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Abstract The sample-path method is one of the most important tools in simulation-based optimiza-
tion. The basic idea of the method is to approximate the expected simulation output by the average
of sample observations with a common random number sequence. In this paper, we describe a new
variant of Powell’s UOBYQA (Unconstrained Optimization BY Quadratic Approximation) method,
which integrates a Bayesian Variable-Number Sample-Path (VNSP) scheme to choose appropriate
number of samples at each iteration. The statistically accurate scheme determines the number of
simulation runs, and guarantees the global convergence of the algorithm. The VNSP scheme saves a
significant amount of simulation operations compared to general purpose ‘fixed-number’ sample-path
methods. We present numerical results based on the new algorithm.

Keywords sample-path method, simulation-based optimization, Bayesian analysis, trust region
method
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1 Introduction

Computer simulations are used extensively as models of real systems to evaluate output responses.
The choice of optimal simulation parameters can lead to improved operation, but configuring them
well remains a challenging problem. Historically, the parameters are chosen by selecting the best
from a set of candidate parameter settings. Simulation-based optimization [12,13,20] is an emerging
field which integrates optimization techniques into simulation analysis. The corresponding objective
function is an associated measurement of an experimental simulation. Due to the complexity of
the simulation, the objective function may be difficult and expensive to evaluate. Moreover, the
inaccuracy of the objective function often complicates the optimization process. Indeed, derivative
information is typically unavailable, so many derivative-dependent methods are not applicable to
these problems.
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Although real world problems have many forms, in this paper we consider the following uncon-
strained stochastic formulation:

min
x∈Rn

f(x) = E [F (x, ξ(ω))] . (1.1)

Here, ξ(ω) is a random vector defined on a probability space (Ω,F , P ). The sample response function
F : Rn×Rd → R takes two inputs, the simulation parameters x ∈ Rn and a random sample of ξ(ω) in
Rd. Given a random realization ξi of ξ(ω), F (x, ξi) can be evaluated via a single simulation run. The
underlying objective function f(x) is computed by taking an expectation over the sample response
function and has no explicit form. A basic assumption requires that the expectation function f(x)
is well defined (for any x ∈ Rn the function F (x, ·) is measurable, and either E[F (x, ξ(ω))+] or
E[F (x, ξ(ω))−] is finite, see page 57 of [31]).

The sample-path method is a well-recognized technique in simulation-based optimization [11,14,
15,25,26,30]. It is sometimes called the Monte Carlo sampling approach [34] or the sample average
approximation method [16,17,19,33,35,36]. The sample-path method has been applied in many
settings, including buffer allocation, tandem queue servers, network design, etc. The basic idea of
the method is to approximate the expected value function f(x) in (1.1) by averaging sample response
functions

f(x) ≈ f̂N (x) :=
1
N

N∑
i=1

F (x, ξi), (1.2)

where N is an integer representing the number of samples. Note that by fixing a sequence of i.i.d.
samples ξi, i = 1, 2 . . . , N in (1.2), the approximate function f̂N is a deterministic function. This
advantageous property allows the application of deterministic techniques to the averaged sample-
path problem

min
x∈Rn

f̂N (x), (1.3)

which serves as a substitute for (1.1). An optimal solution x∗,N to the problem (1.3) is then treated
as an approximation of x∗, the solution of (1.1). Note that the method is not restricted to uncon-
strained problems as in our paper, but it requires appropriate deterministic tools (i.e., constrained
optimization methods) to be used.

Convergence proofs of the sample-path method are given in [30,32]. Suppose there is a unique
solution x∗ to the problem (1.1), then under assumptions such as the sequence of functions {f̂N}
epiconverges to the function f , the optimal solution sequence {x∗,N} converges to x∗ almost surely for
all sample paths. Note that a sample path corresponds to a sequence of realized samples {ξ1, ξ2, . . .}.
The almost sure statement is defined with respect to the generated probability measure P̃ of the
sample path space Ω̃ = Ω×Ω×· · · . See Figure 1 for the illustration of the sample-path optimization
method.

Our purpose in this paper is to introduce a Variable-Number Sample-Path (VNSP) scheme, an
extension of sample-path optimization. The classical sample-path method is criticized for its exces-
sive simulation evaluations: in order to obtain a solution point x∗,N , one has to solve an individual
optimization problem (1.3) and at each iterate xk of the algorithm f̂N (xk) is required (with N large).
The new VNSP scheme is designed to generate different numbers of samples (N) at each iteration.
Denoting Nk as the number of samples at iteration k, the VNSP scheme integrates Bayesian tech-
niques to determine a satisfactory Nk, which accordingly ensures the accuracy of the approximation
of f̂N (x) to f(x). The numbers {Nk} form a non-decreasing sequence within the algorithm, with
possible convergence to infinity. The new approach is briefly described in Figure 2. Significant com-
putational savings accrue when k is small. There is an extensive literature on using Bayesian methods
in simulation output analysis. For example, Chick and Inoue [3,4] has implemented Bayesian esti-
mation in ordering discrete simulation systems (ranking and selection [1,18]). Deng and Ferris [8]
propose a similar Bayesian analysis to evaluate the stability of surrogate models.

Another ‘variable-sample’ scheme for sample-path optimization is proposed by Homem-de-Mello
in [16]. The work proposes a framework for iterative algorithms that use, at iteration k, an estimator
fNk of the true function f constructed via the sample average of Nk samples. It is shown in [16] that,
if the convergence of such an algorithm requires that fNk(x) → f(x) almost surely for all sample
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Fig. 1 Mechanism of the sample-path optimization method. Starting from x0, for a given N , a deterministic
algorithm is applied to solve the sample-path problem. The sequence of solutions {x∗,N} converges to the
true solution x∗,∞ = x∗ almost surely.

Fig. 2 Mechanism of the new sample-path method with the VNSP scheme. Starting from x0, the algorithm
generates its iterates across different averaged sample functions. In an intermediate iteration k, it first
computes a satisfactory Nk which guarantees certain level of accuracy, then an optimization step is taken
exactly the same as in problem (1.3), with N = Nk. The algorithm has a globally convergent solution x∗,N∞ ,
where N∞ := limk→∞ Nk. The convergence is almost sure for all the sample paths, which correspond to
different runs of the algorithm. The solution, we will prove later, matches the solution x∗,∞.

paths, then it is necessary that Nk → ∞ at a certain rate. Our VNSP scheme is significantly different:
Nk in our scheme is validated based on the uncertainty of the iterate xk. We require xk → x∗ almost
surely, but we do not impose the convergence condition f̂Nk → f . As a consequence, {Nk} is a non-
decreasing sequence with the limit value N∞ being either finite or infinite. Here is a toy example
showing that the limit sample number N∞ in our algorithm can be finite. Consider a simulation
system with only ‘white noise’:

F (x, ξ(ω)) = φ(x) + ξ(ω),

where φ(x) is a deterministic function and ξ(ω) ∼ N(0, σ2). As a result, the minimizer of each piece
F (x, ξi) = φ(x) + ξi coincides with the minimizer of f(x) = φ(x) (thus the solutions of f̂k are:
x∗,1 = x∗,2 = · · · = x∗,∞). In this case, our VNSP scheme turns out to use a constant sequence
of sample numbers Nk : N1 = N2 = · · · = N∞ < +∞. We obtain limk→∞ xk = x∗,N1 = · · · =
x∗,N∞ = x∗, but obviously limk→∞ f̂Nk 6= f . However, the ‘variable-sample’ scheme in [16] still
requires limk→∞ Nk = ∞ on this example. More details about this toy example can be found in the
numerical example section.

