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Simulation-based optimization problem

• Computer simulations are used as substitute to evaluate
complex real systems.

• Simulations have been used efficiently in supply chain
management, engineering design, medical treatment, and
many other fields.

• The goal: Optimization finds the best values of the decision
variables (design parameters or controls) that minimize some
performance measure of the simulation.
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A simulation example: Hypermutation rate

• Estimate mutation rate by maximizing a likelihood function

• The objective function is highly volatile. For µ = 0.5:
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What makes a simulation response function different?

The objective function

• typically does not have a closed form, thus cannot provide
gradient or hessian information.

• is normally computationally expensive.

• is affected by uncertainties in simulations.

• typically does not have an interface to optimization routines.
Therefore, the optimization routines can only utilize the
existing simulation results (offline optimization).
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A general problem formulation

We formulate the simulation optimization problem as

min
x

F (x) = E [f (x , ω(x))]. (1)

Comments:

• This is a stochastic optimization problem.

• The underlying function F (·) is unknown and to be estimated.

• Instead of expectation, other formulations such as minimum or
maximum of f (x , ω(x)) are acceptable in different contexts.

• For simplicity, we assume

f (x , ω(x)) = F (x) + ω(x).

• ω(x) are independently distributed.



Introduction A Phase I Method: Classifier A Phase II Technique: Noisy UOBYQA

Design surrogate models

• Surrogate model approximates F with a mathematical model
A.

• The goal: Optimization procedures are executed over the
inexpensive model A, instead of the expensive cost function.

• Determine a surrogate model by minimizing sum of difference
errors:

min
∑

xi∈S Θ
(

1
Ji

∑Ji
j=1 f (xi , ωj)− A(xi )

)
s.t. A(·) ∈ A

(2)

Here Θ(·) is a merit function, which is typically chosen as an
l2-norm, and the set A is a class of tunable functional forms.

• The functional forms A should be carefully specified.
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Model error and random error

The total error comes from two sources:

• Model error is due to an inappropriate choice of functional
forms A to fit the data.

• Random error is directly induced by the uncertainty ω in the
sample response.

Illustrations of global view and local view:
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Two-phase framework

1. Phase I is a global exploration step. The algorithm
explores the entire domain and proceeds to determine
potentially good subregions for future investigation.

2. Phase II is a local exploitation step. Local optimization
algorithms are applied to determine the final solution.

• Different phases serve different purposes.

• Algorithms are specially designed in either phase.
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Phase I offline method: Classifier

Instead of approximating F , a classifier works as a surrogate
function to the indicator function

I (x) =

{
1, for x in a promising subregion;
0, otherwise.

Why do we use classifiers?

• In Phase I, we are really concerned about function I (x).

• Use a much smaller amount of samples.

• Works in high dimensional cases.
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Phase I offline method: Classifier

The process of training and evaluating classifiers:

(Left figure) For the training data, samples in the level set L(c) are
classified as positive and the others are classified as negative. The
solid circle represents the level set L(c). (Right figure)
Classification is performed on the new data, which are evenly
distributed on a mesh grid. Four points are predicted as positive
and rest are negative. The dotted circle represents an estimated
boundary for the level set L(c).
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Phase II method

• The goal: The Phase II algorithm solves the optimization
problem in the subregion, in which the objective function is
subject to relatively large noise.

• A typical method is to fit a local quadratic model, either by
interpolation or regression.

• Modify existing deterministic algorithm. General approach:
Estimate the underlying function by averaging multiple
replications.

• Potentially difficulty:
efficiency of algorithm VS number of simulation runs
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The Noisy UOBYQA algorithm (Powell)
The UOBYQA algorithm is based on a trust region method. It
constructs a series of local quadratic approximation models of the
underlying function f . Each quadratic model is constructed by
interpolating a set of points.

G. Deng, M. C. Ferris. Adaptation of the UOBYQA algorithm for
noisy functions. In Proceedings of the 2006 Winter Simulation
Conference, 2006
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Where is the problematic parts in the deterministic
algorithm?

