon also attempts to keep a minimum
number of pages in the free list so that an allocation
request can be handled quickly. When the lists are
out of balance the kswapd daemon is awaken more
frequently until balance is achieved.

The modifications outlined in this paper will focus
primarily on the movement of pages from the active
list to the inactive list, which is facilitated by the re-
fill inactive function (See Figure 3). This function
scans the active list examining the state of each page.
The state of a page is stored in a page structure(See
Nayani [5]). This structure contains a reference bit
that is set when the page has been referenced. The
function tests and clears the reference bit. If the ref-
erence bit was set the page is allowed to remain on the
active list, otherwise it is removed and placed on the
inactive list.

4 Methodology

Here we are going to describe how the love/hate sys-
tem (described in section 2) is implemented in the
Linux memory management system (described in sec-
tion 3). The system required the addition of two sys-
tem calls and some small modifications to the kernel’s
swap daemon.

The love/hate system described above simply moves

2

the pages to the from or back of the LRU queue. Un-
fortunately Linux does not implement a strict LRU
queue, but rather a approximation to a LRU. The lists
are circular and the daemon simply moves around it
storing the point at which it stopped internally. This
makes it nearly impossible to implement the system
as it was outlined above.

4.1 Initial System

The initial love/hate system was rather simple. The
love call moved pages to the active list and the hated
pages to the inactive list. This system was found to
be flawed. Hated pages frequently moved right back
to the active list after they were hated. At first it was
thought that the software reference bit was causing
this to occur, but that was not the case. Even when
the reference bit in the page structure was cleared the
pages still seemed to find their way to the active list
after being hated. The only way to prevent this was
to clear the software bit as well as the hardware bit.
This led to a second generation of the system calls that
not only moved the pages, but modified their state as
well. In the case of hated pages the reference bits were
cleared as mentioned above and loved pages had their
reference bits set.

The initial system proved functional. It moved
pages to the appropriate lists, but the effect was rather
short-lived. This wasn’t as big of an issue for hated
pages, but might have been for pages that a program-
mer felt were particularly important. After just two
scans of the memory by the swapping daemon the
page could be ready for swapping. The only way to
keep them from moving to the inactive list and being
swapped was the use of repeated and frequent love
calls. This was rather costly in terms of performance.

4.2 Current System

The initial system did prove functional, but lacked
the lasting effect and flexibility we desired. The ben-
efits of the original system were that is was stateless
and simple. It also provided anecdotal evidence that
the system could provide improved performance. The
system that is outlined here builds on the successes of
the first system and addresses the problems mentioned
above.

The new love call had state associated with it, un-
like the initial one. The page structure referred to in
section 3 was modified to contain an unsigned char-
acter, love. This was used to store the level of love a
page has. The addition of the love level to the page
state addressed the transient nature of the initial love

call, removing the need for frequent love calls.
The love level can be used to provide an approxi-

mate ordering to the loved pages. Love will prevent
the page from moving to the inactive list in the mem-
ory structure. Every time love is used to prevent the
movement of a page it is decremented. The page will
not be removed from the system until the page’s love
is exhausted and it is moved to the inactive list. These
modifications required only 6 lines of additional code
in the page daemon.

This treatment of love does not provide a strict or-
dering of the pages, but rather a hint to the system
of the priority of the page. This was done for sev-
eral reasons. If the pages are provided a strict priority
it is difficult to determine how one might handle the
memory of a non-hinting application. A non-hinting
application should not be unjustly punished because it
does not love its pages. Also if one were to use a strict
ordering the page daemon would have to be changed
significantly so it would search for and remove only
those pages with the lowest love level.

The fading love aids in the prevention of thrashing
that may be generated by a love hint. When in mem-
ory the number of free pages becomes low the pag-
ing daemon will run frequently, decrementing the love
of unreferenced pages until they can be swapped out.
This system will usually remove those pages with the
lowest priority first, but frequently accessed low prior-
ity pages may not be removed. This behavior is aimed
at preventing the misuse of love. An application that
loves all its pages will have those that it is not refer-
encing eventually removed.