Sections of the paper are arranged as follows. In Section 2.1 we detail the underlying quadratic
models that we will use and outline properties of the model construction that are relevant to the

3



sequel. In Section 2.2 we will provide the outline of the new algorithm, with a realization of the
VNSP scheme. In Section 2.3, we describe the Bayesian VNSP scheme to determine the suitable
value of Nk at iteration k. Section 3 provides an analysis of the global convergence properties of the
algorithm. Finally, in Section 4, we discuss several numerical results on test functions.

2 The Extended UOBYQA Algorithm

We apply Powell’s UOBYQA (Unconstrained Optimization BY Quadratic Approximation) algorithm
[27] as our base sample-path optimization solver. The algorithm is a derivative-free approach and
thus is a good fit for the optimization problem (1.3). It is designed to solve nonlinear problems
with a moderate number of dimensions. The general structure of UOBYQA follows a model-based
approach [5,6], which constructs a chain of local quadratic models that approximate the objective
function. The method is an iterative algorithm in a trust region framework [24], but it differs from
a classical trust region method in that it creates quadratic models by interpolating a set of sample
points instead of using the gradient and Hessian values of the objective function (thus making it
a derivative-free tool). Besides UOBYQA, other model-based software include WEDGE [21] and
NEWUOA [28].

A general framework for the model-based approach is given by Conn and Toint [6], and conver-
gence analysis is presented in [5]. In our extension of UOBYQA, we inherit several basic assumptions
regarding the nature of the objective function from [5].

Assumption 1 For a fixed y ∈ Rd the function F (·, y) is twice continuously differentiable and its
gradient and Hessian are uniformly bounded on Rn×Rd. There exist constants κFg > 0 and κFh > 0,
such that the following inequalities hold:

sup
x∈Rn,y∈Rd

∥∥∥∥∂F (x, y)
∂x

∥∥∥∥ ≤ κFg and sup
x∈Rn,y∈Rd

∥∥∥∥∂2F (x, y)
∂2x

∥∥∥∥ ≤ κFh.

Assumption 2 For a given y ∈ Rd, the function F (·, y) and the underlying function f(·) are
bounded below on Rn.

2.1 Interpolating quadratic model properties

At every iteration of the algorithm, a quadratic model

QN
k (x) = cN

k +
(
gN

k

)T
(x − xk) +

1
2
(x − xk)T GN

k (x − xk), (2.1)

is constructed by interpolating a set of adequate points (see explanation below) Ik = {y1, y2, . . . , yL},

QN
k (yi) = f̂N (yi), i = 1, 2, . . . , L. (2.2)

We will indicate how to generate the number of samples N in Section 2.3 using a Bayesian VNSP
scheme.

The point xk acts as the center of a trust region, the coefficient cN
k is a scalar, gN

k is a vector in
Rn, and GN

k is an n×n real symmetric matrix. The interpolation model is expected to approximate
f̂N well around the base point xk, such that the parameters cN

k , gN
k and GN

k approximate the Taylor
series expansion coefficients of f̂N around xk. Thus, gN

k is used as a derivative estimate for f̂N . To
ensure a unique quadratic interpolator, the number of interpolating points should satisfy

L =
1
2
(n + 1)(n + 2). (2.3)

Note that the model construction step (2.1) does not require evaluations of the gradient or the
Hessian. However, for each quadratic interpolation model, we require that the Hessian matrix is
uniformly bounded.
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Assumption 3 The Hessian of the quadratic function QN
k is uniformly bounded for all x in the

trust region, i.e., there exists a constant κQh > 0 such that

‖GN
k ‖ ≤ κQh, for all x ∈ {x ∈ Rn| ‖x − xk‖ ≤ ∆k}.

The notion of adequacy of the interpolation points in a ball

Bk(d) := {x ∈ Rn| ‖x − xk‖ ≤ d}

is defined in [5]. As a key component of the analysis, Conn, Scheinberg, and Toint address the
difference of using the classical Taylor expansion model

Q̂N
k (x) = f̂N (xk) + ∇f̂N (xk)T (x − xk) +

1
2
(x − xk)T∇2f̂N (xk)(x − xk)

and the interpolative quadratic model QN
k . The model Q̂N

k shares the same gradient ∇f̂N (xk) at
xk with the underlying function, while for the interpolative model QN

k , its gradient gN
k is merely

an approximation. The error in this approximation is shown in the following lemma to decrease
quadratically with the trust region radius. As an implication of the lemma, within a small trust
region, the model QN

k is also a decent approximation model.

Lemma 1 (Theorem 4 in [5]) Assume Assumptions 1-3 hold and Ik is adequate in the trust region
Bk(∆k). Suppose at iteration k, QN

k is the interpolative approximation model for the function f̂N ,
then the bias of the function value and the gradient are bounded within the trust region. There exist
constants κem and κeg, for each x ∈ Bk(∆k), the following inequalities hold

|f̂N (x) − QN
k (x)| ≤ κem max[∆2

k,∆3
k] (2.4)

and
||∇f̂N (x) − gN

k || ≤ κeg max[∆k, ∆2
k]. (2.5)

In fact, the proof of Lemma 1 is associated with manipulating Newton polynomials instead of the
Lagrange functions that UOBYQA uses. Since the quadratic model is unique via interpolation (by
choice of L), the results are valid regardless of how the model is constructed.

Implicitly, adequacy relates to good conditioning of an underlying matrix, which enables the
interpolation model to work well. Improving the adequacy of the point set involves replacing a subset
of points with new ones. The paper [5] shows a mechanism that will generate adequate interpolation
points after a finite number of operations. UOBYQA applies a heuristic procedure, which may not
guarantee these properties, but is very effective in practice. Since this point is unrelated to the issues
we address here, we state the theory in terms of adequacy to be rigorous, but use the UOBYQA
scheme for our practical implementation.

We have seen that QN
k interpolates the function f̂N at the points in Ik. Let Q∞

k be the ‘expected’
quadratic model interpolating the function f at the same points. The following lemma provides
convergence of QN

k to Q∞
k .

Lemma 2 QN
k (x) converges pointwise to Q∞

k (x) with probability 1 (w.p.1) as N → ∞.

Proof The Law of Large Numbers (LLN) guarantees the pointwise convergence of f̂N (x) to f(x)
w.p.1 [31]. By solving the system of linear equations (2.2), each component of the coefficients of
QN

k , cN
k , gN

k (i), GN
k (i, j), i, j = 1, 2, . . . , n, is uniquely expressed as a linear combination of f̂N (yi),

f̂N (yi)f̂N (yj), i, j = 1, 2, . . . , L. (The uniqueness of solution requires the adequacy of the interpola-
tion points.) Therefore, as N → ∞ the coefficients cN

k , gN
k , GN

k converge to c∞k , g∞k , G∞
k w.p.1 because

the values f̂N (yi) converge to f(yi), i = 1, 2, · · · , L, w.p.1. Finally, for a fixed value x ∈ Rn, QN
k (x)

converges to Q∞
k (x) w.p.1. ut
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In the remainder of the section, we focus on deriving the posterior distributions of Q∞
k and

computing the Bayes risk. These distributions will be used in Section 2.3; they are summarized in
the penultimate paragraph of this subsection for a reader who wishes to skip the technical details.
Assume the simulation output at points of Ik

FFF = (F (y1, ξ(ω)), F (y2, ξ(ω)), . . . , F (yL, ξ(ω)))

is a multivariate normal variable, with mean µµµ = (µ(y1), . . . , µ(yL)) and covariance matrix ΣΣΣ:

FFF ∼ N(µµµ,ΣΣΣ). (2.6)

Since the simulation outcomes are correlated, the covariance matrix is typically not a diagonal
matrix. The existing data XN can be accumulated as an N × L matrix, with