...
for iteration k = 1, 2, · · ·
(a) Construct a quadratic function
Q(x) = f (xk) + gT

Q (x − xk) + 1
2(x − xk)TGQ(x − xk).

(b) Solve the trust region subproblem:

sk = arg mins Q(xk + s)
s.t. ‖s‖2 ≤ ∆

(Reduce the quadratic model variance)
...
(e) Update a new iterate xk+1 by comparing function values f (xk)
and f (xk + s∗k ). (Use pairwise comparisons)
...
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How to stabilize the quadratic model?

• Given an interpolation set I = {y1, y2, · · · , yL}. Quadratic
interpolation model is a linear combination of Lagrange
functions:

Q(x) =
L∑

j=1

f (y j)lj(x), x ∈ Rn, (3)

• Each piece lj(x) is a quadratic polynomial, satisfying

lj(y
i ) = δij , i = 1, 2, · · · , L.

• The coefficients of lj are uniquely determined, regardless of
the random objective function.
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Bayesian estimation of coefficients cQ , gQ , GQ

In Bayesian approach, the mean of function output µ(y j) is
considered as a random variable:
Normal posterior distributions:

µ(y j)|X ∼ N(µ̄(y j), σ̂2(y j)/rj) (4)

Thus the coefficients of the quadratic model are estimated as:

gQ |X =
∑L

j=1(µ(y j)|X )gj ,

GQ |X =
∑L

j=1(µ(y j)|X )Gj .
(5)

• gj ,Gj are coefficients of Lagrange functions lj .

• gj ,Gj are determined by points y j .
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Bayesian validation of solutions

Trial solutions are generated within a trust region. The standard
deviation of the solutions are constrained.

n
max
j=1

std([s∗(1)(j), s∗(2)(j), · · · , s∗(Nt)(j)]) ≤ β∆k . (6)
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Selecting the next iterate and the new termination criterion

• Compare two points xk and xk + s∗k using pairwise
comparison. The new iterate is set as the better point. (refer
to previous slide)

• New termination criterion to stop the algorithm appropriately.
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How to select the best system?

Selecting the best system is equivalent to solving a discrete
optimization problem:

arg min
i

E (Xi ), (7)

Existing approaches:

• Indifference-zone ranking and selection: Find the best solution
within δ.

• The Bayesian approach uses posterior distributions to
estimate the probability of correct selection (PCS).
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Calculating PCS via posterior distributions

• Normal posterior distribution:

µi |X ∼ N(x̄i , σ̂
2
i /ri ). (8)

• Pairwise comparison:

PCS = Pr(µ1 ≤ µ2) ∼ Pr(µ1 ≤ µ2|X ) = Pr(µ1|X−µ2|X ≤ 0).
(9)

• Multiple comparisons (Bonferroni inequality):

PCS = Pr(µb − µi ≤ 0, i = {1, 2, · · · ,K} \ {b})
= 1−

∑K
i=1,i 6=b Pr(µb − µi > 0)

(10)

• Benefit of Bayesian approaches:
• Utilize mean and variance information
• Simple and direct to implement
• Without using indifference-zone parameter δ
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New termination criterion

The ‘distance’ between two points is computed via the quadratic
model. It is compared with the separable distance d to test the
separability between the points.
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A numerical test

Table: The Performance of Noisy UOBYQA for the Rosenbrock
Function, with n = 2 and σ2 = 0.01.

Iteration (k) FN F (xk) ∆k

1 1 404 2
20 78 3.56 9.8× 10−1

40 140 0.75 1.2× 10−1

60 580 0.10 4.5× 10−2

80 786 0.0017 5.2× 10−3

X Stops here with the new termination criterion

100 1254 0.0019 2.8× 10−4

120 2003 0.0016 1.1× 10−4

X Stops here with the termination criterion ∆k ≤ 10−4
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