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Simulation-based optimization problem

• Computer simulations are used as substitute to evaluate
complex real systems.

• Simulations are widely applied in manufacturing, supply chain
management, medical treatment and many other fields.

• The goal: Optimization finds the best values of the decision
variables (design parameters or controls) that minimize some
performance measure of the simulation.
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Design a coaxial antenna for hepatic tumor ablation
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Simulation of the electromagnetic radiation profile
Finite element models (MultiPhysics v3.2) are used to generate the
electromagnetic (EM) radiation fields in liver given a particular
design

Metric Measure of Goal

Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
S11 Tail reflection of antenna Minimize
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A general problem formulation

• We formulate the simulation-based optimization problem as

min
x∈S

F (x) = Eω[f (x , ω(x))], (1)

where ω(x) is a random factor arising in the simulation
process.
The sample response function f (x , ω)

• Typically does not have a closed form, thus cannot provide
gradient or Hessian information

• Is normally computationally expensive
• Is affected by uncertain factors in simulation

The underlying objective function F (x) has to be estimated.
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The discrete optimization case

• For example, test elasticity of a set of balls. Here
S = {1, 2, 3, 4, 5} represents a set of 5 balls.

• Objective: Choose the ball with the largest expected bounce
height F (xi ). f (xi , ωj) corresponds to a single measurement in
an experiment.
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How to select the best system

• Choose the maximum sample mean

arg max
i∈S

µ̄i :=
1

Ni

Ni∑
j=1

f (xi , ωj), (2)

where Ni is the number of experiments.

• Select the best system with high accuracy, while controlling
the total amount of simulation runs.

• Two approaches
• Ranking and selection

S.-H. Kim and B. L. Nelson, “Selecting the Best System:
Theory and Methods.”

• Bayesian approach
S. E. Chick, and K. Inoue, “New Two-stage and Sequential
Procedures for Selecting the Best Simulated System.”
H.-C. Chen, C.-H. Chen, and E. Yucesan, “An Asymptotic
Allocation for Simultaneous Simulation Experiments.”
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Bayesian approach

• Denote the mean of the simulation output for each system as
µi = F (xi ) = Eω[f (xi , ω)]

• In Bayesian perspective, the means are considered as Gaussian
random variables whose posterior distributions can be
estimated as

µi |X ∼ N(µ̄i , σ̂
2
i /Ni ) (3)

where µ̄i is sample mean and σ̂2
i is sample variance. The

above formulation is one type of posterior distributions.
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Posterior distributions facilitate comparison

Now it is easy to compute the probability of correct selection
(PCS).
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Compute the PCS

• Pairwise comparison

PCS = Pr(µ1 ≥ µ2) ∼ Pr(µ1 ≥ µ2|X ) = Pr(µ1|X−µ2|X ≥ 0).
(4)

• Multiple comparisons (Bonferroni inequality):

PCS = Pr(µb − µi ≥ 0, i = {1, 2, · · · ,K} \ {b})
∼ 1−

∑K
i=1,i 6=b Pr(µb − µi < 0)

. (5)
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Summary of the Bayesian approach

• Once the PCS is determined, future work is to choose the
suitable sample number of each system Ni such that the best
system is selected with desired accuracy

PCS ≥ 1− α.

• Bayesian approach
• Utilizes both mean and variance information
• Simple and direct to implement
• Without using indifference-zone parameter δ
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Unconstrained continuous optimization case

S = Rn

• Basic approach: reduce function uncertainty by averaging
multiple samples per point, which is similar to the discrete
case.

• Potential difficulty:
efficiency of algorithm VS number of simulation runs

• We apply Bayesian approach to determine appropriate number
of samples per point, while simultaneously enhancing the
algorithm efficiency

• Guarantee the global convergence of the algorithm
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A noisy extension of compass search

• Direct search methods do not attempt to make gradient
estimates.

• Compass search is one type of the direct search methods.

• Determine the next iterate by direct comparisons. (Selecting
the best system!)
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A noisy extension of the UOBYQA algorithm

The base derivative free optimization algorithm: The UOBYQA
(Unconstrained Optimization BY Quadratic Approximation)
algorithm is based on a trust region method. It constructs a series
of local quadratic approximation models of the underlying function.
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Quadratic model construction and solve trust region
subproblem

For iteration k = 1, 2, . . .,

• · · ·
• construct a quadratic model via interpolation

Q(x , ω) = f (xk , ω)+gT
Q (ω)(x−xk)+

1

2
(x−xk)TGQ(ω)(x−xk)

(6)
The model is unstable interpolating noisy data

• Solve trust region subproblem

sk(ω) = argmins Q(xk + s, ω)
s.t. ‖s‖2 ≤ ∆k

(7)

The solution is thus unstable

• · · ·
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Why is the quadratic model unstable?
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How to stabilize the quadratic model?

Let I = {y1, y2, . . . , yL} be the interpolation set.

• Quadratic interpolation model is a linear combination of
Lagrange functions:

Q(x , ω) =
L∑

j=1

f (y j , ω)lj(x). (8)

• Each piece lj(x) is a quadratic polynomial, satisfying

lj(y
i ) = δij , i = 1, 2, · · · , L.

• The coefficients of lj are uniquely determined, regardless of
the random objective function.
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Bayesian estimation of coefficients cQ , gQ , GQ

In Bayesian approach, the mean of function output
µ(y j) := Eωf (y j , ω) is considered as a random variable:
Normal posterior distributions:

µ(y j)|X ∼ N(µ̄(y j), σ̂2(y j)/Nj). (9)

Thus the coefficients of the quadratic model are estimated as:

gQ |X =
∑L

j=1(µ(y j)|X )gj ,

GQ |X =
∑L

j=1(µ(y j)|X )Gj .
(10)

• gj ,Gj are coefficients of Lagrange functions lj .

• gj ,Gj are deterministic and determined by points y j .
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Constraining the variance of coefficients

• Trial solutions are generated within a trust region. The
standard deviation of the solutions are constrained.

n
max
i=1

std([s∗(1)(i), s∗(2)(i), · · · , s∗(M)(i)]) ≤ β∆k . (11)
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Other approaches to constrain the variance of coefficients

• Test the sufficient reduction criterion

Pr

(
Qk(xk)− Qk(xk + s∗) ≥ κmdc‖g∞k ‖min

[
‖g∞k ‖
κQh

,∆k

])
≥ 1−α

(12)

• Quantify variance of individual coefficient in Q:

std(gQ(i ′))

E [gQ(i ′)]
≤ β, i ′ = 1, · · · , n (13)

std(GQ(i ′, j ′))

E [GQ(i ′, j ′)]
≤ β, i ′, j ′ = 1, · · · , n (14)
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Optimally allocating computing resources

Select appropriate Nj for the point y j in the interpolation set
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A numerical test

Table: The performance of Noisy UOBYQA for the Rosenbrock function,
with n = 2 and σ2 = 0.01.

Iteration (k) FN F (xk) ∆k

1 1 404 2
20 78 3.56 9.8× 10−1

40 140 0.75 1.2× 10−1

60 580 0.10 4.5× 10−2

80 786 0.0017 5.2× 10−3

100 1254 0.0019 2.8× 10−4

120 2003 0.0016 1.1× 10−4

X Stops here with the termination criterion ∆k ≤ 10−4
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Thank you!
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