XN
i,j = f(yj , ξi), i = 1, . . . , N, j = 1, . . . , L,

and L is the cardinality of the set Ik defined in (2.3). The data is available before the construction
of the model QN

k . Let µ̄µµ and Σ̂ΣΣ denote the sample mean and sample covariance matrix of the
data. For simplicity, we introduce the notation sssi = (F (y1, ξi), . . . , F (yL, ξi)), i = 1, . . . , N , so that

XN =


sss1

sss2

...
sssN

. The sample mean and sample covariance matrix are calculated as

µ̄µµ =
1
N

N∑
i=1

sssi

= (f̂N (y1), . . . , f̂N (yL)), (2.7)

and

Σ̂ΣΣ =
1

N − 1

N∑
i=1

(sssi − µ̄µµ)T (sssi − µ̄µµ). (2.8)

We delve into the detailed steps of quadratic model construction in the UOBYQA algorithm.
The quadratic model Q∞

k is expressed as a linear combination of Lagrange functions lj(x),

Q∞
k (x) =

L∑
j=1

f(yj)lj(x) =
L∑

j=1

µ(yj)lj(x), x ∈ Rn. (2.9)

Each piece of lj(x) is a quadratic polynomial from Rn to R

lj(xk + s) = cj + gT
j s +

1
2
sT Gjs, j = 1, 2, . . . , L,

that has the property
lj(yi) = δij , i = 1, 2, . . . , L,

where δij is 1 if i = j and 0 otherwise. It follows from (2.1) and (2.9) that the parameters of Q∞
k

are derived as

c∞k = cccµµµT , g∞k = gggµµµT ,

and G∞
k =

L∑
j=1

µ(yj)Gj , (2.10)

where ccc = (c1, . . . , cL) and ggg = (g1, . . . , gL). Note that the parameters cj , gj , and Gj in each Lagrange
function lj are uniquely determined when the points yj are given, regardless of the function f .
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Since we do not have any prior assumption for the distributions of µµµ and ΣΣΣ, we assign non-
informative prior distributions for them. In doing this, the joint posterior distributions of µµµ and ΣΣΣ
are derived as

ΣΣΣ|XN ∼ WishartL(Σ̂ΣΣ,N + L − 2),

µµµ|ΣΣΣ,XN ∼ N(µ̄µµ,ΣΣΣ/N). (2.11)

Here the Wishart distribution Wishartp(ννν,m) has covariance matrix ννν and m degrees of freedom.
The Wishart distribution is a multivariate generalization of the χ2 distribution.

The distribution of the mean value µµµ is of most interest to us. When the sample size is large, we
can replace the covariance matrix ΣΣΣ in (2.11) with the sample covariance matrix Σ̂̂Σ̂Σ, and asymptot-
ically derive the posterior distribution of µµµ|XN as

µµµ|XN ∼ N(µ̄µµ, Σ̂ΣΣ/N). (2.12)

It should be noted that, with an exact computation, the marginal distribution of µµµ|XN inferred by
(2.11) (eliminating ΣΣΣ) is,

µµµ|XN ∼ StL(µ̄µµ,NΣ̂ΣΣ
−1

, N − 1), (2.13)

where a random variable with Student’s t-distribution StL(µµµ,κκκ,m) has mean µµµ, precision κκκ, and
m degrees of freedom. The normal formulation (2.12) is more convenient to manipulate than the
t-version (2.13), and the results of both versions turn out to be close [9]. Therefore, in our work, we
will use the normal distribution (2.12).

Combining (2.10) and (2.12), the posterior distributions of c∞k , g∞k and G∞
k are normal-like

distributions:

c∞k |XN ∼ N(cccµ̄µµT , cccΣ̂ΣΣcccT /N), (2.14)

g∞k |XN ∼ N(gggµ̄µµT , gggΣ̂ΣΣgggT /N), (2.15)

G∞
k |XN ∼ MN(

L∑
j=1

µ̄(yj)Gj ,PPP
TΣ̂ΣΣPPP/N,PPPTΣ̂ΣΣPPP/N), (2.16)

where the L × N matrix PPP = (G1111, . . . , GL111)T . The matrix normal distribution MN(µµµ,ννν1, ννν2) has
parameters mean µµµ, left variance ννν1, and right variance ννν2 [7]. In (2.16), because Gj are symmetric,
the left variance and right variance coincide.

While the multivariate normal assumption (2.6) is not always valid, several relevant points indi-
cate that it is likely to be satisfied in practice [2].

– The form (2.6) is only used to derive the (normal) posterior distribution µµµ|X.
– Other types of distribution assumptions may be appropriate in different circumstances. For ex-

ample, when a simulation output follows a Bernoulli 0-1 distribution, then it would be easier to
perform parameter analysis using beta prior and posterior distributions. The normal assumption
(2.6) is the more relevant to continuous simulation output with unknown mean and variance.

– The normal assumption is asymptotically valid for many applications. Many regular distributions,
such as distributions from the exponential family, are normal-like distributions. The analysis using
normal distributions is asymptotically correct.

2.2 The core algorithm

In this section, we present an algorithm outline based on the general model-based approach, omitting
specific details of UOBYQA. Interested readers may refer to Powell’s paper [27] for further details.

Starting the algorithm requires an initial trial point x0 and an initial trust region radius ∆0. As
in a classical trust region method, a new promising point is determined from a subproblem:

min
s∈Rn

QN
k (xk + s), subject to ‖s‖ ≤ ∆k. (2.17)
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The new solution s∗,N is accepted (or not) by evaluating the ‘degree of agreement’ between f̂N and
QN

k :

ρN
k =

f̂N (xk) − f̂N (xk + s∗,N )
QN

k (xk) − QN
k (xk + s∗,N )

. (2.18)

If the ratio ρN
k is large enough, which indicates a good agreement between the quadratic model QN

k

and the function f̂N , the point xk + s∗,N is accepted into the set Ik. We introduce the following
lemma concerning the ‘sufficient reduction’ within a trust region step. This is an important but
standard result in the trust region literature.

Lemma 3 The solution s∗,N
k of the subproblem (2.17) satisfies

QN
k (xk) − QN

k (xk + s∗,N ) ≥ κmdc‖gN
k ‖min

[
‖gN

k ‖
κQh

,∆k

]
(2.19)

for some constant κmdc ∈ (0, 1) independent of k.

Proof For the Cauchy point xk + sN
c defined as the minimizer of the model in the trust region along

the steepest decent direction, we have a corresponding reduction [22]

QN
k (xk) − QN

k (xk + s∗,N
c ) ≥ 1

2
‖gN

k ‖min
[
‖gN

k ‖
κQh

,∆k

]
. (2.20)

Since the solution s∗,N of the subproblem yields an even lower objective value of QN
k , we have the

inequality (2.19). The complete proof can be found in [24]. ut

Comment 1: Lemma 3 is generally true for models QN
k and Q∞

k .
Comment 2: There are issues concerning setting the values of κmdc and κQh in an implementation.

For κmdc, we use a safeguard value of 0.49, which is slightly smaller than 1
2 . This value is true for

Cauchy points, so is valid for the solutions of the subproblem. For κQh, we update it as the algorithm
proceeds

κQh := max
(
κQh, ‖GN

k ‖
)
, (2.21)

that is, κQh is updated whenever a new GN
k is generated. Assumption 3 ensures the boundedness

of the sampled Hessian and prevents the occurrence of ill-conditioned problems. It is hard to find
a good value of κQh satisfying Assumption 3, but in practice the above scheme updates the value
very infrequently.