4.3 The System Calls

The two system calls that were created can be seen
in figure 4.3. Both the love and the hate calls require
a beginning address and the amount of memory that
the user wishes to hate or love. The love call requires
the level of love that the user wishes to bestow on
the region as well. The maximum amount of love is
255, which will lock the page in. All other levels are
continually decrased by kswapd. Both system calls
return the amount of memory that was loved, or hated.

unsigned long love(void* addr, unsigned long length,
unsigned char love);

unsigned long hate(void* addr, unsigned long length);

Figure 2: The Love/Hate Hint API

One of the most difficult issues to deal with was to

3

decide what to do about pages that are invalid. In the
case of hate it is rather easy. We just ignore the page
and move on to the next. The love call was more dif-
ficult. The question that needed to be answered was:
should the page be fetched or created? If the love call
did create and fetch invalid pages in the region to be
loved it would enable misuse and increase the likeli-
hood of accidental love. A love call that brings loved
pages into physical memory would also need to be lim-
ited so that a user could not love more pages than are
available. This leads to the decision that despite the
advantages of a system like madvise, which prefetches
pages, the love call would not fetch the pages. Instead
the love call exits and returns the amount of memory
loved (so the programmer knows that the pages that
have effectively been loved are sequential in memory,
starting at the address he or she provided). If desired,
the programmer can then touch or fetch the pages that
where not in physical memory and call love again on
those pages.

5 Experiments

In order to evaluate the performance of the love/hate
hinting system, the cost per page of using hate and
love is quantified. Then the system is used by an
application which attempts to mosaic several images.
Another set of experiments looks at typical databases
I/O patterns, and tries to use love and hate hints to
simulate both LRU and MRU policies on simultaneous
file accesses.

5.1 The Cost of Love and Hate

The cost of the system was the first thing that was
measured . The testing was done on a Pentium III 800
MHz system with 384 MB of ram. The page size is 4
KB. The system had all non-essential processes killed
to avoid anomalies in the measurements. This system
was used to produce all the data seen in figures 3 and
4. The graphs show the cost of loving and hating
pages with various size calls. The cost is given per
page because the operation is page-wise.

The cost of hating previously loved or hated pages
was much higher despite the fact that the operations
were rather similar. The cost of hating pages that
were loved was about 30% more then a page that is
already hated. This is likely due to the movement
of the pages from the active list to the inactive list.
Conversely the cost of loving a page that is already
loved is almost non-existent with respect to loving a
hated page. The cost of the initial call to love or hate

Figure 3: The graph has three series of data displaying
the amount of time per page of a love call. The loved
series refers to pages that were loved prior to the love
call. The hated series refers to pages that were hated
prior to the love call. The last series, none, refers to
pages that were neither hated nor loved.

was nearly identical.
The most interesting feature of the data was the

large dip in the graph. The large initial cost is due to
plain system call overhead, generated by crossing into
the OS. As the system call is used on larger ranges
of pages the cost is amortized. The low portion of
the dip is likely where the L1 cache is being used.
Eventually the system must go to main memory and
the cost per page reaches its steady state cost. So
when love or hate are called on a region of memory,
some data must get cached. It is important to note
that every step was taken to prevent caching of data
on the processor from affecting the results, including
accessing several megabytes of memory, but the low
portion of the plot remained significantly longer than
that of the region of memory with no prior calls made
on it.

5.2 Image Mosaic Benchmark

Applications which perform a image mosaic operations
require large amounts of memory and are sensitive to
memory management policies. The benchmark cre-
ates a 72 megabyte (MB) aggregate image structure
along with about 144 MB of loaded and processed im-
ages. Many of the processed images, while not needed
in the application after the initial use, can not be
deleted because of manual tuning, which uses the data.

4

(a) (b)

Figure 5: In the above figures each data point is the average of 12 data points. The whiskers on the point
represent two standard deviations on either side of the average. (a) shows the number of major page faults that
was generated by the image mosaic benchmark both with and without the use of hints. Major faults refers to the
act of moving pages from the swap area back into main memory. (b) indicates the runtime of the program both
with and without hints. The memory axis indicates the physical memory the system had available.

