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Fractionated Radiation Problem

Background

• Optimal delivery plan

• Deliver ideal dose on the target while avoid the critical organs
and normal tissues.
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Fractionated Radiation Problem

Fractionated radiotherapy (Dynamic problem)

• Treatments usually last several weeks
• Limits burning
• Allows healthy tissue to recover

• Types of day-to-day error: Registration error, internal organ
motion, tumor shrinkage, and non-rigid transformation.

• Current approach: constant policy.

• New option: True dose delivered can be measured during
individual treatments.

• Update treatment plan day-to-day (online policy)
• Compensate for errors
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Fractionated Radiation Problem

Problem overview

• State and state transition:

xk+1(i) = xk(i) + uk(i + ωk), ∀i ∈ T . (1)

• Consider simple shifts in each direction

• Known error distributions

• Accumulation of errors

• Determine dose (uk) to apply to minimize final error
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Fractionated Radiation Problem

Dynamic programming formulation

Minimize the cost-to-go function starting at x0:

J0(x0) = min E
[

N−1∑
k=0

g(xk , xk+1, uk) + JN(xN)

]
s.t. xk+1(i) = xk(i) + uk(i + ωk),

uk ∈ U(xk), k = 0, 1, · · · ,N − 1.

(2)

JN(xN) is final cost function:

JN(XN) =
∑
i∈T

c(i)|xN(i)− T (i)|

g(xk , xk+1, uk) is the immediate cost delivered outside the target:

g(xk , xk+1, uk) =
∑

i+ωk /∈T

c(i + ωk)uk(i + ωk)
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Fractionated Radiation Problem

An iterative formulation

The cost-to-go function at stage k can be formulated as:

Jk(xk) = min
uk∈U(xk )

E [g(xk , xk+1, uk) + Jk+1(xk+1)]

Bellman’s equation!
This is a finite horizon dynamic programming problem.
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Fractionated Radiation Problem

Existing policies

We will compare the following policies:

• Constant policy
uk = T/N

• Reactive policy (Online policy)

uk = max(0,T − xk)/(N − k)

• Modified reactive policy (Online policy)

uk = a ·max(0,T − xk)/(N − k)
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Fractionated Radiation Problem

Why do we use NDP?

• Bellman’s equation

uk(xk) = arg min
uk∈U(xk )

E[g(xk , xk+1, uk) + Jk+1(xk+1)]

s.t. xk+1(i) = xk(i) + uk(i + ωk)
(3)

• Dynamic programming method has difficulty to handle more
than 4 stages, because of dimensionality.

• NDP approximates cost-to-go function Jk(xk) with a
simple-structure function J̃k(xk , rk).

• NDP solves the problem fast.

• NDP obtains sub-optimal solutions.
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Fractionated Radiation Problem

Approximation architectures for J̃(x , r)

• Neural network (Input information are based on feature
extraction fi (x))

• Heuristic mapping: J̃(x , r) = r0 +
∑I

i=1 riHui (x). Hui (x) is
the heuristic cost-to-go applying policy ui .
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Fractionated Radiation Problem

Approximate policy iteration

• Estimate parameters rk .

• xk , J̃(·, rk)
Bellman’s equation−−−−−−−−−−−→ ûk

Generate sample trajectories−−−−−−−−−−−−−−−−→
{x0i , x1i , · · · , xNi}, i = 1, · · · ,M

Evaluate costs−−−−−−−−→ c(xki )

• Solve least squares problem in rk

min
rk

M∑
i=1

∣∣∣J̃k(xki , rk)− c(xki )
∣∣∣2

• Simulation and evaluation steps alternate
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Fractionated Radiation Problem

Computational experiments

• Test a simple one dimensional case and a real problem: head
and neck

• Use 5 candidate policies at each stage

• Test in high and low volatility scenarios

• Use two approximation architectures:

• Neural network: features (fi (xk)) used are average dose,
standard deviation of dose, and curvature of dose distribution

• Heuristic mapping: Heuristic policies used are constant policy,
reactive policy and modified reactive policy with a = 2.
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Fractionated Radiation Problem

Performance of approximate policy iteration
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Fractionated Radiation Problem

Comparison results in the head and neck problem

The figures show results for different policies in the high volatility
case:
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Neural network architecture (left) and HEuristic mapping
architecture (right)

• NDP > Reactive > Constant
• Results of NN and HE are comparably the same, but HE takes

much longer computation time
• Online policies require more computational effort
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Fractionated Radiation Problem

Conclusions

• Online policies with extra information outperform offline
policies

• DP method is inapplicable in practice. NDP reduces
computation time and produces “approximately” optimal
policies

• Implemented on real patient data

• Future work:
• Explore more policies
• Consider different types of error
• Fast computation
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