It may happen that the quadratic model becomes inadequate after a potential step. Accordingly,
UOBYQA first checks and improves the adequacy of Ik before the trust region radius is updated
following standard trust region rules. Whenever a new point x+ enters (the point x+ may be the
solution point xk +s∗,N or a replacement point to improve the geometry), the agreement is rechecked
to determine the next iterate.

We now present the extended UOBYQA algorithm that uses the VNSP scheme that we describe
in the next section. The constants associated with the trust region update are:

0 < η0 ≤ η1 < 1, 0 < γ0 ≤ γ1 < 1 ≤ γ2, ε1 > 0 and ε2 ≥ 1.

Algorithm 1 Choose a starting point x0, an initial trust region radius ∆0 and a termination trust
region radius ∆end.

1. Generate initial trial points in the interpolation set Ik. Determine the first iterate x1 ∈ Ik as the
best point in Ik.

2. For iterations k = 1, 2, . . .
(a) Determine Nk via the VNSP scheme in Section 2.3.
(b) Construct a quadratic model QNk

k of the form (2.1) which interpolates points in Ik. If ‖gNk

k ‖ ≤
ε1 and Ik is inadequate in Bk(ε2‖gNk

k ‖), then improve the quality of Ik.
(c) Solve the trust region subproblem (2.17). Evaluate f̂Nk at the new point xk+s∗,Nk and compute

the agreement ratio ρNk

k in (2.18).
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(d) If ρNk

k ≥ η1, then insert xk+s∗,Nk into Ik. If a point is added to the set Ik, another element in
Ik should be removed to maintain the cardinality |Ik| = L. If ρNk

k < η1 and Ik is inadequate
in Bk, improve the quality of Ik.

(e) Update the trust region radius ∆k:

∆k+1

∈ [∆k, γ2∆k], if ρNk

k ≥ η1;
∈ [γ0∆k, γ1∆k], if ρNk

k < η1 and Ik is adequate in Bk(∆k);
= ∆k, otherwise.

(2.22)

(f) When a new point x+ is added into Ik, if

ρ̂Nk

k =
f̂Nk(xk) − f̂Nk(x+)

QNk

k (xk) − QNk

k (xk + s∗,Nk)
≥ η0, (2.23)

then xk+1 = x+, otherwise, xk+1 = xk.
(g) Check whether any of the termination criteria is satisfied, otherwise repeat the loop. The ter-

mination criteria include ∆k ≤ ∆end and hitting the maximum limit of function evaluations.
3. Evaluate and return the final solution point.

Note that in the algorithm a successful iteration is claimed only if the new iterate xk+1 satisfies the
condition

ρ̂Nk

k ≥ η0,

otherwise, the iteration is called unsuccessful.

2.3 Bayesian VNSP scheme

We have implemented the VNSP scheme within UOBYQA because UOBYQA is a self-contained
algorithm that includes many nice features such as initial interpolation point design, adjustment of
the trust region radii and geometry improvement of the interpolation set.

The goal of a VNSP scheme is to determine the suitable sample number Nk to be applied at
iteration k. As a consequence, the algorithm, performing on averaged sample function f̂Nk , produces
solutions xk that converge to x∗,N∞ = x∗,∞ (see Figure 3).

Fig. 3 Choose the correct Nk and move the next iterate along the averaged sample function f̂Nk .
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In our algorithm, QN
k (xk) − QN

k (xk + s∗,N ) is the observed model reduction, which serves to
promote the next iterate (i.e., used to compute the agreement ρN

k in (2.18)). The key idea for the
global convergence of algorithm is that, by replacing gN

k with g∞k in (2.19), we force the model
reduction QN

k (xk) − QN
k (xk + s∗,N ) to regulate the size of ‖g∞k ‖, and so drive ‖g∞k ‖ to zero. We

present the modified ‘sufficient reduction’ criterion:

QN
k (xk) − QN

k (xk + s∗,N ) ≥ κmdc‖g∞k ‖min
[
‖g∞k ‖
κQh

,∆k

]
. (2.24)

Lemma 2 and 3 imply that increasing the replication number N lessens the bias between the quadratic
models QN

k and Q∞
k , and is likely to produce a more precise step length s∗,N , close to s∗,∞. The

criterion will be eventually satisfied when N → ∞.
To ensure the ‘sufficient reduction’ criterion (2.24) is satisfied accurately, we require

Pr(EN
k ) = Pr

(
QN

k (xk) − QN
k (xk + s∗,N ) < κmdc‖g∞k ‖min

[
‖g∞k ‖
κQh

,∆k

])
≤ αk, (2.25)

where the event EN
k is defined as the failure of (2.24) for the current N and αk is the significance

level. The probability is taken over the sample path space Ω̃. In practice, the risk Pr(EN
k ) is difficult

to evaluate because 1) it requires multiple sample paths, while the available data is limited to one
sample path, and 2) we do not know the explicit form of Q∞

k (and hence g∞k ).
By adapting knowledge from Bayesian inference, we approximate the risk value by a Bayesian

posterior estimation based on the current observations XN

Pr(EN
k ) ≈ Pr(EN

k |XN ). (2.26)

The value Pr(EN
k |XN ) is thus called Bayes risk, which depends on a particular sample path. In

the Bayesian perspective, the unknown quantities, such as f(x) and g∞k , are considered as random
variables, whose posterior distributions are inferred by Bayes’ rule. Given the observations XN , we
have

Pr(EN
k |XN ) = Pr

(
QN

k (xk) − QN
k (xk + s∗,N ) < κmdc‖g∞k ‖min

[
‖g∞k ‖
κQh

,∆k

]
XN

)
= Pr

(
QN

k (xk) − QN
k (xk + s∗,N ) < κmdc‖g∞k |XN‖min

[
‖g∞k |XN‖

κQh
,∆k

])
.

(2.27)

The left hand side QN
k (xk) − QN

k (xk + s∗,N ) of the inequality becomes a fixed quantity given XN .
The probability evaluation is computed with respect to the posterior distribution g∞k |XN . Here we
show the fact:

Lemma 4 The Bayes risk Pr(EN
k |XN ) converges to zero as N → ∞.

Proof For simplicity in notation, let AN = ‖g∞k |XN‖min
[
‖g∞

k |XN‖
κQh

,∆k

]
be a sequence of random

variables, and bN = QN
k (xk)−QN

k (xk +s∗,N ) be a sequence of scalars. As shown in (2.15), as N → ∞
the distribution g∞|XN converges to a delta distribution. AN also converges to a delta distribution
A∞ centered at ‖g∞k ‖min

[
‖g∞

k ‖
κQh

,∆k

]
. Therefore, A∞ is essentially a constant with zero variance.

We can rewrite the Bayes risk in (2.27) as follows:

Pr(EN
k |XN ) = Pr

(
bN < κmdcA

N
)

= Pr

(
(bN − b∞) +

(
b∞ − 1

2
A∞

)
+

(
1
2
A∞ − κmdcA

∞
)

< κmdc(AN − A∞)
)

= Pr

(
AN − A∞ >

(bN − b∞) + (b∞ − 1
2A∞) + ( 1

2A∞ − κmdcA
∞)

κmdc

)
.
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As N → ∞, bN − b∞ converges to zero, b∞− 1
2A∞ ≥ 0 by Lemma 3, and 1

2A∞−κmdcA
∞ converges

to a strictly positive value because κmdc < 1
2 . Thus the right hand side of the inequality converges

to a strictly positive value. Showing the Bayes risk converges to zero is equivalent to showing the
random variable AN converges to A∞ in probability.

