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Simulation-based optimization problem

• Computer simulations are used as substitute to evaluate
complex real systems.

• Simulations are widely applied in engineering design,
manufacturing, supply chain management, medical treatment
and many other fields.

• The goal: Optimization finds the best values of the decision
variables (design parameters or controls) that minimize some
performance measure of the simulation.
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Design a coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile
Finite element models (MultiPhysics v3.2) are used to generate the
electromagnetic (EM) radiation fields in liver given a particular
design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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A general problem formulation

• We formulate the simulation-based optimization problem as

min
x∈S

F (x) = Eω[f (x , ω(x))], (1)

where ω(x) is a random factor arising in the simulation
process.
The sample response function f (x , ω)

• typically does not have a closed form, thus cannot provide
gradient or Hessian information

• is normally computationally expensive
• is affected by uncertain factors in simulation

The underlying objective function F (x) has to be estimated;
for example, by averaging Monte Carlo samples.
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The discrete optimization case

• A fundamental step for continuous optimization algorithm
design.

• For example, test elasticity of a set of balls. Here
S = {1, 2, 3, 4, 5} represents a set of 5 balls.

• Objective: Choose the ball with the largest expected bounce
height F (xi ). f (xi , ωj) corresponds to a single measurement in
an experiment.
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How to select the best system

• First choose the maximum sample mean

arg max
i∈S

µ̄i :=
1

Ni

Ni∑
j=1

f (xi , ωj), (2)

where Ni is the number of experiments.

• Select the best system with high accuracy, while controlling
the total amount of simulation runs.

• Two approaches
• Indifference zone ranking and selection

S.-H. Kim and B. L. Nelson, “Selecting the Best System:
Theory and Methods.”

• Bayesian approach
S. E. Chick, and K. Inoue, “New Two-stage and Sequential
Procedures for Selecting the Best Simulated System.”
H.-C. Chen, C.-H. Chen, and E. Yucesan, “An Asymptotic
Allocation for Simultaneous Simulation Experiments.”
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Bayesian approach

• Denote the mean of the simulation output for each system as

µi = F (xi ) = Eω[f (xi , ω)].

• In Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be
estimated as

µi |X ∼ N(µ̄i , σ̂
2
i /Ni ), (3)

where µ̄i is sample mean and σ̂2
i is sample variance.

• We can derive other types of posterior distributions. The
above Gaussian formulation is easy to manipulate, and is
guaranteed by Central Limit Theorem.
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Posterior distributions facilitate comparison

Select the first ball

Now it is easy to compute the probability of correct selection
(PCS).
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Compute the PCS

• Pairwise comparison

PCS = Pr(µ1 ≥ µ2) ∼ Pr(µ1 ≥ µ2|X ) = Pr(µ1|X−µ2|X ≥ 0).
(4)

• Multiple comparisons (Bonferroni inequality):

PCS = Pr(µb − µi ≥ 0, i = {1, 2, · · · ,K} \ {b})
∼ 1−

∑K
i=1,i 6=b Pr(µb − µi < 0).

(5)
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Summary of the Bayesian approach

• Once the PCS is determined, future work is to choose the
suitable sample number of each system Ni such that the best
system is selected with desired accuracy

PCS ≥ 1− α.

• Issues concerning how to optimally allocate computational
resources.

• Bayesian approach
• utilizes both mean and variance information
• simple and direct to implement
• without using indifference-zone parameter δ
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Unconstrained continuous optimization case

S = Rn

• Basic approach: reduce function uncertainty by averaging
multiple samples per point, which is similar to the discrete
case.

• Potential difficulty:
efficiency of algorithm VS number of simulation runs

• We apply Bayesian approach to determine appropriate number
of samples per point, while simultaneously enhancing the
algorithm efficiency

• Guarantee the global convergence of the algorithm
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Noisy UOBYQA: a noisy extension of the UOBYQA
algorithm

The base derivative free optimization algorithm: The UOBYQA
algorithm (Unconstrained Optimization BY Quadratic
Approximation) is based on a trust region method. It constructs a
series of local quadratic approximation models of the underlying
function.



Adaptation of the UOBYQA Algorithm for Noisy Functions

Quadratic model construction and solve trust region
subproblem

(a) construct a quadratic model via interpolation

Q(x , ω) = f (xk , ω)+gT
Q (ω)(x−xk)+

1

2
(x−xk)TGQ(ω)(x−xk) (6)

The model is unstable since interpolating noisy data
(b) Solve trust region subproblem

sk(ω) = argmins Q(xk + s, ω)
s.t. ‖s‖2 ≤ ∆k

(7)

The solution is thus unstable
(e) Update a new iterate xk+1 by comparing function values f (xk)
and f (xk + s∗k ). Use pairwise comparison
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Why is the quadratic model unstable?
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How to stabilize the quadratic model?

Let I = {y1, y2, . . . , yL} be the interpolation set.

• Quadratic interpolation model is a linear combination of
Lagrange functions:

Q(x , ω) =
L∑

j=1

f (y j , ω)lj(x). (8)

• Each piece lj(x) is a quadratic polynomial, satisfying

lj(y
i ) = δij , i = 1, 2, · · · , L.

• The coefficients of lj are uniquely determined, regardless of
the random objective function.
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Bayesian estimation of coefficients cQ , gQ , GQ

In Bayesian approach, the mean of function output
µ(y j) := Eωf (y j , ω) is considered as a random variable:
Normal posterior distributions:

µ(y j)|X ∼ N(µ̄(y j), σ̂2(y j)/Nj). (9)

Thus the coefficients of the quadratic model are estimated as:

gQ |X =
∑L

j=1(µ(y j)|X )gj ,

GQ |X =
∑L

j=1(µ(y j)|X )Gj .
(10)

• gj ,Gj are coefficients of Lagrange functions lj .

• gj ,Gj are deterministic and determined by points y j .
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Constraining the variance of coefficients

• Generate samples of function values from these (estimated)
distributions.

• Trial solutions are generated within a trust region. The
standard deviation of the solutions are constrained.

n
max
i=1

std([s∗(1)(i), s∗(2)(i), · · · , s∗(M)(i)]) ≤ β∆k . (11)
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Optimally allocating computing resources

Select appropriate Nj for the point y j in the interpolation set
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Computational issues

• Allocation of computational resources is determined by:

std(gQ(i ′))

E[gQ(i ′)]
≤ β, i ′ = 1, · · · , n (12)

std(GQ(i ′, j ′))

E[GQ(i ′, j ′)]
≤ β, i ′, j ′ = 1, · · · , n (13)

• Compare two points xk and xk + s∗k using pairwise
comparison. The new iterate is set as the better point. (refer
to previous slides)

• New termination criterion to stop the algorithm appropriately.
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A numerical test

Table: Noisy UOBYQA for the Rosenbrock function, n = 2 and
σ2 = 0.01.

Iteration (k) FN F (xk) ∆k

1 1 404 2
20 78 3.56 9.8× 10−1

40 140 0.75 1.2× 10−1

60 580 0.10 4.5× 10−2

80 786 0.0017 5.2× 10−3

100 1254 0.0019 2.8× 10−4

120 2003 0.0016 1.1× 10−4

X Stops here with the termination criterion ∆k ≤ 10−4
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Conclusions

• An efficient, derivative free method for optimizing noisy
functions.

• Bayesian techniques applied to balance
efficiency of algorithm VS number of simulation runs

• The underlying ideas are applicable to many other algorithms.
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