Figure 4: This plot outlines the cost of love per page
with various sizes of memory. The plot is in the same
format as that of figure 4.

The benchmark was run on the same Pentium III ma-
chine described above with varying amounts of physi-
cal memory.

One of the problems that was experienced during
the addition of hints was that they need to be used in
an intelligent manner. When they were added initially
whole images were loved with the same amount of love.

This worked well as long as the system had 128 MB
or more of main memory available. The hints even
improved the performance for all but the 96 MB point.
The hints actually severely hurt performance at the 96
MB level, probably because love was used with such
broad strokes. This generated an excess of page faults
because when a page that was needed was swapped
in, a page that would be needed later was moved to
disk. In order to get the best performance the love
should be used in a intelligent manner. This required
varying the level of love on the aggregate image so that
a large portion remains in memory at all time, but the
remaining must be swapped in and out of memory.

The graph in figure 5(a) indicates that the applica-
tion with the addition of hints can avoid many of the
major page faults (Major page faults are generated
when data on the disk is moved to main memory).
This can generate additional runtime as can be seen
in figure 5(b). While relationship can be observed be-
tween the number of major page faults and runtime,
the system suffered some performance loss (regardless
of the number of major page faults) as the memory de-
creased. This was likely due to the increased overhead
of managing a tighter memory space. An important
observation is that as memory is increased there is no
notable cost to the use of hints, though non-hinting
system does enjoy a slightly better performance when
the system has more than 200 MB of memory, but the
improvement is not significanti, and can be attributed

5

Type of Hints

Pass None Hate Love Both
#1 97 96 85 84
#2 41 59 51 32

Total 138 155 136 116

Table 1: Cold Cache Execution Time in Seconds

Type of Hints

Pass None Hate Love Both
#1 6 6 7 7
#2 32 4 17 5

Total 38 10 24 12

Table 2: Warm Cache Execution Time in Seconds

to the cost of love and hate.

5.3 Database Experiments

To test the usefulness ond usability of the love/hate
hint system, we chose to try and reproduce some well-
known repeated file access pattern. Databases file ac-
cess behavior is predictable and depends upon the kind
of request (or query) that is being made by the user.
Dewitt and Chou [3] have catalogued those access pat-
terns as the QLSM (Query Locality Set Model). Ref-
erence patterns are categorized in three ways: sequen-
tial, random, and hierarchical. Sequential accesses in-
clude straight sequential, clustered sequential (parts
of the file might be read repeatedly), and looping se-
quential (the whole file is read more than once in
its entirety). Random accesses include independant
random (truly random) and clustered random (where
a pattern of locality may appear). Hierarchical ac-
cesses mostly describe index tree traversals: straight
traversal (from root to leaf), hierarchical with straight
sequential (straight traversal followed by sequential
scan), hierarchical with clustered sequential (traversal
followed by clustered scan), and looping hierarchical
(repeated traversal).

The following experiment tries to simulate a simple
join operation. A join query builds a new table using
attributes from two or more existing tables, selecting
attributes according to one or several predicates. Our
simulation will use two ’dummy’ tables, and is only
concerned with access to these tables . The creation
of the new table is not simulated, since it does not
lend itself to I/O optimization (either it is written to
the disk, or not).

Set-up: The tables are 64MB each in size. We op-
erate with a Linux station whose memory has been
limited to 128MB. This allows the characteristics of

the memory management policy to be observed. A
portion of the 128 MB of main memory is required by
the kernel and various processes, thus only a portion
of the 128 MB of the files can be cached in memory.
This generates swapping, which demonstrates the pol-
icy performance.

One of the files is considered the outer file, the other
one the inner file. For each page of the outer file, a
page of the inner file is read as well. The access models
chosen for this experiment are looping sequential for
the outer file, and independent random for the inner
file. The loop runs twice on the outer file. To en-
sure cache freshness, a 128MB dummy file (different
of course from the ones used as tables) is mmap-ed and
accessed sequentially prior to starting the actual mea-
surements. Two sets of measurements were taken, one
with a ’cold’ cache, i.e. where the application simply
gets the data from the mmap-ed files as it goes, and
one with a ’warm’ cache, where the application does
a sequential read of the inner file prior to starting the
measurements.