If we denote aN = E[AN ], then aN → E[A∞] = A∞ (Theorem (3.8) p17 [10]). For a given positive
value ε > 0, there exists a large enough N ′ such that when N > N ′ we have |aN − A∞| ≤ ε/2. If
N > N ′,

Pr(AN − A∞ > ε) ≤ Pr(|AN − A∞| > ε)

= Pr(|AN − aN + aN − A∞| > ε)

≤ Pr(|AN − aN | + |aN − A∞| > ε)

≤ Pr(|AN − aN | > ε/2)

≤ (2/ε)2var(AN ).

The last inequality is by the Chebyshev’s inequality [10]. Because var(AN ) decreases to zero, we
have Pr(AN −A∞ > ε) decreases to zero and AN converges to A∞ in probability. The proof of the
lemma follows. ut
Lemma 4 guarantees that Pr(EN

k |XN ) ≤ αk will eventually be satisfied when N is large enough.
In Section 2.1, we derived the posterior distributions for the parameters of Q∞

k . These distribu-
tions can be plugged in (2.27) to evaluate the Bayes risk. However, the exact evaluation of the prob-
ability is hard to compute, especially involving the component κmdc‖g∞k |XN‖min

[
‖g∞

k |XN‖
κQh

,∆k

]
.

Instead we use the Monte Carlo method to approximate the probability value: we generate M ran-
dom samples from the posterior distribution of g∞k |XN . Based on the samples, we check the event
of ‘sufficient reduction’ and make a count on the failed cases: Mfail. The probability value in (2.27)
is then approximated by

Pr(EN
k |XN ) ≈ Mfail

M
. (2.28)

The approximation becomes accurate as M increases. Normally, we use a large value M = 500.
Note that this does not require any new evaluations of the sample response function, but instead
samples from the inferred Bayesian distribution g∞k |XN . We actually enforce a stricter accuracy on
the fraction value for reasons that will be described below:

Mfail

M
≤ αk

2
. (2.29)

A complete description of our Bayesian VNSP scheme follows:

The VNSP scheme At the kth iteration of the algorithm, start with N = Nk−1.
Loop
1. Evaluate N replications at each point yj in the interpolation set Ik, to construct the data matrix

XN . Note: data from previous iterations can be included.
2. Construct the quadratic model QN

k and solve the subproblem for xk + s∗,N .
3. Update the value of κQh by (2.21).
4. Compute the Bayesian posterior distributions for the parameters of Q∞

k as described above.
5. Validate the Monte Carlo estimate (2.29). If the criterion is satisfied, then stop with Nk = N ;

otherwise increase N , and repeat the loop.
Since a smaller Nk is preferable, a practical approach is to sequentially allocate computing

resources: starting with N = Nk−1, we decide to increase N or keep N by checking (2.29). If
rejected, N is updated as

N := N · β,

where β is an incremental factor. Otherwise, the current N is used as the sample number Nk at
iteration k.

Two approximation steps (2.26) and (2.28) are employed in the computation. The following
assumptions formally guarantee that risk Pr(EN

k ) is eventually approximated by the Monte Carlo
fraction value Mfail/M .

11



Assumption 4 The difference between the risk Pr(EN
k ) and the Monte Carlo estimation value is

bounded by αk

2 ∣∣∣∣Pr(EN
k ) − Mfail

M

∣∣∣∣ ≤ αk

2
.

When M → ∞, Mfail

M approaches the Bayes risk Pr(EN
k |XN ). The assumption essentially guarantees

the Bayes risk Pr(EN
k |XN ) is a good approximation of the real risk Pr(EN

k ). Under this assumption
and the criterion (2.29), it implies

|Pr(EN
k )| ≤

∣∣∣∣Pr(EN
k ) − Mfail

M

∣∣∣∣ +
∣∣∣∣Mfail

M

∣∣∣∣ ≤ αk

2
+

αk

2
= αk,

which guarantees the accuracy of the ‘sufficient reduction’ criterion (2.25). The algorithm enforces
(2.29) and the convergence proof can thus use the criterion (2.25).

Assumption 5 The sequence of significance level values {αk} satisfy the property:

∞∑
k=1

αk < ∞. (2.30)

The assumption necessitates a stricter accuracy to be satisfied as the algorithm proceeds, which
allows the use of the Borel-Cantelli Lemma in probability theory.

Lemma 5 ((1st) Borel-Cantelli Lemma) Let {EN
k } be a sequence of events, and the sum of the

probabilities of EN
k is finite, then the probability of infinitely many EN

k occur is 0.

Proof See the book by Durrett [10]. ut

Consider the event EN
k to be the failure to satisfy the ‘sufficient reduction’ criterion (2.24). Given

the error rate (2.25) and Assumption 5, the Borel-Cantelli Lemma provides that the events EN
k only

happen finitely many times w.p.1. Therefore, if we define K as the first successful index after all
failed instances, then (2.24) is satisfied w.p.1 for all iterations k ≥ K. We will use this without
reference in the sequel.

Finally, we will require the following uniformity assumptions to be valid in the convergence proof.

Assumption 6 Given two points x1, x2 ∈ Rn, the sample response difference of the two points is
F (x1, ξ(ω))−F (x2, ξ(ω)). We assume that the 2nd and 4th central moments of the sample response
difference are uniformly bounded. For simplicity, we denote the ith central moment of a random
variable Z as ϕi(Z), that is

ϕi(Z) = E[(Z − EZ)i].

Then the assumptions are, for any x1, x2 ∈ Rn,

ϕ2(F (x1, ξ(ω)) − F (x2, ξ(ω))) ≤ κσ2 (2.31)
ϕ4(F (x1, ξ(ω)) − F (x2, ξ(ω))) ≤ κσ4 (2.32)

for some constants κσ2 and κσ4 .

Note that difference of the underlying function is the mean of the sample response difference

f(x1) − f(x2) = E[F (x1, ξ(ω)) − F (x2, ξ(ω))].

The assumptions in fact constrain the gap between the change of the sample response function
and the change of the underlying function. The 4th central moment exists for almost all statistical
distributions. In Assumption 6, we consider two points x1 and x2, because we would like to constrain
their correlations (covariance, high order covariance) as well.

12



Moreover, for the averaged sample function f̂N (x),

ϕ4

(
f̂N (x1, ξ(ω)) − f̂N (x2, ξ(ω))

)
=

1
N3

ϕ4 (F (x1, ξ(ω)) − F (x2, ξ(ω))) +
3(N − 1)

N3
ϕ2

2 (F (x1, ξ(ω)) − F (x2, ξ(ω)))

=
1

N2

(
1
N

ϕ4 (F (x1, ξ(ω)) − F (x2, ξ(ω))) +
3(N − 1)

N
ϕ2

2(F (x1, ξ(ω)) − F (x2, ξ(ω)))
)

≤ 1
N2

(
κσ4 + 3κ2

σ2

)
. (2.33)

Therefore, Assumption 6 implies that the 4th central moment of the change of averaged sample
function decreases quadratically fast with the sample number N .

3 Convergence Analysis of the Algorithm

Convergence analysis of the general model-based approach is given by Conn, Scheinberg, and Toint in
[5]. Since the model-based approach is in the trust region framework, their proof of global convergence
follows general ideas for the proof of the standard trust region method [22,24].

We start by showing that there is at least one stationary accumulation point. The stationary
point of a function is a point at which the gradient of the function is zero. The idea is to first show
that the gradient g∞k , driven by the ‘sufficient reduction’ criterion (2.24), converges to zero, and then
prove that ‖∇f(xk)‖ converges to zero as well.

Lemma 6 Assume Assumptions 1–6 hold. If ‖g∞k ‖ ≥ εg for all k and for some constant εg > 0,
then there exists a constant ε∆ > 0 such that w.p.1,

∆k > ε∆, for all k ≥ K. (3.1)

Proof Given the condition ‖g∞k ‖ ≥ εg, we will show that the corresponding ∆k cannot become too
small, therefore, we can derive the constant ε∆.

Let us evaluate the following term associated with the agreement level

|ρNk

k − 1| =

∣∣∣∣∣ f̂Nk(xk + s∗,Nk) − QNk

k (xk + s∗,Nk)
QNk

k (xk) − QNk

k (xk + s∗,Nk)

∣∣∣∣∣ . (3.2)

By Lemma 1, we compute the error bound for the numerator∣∣∣f̂Nk(xk + s∗,Nk) − QNk

k (xk + s∗,Nk)
∣∣∣ ≤ κem max[∆2

k,∆3
k]. (3.3)

Note that when ∆k is small enough, satisfying the condition

∆k ≤ min
[
1,

κmdcεg(1 − η1)
max[κQh, κem]

]
, (3.4)

according to the facts η1, κmdc ∈ (0, 1) and ‖g∞k ‖ ≥ εg, we deduce

∆k ≤ ‖g∞k ‖
κQh

. (3.5)

For the denominator in (3.2), our ‘sufficient reduction’ criterion (2.24) provides a lower bound for
QNk

k (xk) − QNk

k (xk + s∗,Nk). When k ≥ K the inequality holds w.p.1

QNk

k (xk) − QNk

k (xk + s∗,Nk) ≥ κmdc‖g∞k ‖min
[
‖g∞k ‖
κQh

, ∆k

]
= κmdc‖g∞k ‖∆k. (3.6)
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Combining (3.2), (3.3), (3.4) and (3.6), the following inequality holds w.p.1 for iteration k ≥ K

|ρNk

k − 1| =

∣∣∣∣∣ f̂Nk(xk + s∗,Nk) − QNk

k (xk + s∗,Nk)
QNk

k (xk) − QNk

k (xk + s∗,Nk)

∣∣∣∣∣
≤ κem max[∆2

k,∆3
k]

κmdc‖g∞k ‖∆k

≤ κem∆k

κmdc‖g∞k ‖
≤ 1 − η1. (3.7)

The criterion ρNk

k ≥ η1 implies the identification of a good agreement between the model QNk

k

and the function f̂Nk , which will induce an increase of the trust region radius ∆k+1 ≥ ∆k (2.22).
We thus have

ρNk

k ≥ η1 valid w.p.1 for all k ≥ K.

According to (3.4), it is equivalent to say that ∆k can shrink only when

∆k ≥ min
[
1,

κmdcεg(1 − η1)
max[κQh, κem]

]
.

We therefore derive a lower bound for ∆k:

∆k > ε∆ = γ0 min
[
1,

κmdcεg(1 − η1)
max[κQh, κem]

]
, for k ≥ K. (3.8)

ut

Theorem 1 Assume Assumptions 1–6 hold. Then, w.p.1

lim inf
k→∞

‖g∞k ‖ = 0. (3.9)

Proof We prove the statement (3.9) by contradiction. Suppose there is εg > 0 such that

‖g∞k ‖ ≥ εg. (3.10)

By Lemma 6, we have w.p.1, ∆k > ε∆ for k ≥ K.
We first show there exists only finitely many successful iterations. If not, suppose we have in-

finitely many successful iterations. At each successful iteration k ≥ K, by (2.18), (2.24), (3.10) and
∆k > ε∆, the inequality

f̂Nk(xk) − f̂Nk(xk+1) ≥ η0

[
QNk

k (xk) − QNk

k (xk + s∗,Nk)
]

≥ η0κmdcεg min
[

εg

κQh
, ε∆

]
(3.11)

holds w.p.1.
We will discuss two situations here: (a) when the limit of the sequence limk→∞ Nk = N∞ is

a finite number, and (b) when N∞ is infinite. Both situations are possible in our algorithm. For
simplicity, we denote S as the index set of successful iterations and define

εd := η0κmdcεg min
[

εg

κQh
, ε∆

]
,

the positive reduction in right hand side of (3.11).
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Situation (a): If N∞ < ∞, then there exists an index K̃ ≥ K such that Nk = N∞ for k ≥ K̃. Since
{f̂N∞(xk)| k ≥ K̃} is monotonically decreasing

f̂N∞(xK̃) − f̂N∞(xK̂+1) ≥
∑

k≥K̃,k≤K̂,
k∈S

f̂N∞(xk) − f̂N∞(xk+1)

≥ t(K̂)εd, (3.12)

where K̂ is a large index in S and t(K̂) is a count number of indexes in the summation term. Since
f̂N∞ is bounded below (Assumption 2), we know that f̂N∞(xK̃) − f̂N∞(xK̂+1) is a finite value.
However, the right hand side goes to infinity because there are infinitely many indexes in S w.p.1
(t(K̂) → ∞, as K̂ → ∞ ). This induces a contradiction, therefore, there are only a finite number of
successful iterations.

Situation (b): For this situation, N∞ = ∞. Let us define a specific subsequence of indexes {kj′ | kj′ ≥
K} (see Figure 4), indicating where there is a jump in Nk, i.e., a truncated part of subsequence is

· · · < Nkj′ = Nkj′+1 = · · · = Nkj′+1−1 < Nkj′+1
= · · · .

Let S ′ be a subset of {kj′}, including kj′ if there is at least one successful iteration in {kj′ , . . . , kj′+1 − 1}.

Fig. 4 Illustration of the subsequence {kj′}

This implies

xkj′+1

{
6= xkj′ , for kj′ ∈ S ′;
= xkj′ (unchanged) , for kj′ /∈ S ′.

For kj′ ∈ S ′, sum the inequality (3.11) for k ∈ {Nkj′ , . . . , Nkj′+1−1} to derive

f̂
Nk

j′ (xkj′ ) − f̂
Nk

j′ (xkj′+1
) ≥

∑
k≥kj′ ,k≤kj′+1−1

k∈S′

f̂
Nk

j′ (xk) − f̂
Nk

j′ (xk+1)

≥ εd. (3.13)

We want to quantify the difference between f̂
Nk

j′ (xkj′ ) − f̂
Nk

j′ (xkj′+1) and f(xkj′ ) − f(xkj′+1
).

The idea behind this is that moving from xkj′ to xkj′+1
, the function f̂

Nk
j′ decreases, and so does

the underlying function f . Since infinitely many decrement steps for f are impossible, we derive a
contradiction.
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Define the event Êkj′ as the occurrence of f̂
Nk

j′ (xkj′ ) − f̂
Nk

j′ (xkj′+1
) ≥ εd while f(xkj′ ) −

f(xkj′+1
) ≤ εd

2 . The probability of event

Pr
(
Êkj′

)
≤ Pr

((
f̂

Nk
j′ (xkj′ ) − f̂

Nk
j′ (xkj′+1

)
)
−

(
f(xkj′ ) − f(xkj′+1

)
)
≥ εd

2

)
≤ Pr

(∣∣∣(f̂
Nk

j′ (xkj′ ) − f̂
Nk

j′ (xkj′+1
)
)
−

(
f(xkj′ ) − f(xkj′+1

)
)∣∣∣ ≥ εd

2

)
= Pr

(((
f̂

Nk
j′ (xkj′ ) − f̂

Nk
j′ (xkj′+1

)
)
−

(
f(xkj′ ) − f(xkj′+1

)
))4

≥
(εd

2

)4
)

≤ 16
ε4d

· E
[(

f̂
Nk

j′ (xkj′ ) − f̂
Nk

j′ (xkj′+1
)
)
−

(
f(xkj′ ) − f(xkj′+1

)
)]4

=
16
ε4d

· ϕ4

(
f̂

Nk
j′ (xkj′ ) − f̂

Nk
j′ (xkj′+1

)
)

≤
16

(
κσ4 + 3κ2

σ2

)
ε4d(Nkj′ )

2
.