Our goal was to simulate MRU page replacement
policy for the outer file, and LRU policy for the in-
ner file. These page replacement policies make sense
for the access patterns that we are dealing with here.
MRU makes sense for a file that is sequentially ac-
cessed repeatedly, because once a page is read, it won’t
be needed again until we cycle through the whole file.
LRU makes sense for random access, because we want
to keep as much of the file in memory as possible
(hence the cache with the inner file).

For each set of measurement, love and hate hints
were administered as follows: none (no hints given),
hate only (hate hints given to a group of 64 previously
read pages on the outer file), love only (in the cold
cache measurements, love hints are given to each inner
file page that is accessed in the loop; in the warm
cache measurements, a general love hint is given to
the whole mmap-ed file once it has been read into
memory), and love and hate hints at the same time
(as described previously). The number of pages on the
active and inactive lists was taken at the very start,
after pass #1, and after pass #2. Also, for the warm
cache experiments, after the cache was warmed (and
’loved’, if that hinting took place). Both passes were
timed, and totaled.

The best results, performance-wise, come from the
warm cache experiments (See table 2), as should be
expected, but the cold cache experiment’s results pro-
vided insight into the effectiveness of different strate-
gies for using the love/hate hints. A simple cache
warming with no hints already shows considerable im-
provement over any of its counterparts (38 seconds vs.

6

Type of Hints

None Hate Love Both
Page Type Inactive Active Inactive Active Inactive Active Inactive Active

Starting Point 17864 12380 16659 13508 15001 14928 18416 11694
Cache Warmed 21256 8246 20671 8793 4016 25268 5095 24211
After Pass #1 7924 22348 23808 5874 12937 16984 18455 11638
After Pass #2 8005 21831 15520 14773 11873 17576 16284 13945

Table 3: Warm Cache List Sizes

Type of Hints

None Hate Love Both
Page Type Inactive Active Inactive Active Inactive Active Inactive Active

Starting Point 14661 15539 14471 15761 18442 11642 18274 11788
After Pass #1 12714 16843 24691 4992 19098 10158 19099 10151
After Pass #2 6830 22892 16065 13648 16044 13208 16899 12369

Table 4: Cold Cache List Sizes

116 seconds for the best cold cache result). A love
hint on the inner file improves this figure by about
35% (24 seconds). This last result is improved by the
use of hate hints on the outer file (in conjuntion or
not with love hints on the inner file). It seems hint-
ing hate alone (no love) gives this set-up a slight edge
over its ’loved & hated’ counterpart (10 seconds vs. 12
seconds). This might be due to the overhead of treat-
ing an active list with many loved pages. Hence in
a moderately memory-pressured environment, a cache
warming on data that is often used might suffice to
the application’s needs, if it is used in conjuntion with
hate hints on data that can be swapped out immedi-
ately (MRU style). In our case the hate hints on the
outer file make Linux MM system reuse those pages
assigned to the mmap-ed file as it is being read, in
effect keeping the pages of the inner file in memory.

The cold cache experiments ran much slower, but
hints improved the situation somewhat. The surprise
here came from the ’hate only’ hinting experiment,
which ran slower than no hint at all (155 seconds vs.
136 seconds). In this case it seems the overhead of
hate, moving the pages from the active to the inactive
list, actually gets in the way of the rest of the sys-
tem. The best results came from using both love and
hate hints, and the effects are clear when one looks
at the individual passes execution times; the second
pass in that case is faster by almost 25% compared
to the second fastest (32 seconds vs. 41 seconds -
no hints). The ever-synergetic work of love and hate
accomplished during the first pass obviously pays off
during the second pass.

Tables 3 and 4 detail the inactive and active list sizes
during the experiments. As expected, the active size

list grows with love calls (table 3, look at the differ-
ence between ’Starting Point’ and ’Cache Warm’ when
a love hint is provided). Similarly, the inactive list size
grows when hate is provided (in both tables, for the
’hate’ only experiments, look at the difference between
Pass #1 and Starting Points sizes). These measure-
ments are consistent with the behavior that was ex-
pected from the love/hate system, and show that two
different replacement policies (MRU and LRU) can be
simulated at the same time within an application.