The third inequality is due to Markov’s inequality [10]. The random quantity f̂
Nk

j′ (xkj′ )−f̂
Nk

j′ (xkj′+1
)

has mean value f(xkj′ ) − f(xkj′+1
). The last inequality is due to the implication of Assumption 6,

see (2.33).
The result implies that probability of the event Êk decreases quadratically fast with k. Since the

sum of the probability values is finite

∞∑
j′=1

kj′∈S′

Pr
(
Êkj′

)
≤

∞∑
j′=1

kj′∈S′

16
(
κσ4 + 3κ2

σ2

)
ε4d(Nkj′ )

2
< ∞,

applying the Borel-Cantelli Lemma again, the event Êkj′ occurs only finitely many times w.p.1.
Thus, there exists an index K̄, such that

f(xkj′ ) − f(xkj′+1
) ≥ εd

2
, for all {kj′ |kj′ ≥ K̄, kj′ ∈ S ′} w.p.1.

Playing the same trick as before, by summing over all kj′ ≥ K̄, we derive that w.p.1

f(xK̄) − f(xK̂+1) ≥
∑

kj′≥K̄,kj′≤K̂

kj′∈S′

f(xkj′ ) − f(xkj′+1)

≥ t(K̂)
εd

2
. (3.14)

The left hand side is a finite value, but the right hand side goes to infinity. This contradiction also
shows that the number of successful iterations is finite.

Combining the two situations above, we must have infinitely many unsuccessful iterations when
k is sufficiently large. As a consequence, the trust region radius ∆k decreases to zero

lim
k→∞

∆k = 0,

which contradicts the statement that ∆k is bounded below (3.8). Thus (3.10) is false, and the theorem
is proved. ut
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Theorem 2 Assume Assumptions 1–6 hold. If

lim inf
j→∞

‖g∞kj
‖ = 0 w.p.1 (3.15)

holds for a subsequence {kj}, then we also have

lim inf
j→∞

‖∇f(xkj )‖ = 0 w.p.1. (3.16)

Proof Due to the fact limj→ ∆kj
= 0, Lemma 1 guarantees that the difference between ‖g∞kj

‖ and
‖∇f(xkj )‖ is small. Thus the assertion (3.16) follows. The details of the proof refer to Theorem 11
in [5]. ut

Theorem 3 Assume Assumptions 1–6 hold. Every limit point x∗ of the sequence {xk} is stationary.

Proof The procedure of proof is essentially the same as given for Theorem 12 in [5]. However, we
use the ‘sufficient reduction’ inequalities (3.12) when N∞ is finite and (3.14) when N∞ is infinite.
ut

4 Numerical Results

We apply the new UOBYQA algorithm implementing the VNSP scheme to several numerical exam-
ples. The noisy test functions are altered from deterministic functions with artificial randomness.

The first numerical function we employed was the well-known extended Rosenbrock function.
The random term was added only to the first component of the input variable. Define

x̂(x, ξ(ω)) := (x(1)ξ(ω), x(2), . . . , x(n))

and the corresponding function becomes

F (x, ξ(ω)) =
n−1∑
i=1

100(x̂(i+1) − x̂2
(i))

2 + (x̂(i) − 1)2. (4.1)

We assume ξ(ω) is a normal variable centered at 1:

ξ(ω) ∼ N(1, σ2).

As a general setting, the initial and end trust region radius ∆0, ∆end were set to 2 and 1.0e− 5,
respectively. Implementing the algorithm required a starting value N0 = 3, which was used to
estimate the initial sample mean and sample covariance matrix. We believe such a value is the
minimum required for reasonable estimates. Larger values of N0 would in most cases lead to wasted
evaluations. M = 500 (see (2.28)) trials samples were generated to evaluate the Bayes probability
(2.27) in the VNSP procedure. To satisfy Assumption 5, the sequence {αk} was pre-defined as

αk = 0.5 × (0.98)k.

Table 1 presents the details about a single-run of the new algorithm on the two-dimensional
Rosenbrock function with σ2 = 0.01. The starting point was chosen to be (-1,1.2), and the maximum
number of function evaluations was 10000. We recorded the iteration number k when there was a
change in Nk. For example, Nk remained at 3 in iterations 1–19, and Nk changed to 4 at iteration 20.
Since in the first 19 iterations, the averaged sample function was f̂3, all the steps were taken regarding
f̂3 as the objective function. Therefore, it was observed that the iterates xk moved toward the solution
x∗,3 of the averaged sample problem (1.3) with N = 3. In Table 2 we present the corresponding
sample-path solution of the optimization problem (1.3). For example, x∗,3 = (0.5415, 0.2778). Note
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Table 1 The performance of the new algorithm for the noisy Rosenbrock function, with n = 2 and σ2 = 0.01.

Iteration k Nk FN xk f̄Nk (xk) ∆k

0 3 3 (-1.0000,1.2000) 11.7019 2.0
19 3 81 (0.5002,0.2449) 0.3616 0.1
20 4 91 (0.5002,0.2449) 0.4904 0.05
21 5 102 (0.5208,0.2904) 0.4944 0.02
22 22 226 (0.5082,0.2864) 0.4018 0.02
23 22 248 (0.5082,0.2864) 0.4018 0.02
24 30 326 (0.5082,0.2864) 0.5018 0.02
29 30 476 (0.4183,0.1862) 0.4447 0.04
30 113 1087 (0.4328,0.1939) 0.4290 0.02
31 113 1200 (0.4328,0.1939) 0.4290 0.02
32 221 1848 (0.4328,0.1939) 0.4437 0.02
33 604 4750 (0.4328,0.1939) 0.4601 0.01
35 604 5958 (0.4276,0.1837) 0.4569 0.0125
36 845 8249 (0.4197,0.1774) 0.4556 0.0101
37 1183 10277 (0.4172,0.1760) 0.4616 0.0101

that, in order to derive the solution to f in the two dimensional problem, the noisy Rosenbrock
function was rearranged as

f(x) = E
[
100(x̂(2) − x̂2

(1))
2 + (x̂(1) − 1)2

]
= 100x2

(2) + 1 − 2x(1)E[ξ] + (−200x(2)x
2
(1) + x2

(1))E[ξ2] + 100x4
(1)E[ξ4].

By plugging the values E[ξ] = 1, E[ξ2] = 1.01, and E[ξ4] = 1.0603, we obtained the solution
x∗,∞ = (0.4162, 0.1750), which was different from the deterministic Rosenbrock solution (1, 1). For
different Nk, the averaged function f̂Nk might vary greatly. In Table 1, we observe that x19 = x20 =
(0.5002, 0.2449). The value of f̂N19(x19) is 0.3616, while the value of f̂N20(x20) is 0.4904. It shows
that the algorithm actually worked on objective functions with increasing accuracy.

Table 2 Averaged sample-path solution with different sample number N

N x∗,N f̂Nk(x∗,N )
3 (0.5415,0.2778) 0.3499
4 (0.4302,0.1922) 0.4412
5 (0.4218,0.1936) 0.4395
22 (0.4695,0.2380) 0.3892
30 (0.4222,0.1896) 0.4446
113 (0.4423,0.2027) 0.4286
221 (0.4331,0.1910) 0.4427
604 (0.4226,0.1798) 0.4567
845 (0.4236,0.1807) 0.4556
1183 (0.4174,0.1761) 0.4615
∞ (0.4162,0.1750) 0.4632

As shown in Table 1, the algorithm used a small Nk to generate new iterates in the earlier
iterations. Only 476 function evaluations were applied for the first 29 iterations. This implies that
when noisy effects were small compared to the large change of function values, the basic operation of
the method was unchanged and Nk = N0 samples were used. As the algorithm proceeded, the demand
for accuracy increased, therefore, Nk increased as well as the total number of function evaluations.
We obtained very good solutions. At the end of the algorithm, we generated a solution x37 =
(0.4172, 0.1760), which is close to the averaged sample-path solution x∗,N=1183 = (0.4174, 0.1761)
and is better than the solution x∗,N=845 = (0.4236, 0.1807). In a standard sample-path optimization
method, assuming that there are around 40 iterations in the algorithm, we need 845 × 40 = 33800
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function evaluations for the solution x∗,N=845 and 1183×40 = 43720 for the solution x∗,N=1183. Our
algorithm indeed saved a significant amount of function operations.

To study the changes of Nk, in Figure 5, we plot Nk against the iteration number for two problems.
One is a high volatility case with σ2 = 1 and the other is a low volatility case with σ2 = 0.01. In
both problems, Nk was 3 for the first 20 iterations, when the noise is not the dominating factor. In
the later iterations, the noise became significant and we observe that the demand for Nk increased
faster for the high volatility case. If we restricted the total function evaluations to be 10000, the
high volatility case resulted in a early termination at the 34th iteration.
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Fig. 5 Compare changes of Nk with different levels of noise

We applied the algorithm to both 2 and 10 dimensional problems. Increasing the dimension
significantly increased computational burden. The problem with dimension n = 10 is already very
hard to tackle. Even in the deterministic case, the standard UOBYQA requires around 1400 iterations
to terminate at ∆end = 0.0001. In Table 3, we record a summary of the algorithm applied to the
Rosenbrock function with different dimensions and noise levels. For comparisons, we include the
result of the standard sample-path methods with fixed numbers of samples: 10, 100, and 1000. The
statistical results are based on 10 replications of the algorithm. The variance of the error is small,
showing that the algorithm was generally stable. For n = 10 and σ2 = 1, we notice a big mean
error 2.6 and a relatively small variance of error 0.10. This is due to the earlier termination of the
algorithm when σ2 is large (we used a limit of 20000 function evaluations in this case). There are
two reasons why the standard sample-path methods yield relatively larger errors. 1) Methods SP(10)
and SP(100) do not provide accurate averaged sample functions f̂N . 2) For a large sample number
N , the iteration number of the algorithm is limited. For example, we can expect SP(100) is limited
to 200 iterations and SP(1000) is limited to 20 iterations. Increasing the total number of function
evaluations can significantly improve the performance of the sample path optimization methods. For
example, if we allow 2,000,000 total function evaluations for the 10 dimensional case and the noise
level σ2 = 1, the mean error of SP(100) and SP(1000) are 1.6, 7.5, respectively. The VSNP method
performs better than this.
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Table 3 Statistical summary

VNSP SP(10) SP(100) SP(1000)
n Noise

level σ2
Mean er-
ror

Variance of
error

Mean er-
ror

Mean er-
ror

Mean er-
ror

2 0.01 1.1e-5 1.2e-5 0.035 0.0045 7.9e-5
2 0.1 8.9e-5 3.3e-5 0.079 0.0067 4.2e-4
2 1 1.1e-4 8.2e-5 0.098 0.0088 8.9e-4
10 0.01 0.054 0.067 0.44 28 120
10 0.1 0.087 0.060 2.1 44 129
10 1 2.6 0.10 14 32 145

For another test example, we refer back to the toy example in Section 1. The objective function
is only affected by ‘white noise’

F (x, ξ(ω)) = φ(x) + ξ(ω).

We will show Nk is unchanged for every iteration, that is, N1 = N2 = · · · = N∞. At iteration k, the
function outputs at points yj in Ik are entirely correlated. As a result, the sample covariance matrix
Σ̂̂Σ̂Σ (2.8) is a rank-one matrix, whose elements are all identical Σ̂̂Σ̂Σ(i, j) = a, i, j = 1, 2, . . . , L, where
a = var[(ξ1, . . . , ξNk

)]. Thus, the matrix can be decomposed as

Σ̂̂Σ̂Σ = 111 · a · 111T . (4.2)

Plug (4.2) into (2.15), we obtain the posterior covariance of g∞k

cov(g∞k |XN ) = (ggg · 111)T · a · (ggg · 111) = (000)T · a · 000 = 000L×L,

which implies g∞k is not random and g∞k = gNk

k . As a consequence, in the VNSP scheme, the
mechanism will not increase Nk because the criterion (2.24) is always satisfied.

The fact ggg ·111 =
∑L

j=1 gj = 000 is a property of Lagrange functions. The proof is simple - the sum of
Lagrange functions

∑L
j=1 lj(x) is the unique quadratic interpolant of a constant function ĝ(x) = 1

at the points yj , because
∑L

j′=1 lj′(yj) = 1 = ĝ(yj), j = 1, . . . , L. Therefore, the gradient of the
interpolant

∑L
j=1 gj = 000.

In practice, the behavior of the toy example occurs rarely. We present it here to show that our
algorithm indeed checks the uncertainty of each iterate xk, but not that of objective value f̂Nk(xk).

5 Conclusions

This paper proposes and analyzes a variable number sample-path scheme for optimization of noisy
functions. The VNSP scheme applies analytical Bayesian inference to determine an appropriate
number of samples Nk to use in each iteration. For the purpose of convergence, we only allow
Nk to be non-decreasing. As the iterations progress, the algorithm automatically increases Nk and
thus adaptively produces more accurate objective function evaluations. The key idea of choosing an
appropriate Nk in the VNSP scheme is to test the Bayes risk of satisfying a ‘sufficient reduction’
criterion. Under appropriate assumptions, the global convergence of the algorithm is guaranteed:

lim
k→∞

xk = x∗,N∞ = x∗,∞.

UOBYQA implements the Moré and Sorensen method [23] to handle the trust region subproblem.
Extending our algorithm to constrained optimization problems requires corresponding tools to solve
a constrained subproblem

min
x∈S

Qk(x), s.t. ‖x − xk‖ ≤ ∆k, x ∈ S,

where S is a feasible set for x. An efficient derivative free algorithm for obtaining a global solution
to the problem is not yet available. On the other hand, the techniques outlined here have potential

20



even for constrained optimization problems, because they are couched in standard trust region theory
which has become prevalent in algorithm design for such problems.

The VNSP scheme can be generalized to other model-based algorithms, such as the WEDGE
algorithm. Our modifications are not intended to be applied to linear model based algorithms, since
linear models are more sensitive to noise. In a stochastic situation, quadratic models are robust
against noise and preferable to use. Some algorithms may use less than L = 1

2 (n + 1)(n + 2) initial
points to construct quadratic models. For example, NEWUOA uses 2n + 1 points for the initial
model and updates the models while minimizing the change in Frobenius norm of the curvature.
The VNSP scheme should be altered to accommodate this different approach, but this will require
further analysis.

The new algorithm has broad practical applications. For example, we have successfully applied
it to seek the optimal design of an interstitial coaxial antenna, which is used in microwave ablation
treatment for hepatic cancer [29]. Since the permittivity and electric conductivity vary among pa-
tients, the optimal design is required to perform well in the averaged sense. Further applications will
be addressed in future work.
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14. G. Gürkan, A. Yonca Özge, and S. M. Robinson. Sample-path solution of stochastic variational inequal-
ities, with applications to option pricing. In D. T. Brunner J. M. Charnes, D. J. Morrice and J. J. Swain,
editors, Proceedings of the 1996 Winter Simulation Conference, pages 337–344, 1996.
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