6 Background

Most of the work on hinting has centered around
file prefetching. Notably, Patterson and Gibson [7]
describes the TIP system (Transparent Informed
Prefetching). The authors observe the usual I/O /
CPU performance gap, and state their goal of reducing
read latency. The TIP system is focused on prefetch-
ing data before it is needed by the application (con-
trast with our system, where we are concerned about
data that is already present in memory). TIP is based
on the application’s knowledge of future I/O accesses,
therefore hints are expressed in terms of operations
on files. These hints are used not only to prefetch the
data, but also to optimize I/O access, using low level
knowledge of the system (seek schedule optimization,
more efficient utilization of disk array if present, etc
- details that the programmer does not and should
not possess). The hints are described as ’disclosure’,
as opposed to ’advice’, because they inform the sys-
tem of actual future operation on files. This should
be contrasted with our love/hate hints, which are in

7

effect ’advice’ for the memory management system. A
love hint does not guarantee that the targeted page
or memory region will effectively be in pysical mem-
ory when needed (though it does, of course, make it
extremely likely).

The TIP system was targeted at a single applica-
tion running on a computer host. A follow-up sys-
tem, TIP-2 [6], exploits hints for both file prefetching
and informed caching (TIP-2’s cost estimators decide
which block to eject from the cache). This was ex-
tended to ’TIPTOE’ [9] for multiple processes running
and giving hints concurrently.

7 Conclusion

We have presented a modification to a standard mem-
ory management system, that allows application pro-
grammers to give hints to the underlying system as to
which pages should be kept in physical memory, and
which pages should be potentially disposed of. Our
love/hate system is not completely transparent (the
programmer gives explicit hints), but is very much
unobtrusive; two simple system calls can be used to
add love/hate hints, but their use is not mandatory,
and not using them yields standard behavior.

Through various experiments, we have showed that
the hints improve overall applications performance,
though indiscriminate use of both kinds of hints is not
recommended - i.e. each application should evaluate
its own needs.

Our hints can be used to simply improve per-
formance on memory demanding applications, and
simultaneously simulate different memory manage-
ment policies. Other possible uses could include file
prefetching, through the use of threads (a thread reads
and loves different files that are going to be needed by
the application later on).

Remember: all your applications need is a little
love.

8 Acknowledgements

We would like to thank Professor Remzi Arpaci-
Dusseau for his help.

References

[1] J. Bennett, J. Carter, and W. Zwaenepoel. Adap-
tive software cache management for distributed shared
memory architectures. In Proc. of the 17th Annual Int’l
Symp. on Computer Architecture (ISCA’90), pages
125–135, 1990.

[2] P. Carns, W. Ligon III, R. Ross, and R. Thakur. Par-
allel file system for linux clusters. In Proceedings of
the 4th Annual Linux Showcase and Conference, pages
317–327, Atlanta, GA, 2000. USENIX Association.

[3] H. Chou and D. DeWitt. An evaluation of buffer man-
agement strategies for relational database systems. In
Alain Pirotte and Yannis Vassiliou, editors, Proceed-
ings of 11th International Conference on Very Large
Data Bases, pages 127–141. Morgan Kaufmann, 1985.

[4] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level
resource management. In Symposium on Operating
Systems Principles, pages 251–266, 1995.

[5] A. Nayani. Linux memory management, April 2002.

[6] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In In
Proceedings of the Fifteenth ACM Symposium on Oper-
ating Systems Principles, pages 79–95, December 1995.

[7] R. Patterson, G. Gibson, and M. Satyanarayanan.
A status report on research in transparent in-
formed prefetching. ACM Operating Systems Review,
27(2):21–34, 1993.

[8] R. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management for
paged uniprocessor and multiprocessor architectures.
In Proceedings of the Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 31–39, Palo Alto, Cali-
fornia, 1987.

[9] A. Tomkins, R. Patterson, and G. Gibson. Informed
multi-process prefetching and caching. In Proceedings
of the 1997 Conference on Measurement and Model-
ing of Computer Systems, pages 100–114. ACM Press,
1997.

8

