
Chapter 11: Resource Management

This chapter is about two things – putting away your toys when you're done with them, and bringing
enough of your toys for everyone to share. These are lessons you (hopefully!) learned in kindergarten
which happen to pop up just about everywhere in life. We're supposed to clean up our own messes so that
they don't accumulate and start to interfere with others, and try to avoid hogging things so that others
don't hurt us by trying to take those nice things away from us.

The focus of this chapter is how to play nice with others when it comes to resources. In particular, we will
explore two of C++'s most misunderstood language features, the copy constructor and the assignment
operator. By the time you're done reading this chapter, you should have a much better understanding of
how to manage resources in ways that will keep your programs running and your fellow programmers
happy. The material in this chapter is somewhat dense, but fear not! We'll make sure to go over all of the
important points neatly and methodically.

Consider the STL vector. Internally, vector is backed by a dynamically-allocated array whose size grows
when additional space is needed for more elements. For example, a ten-element vector might store those
elements in an array of size sixteen, increasing the array size if we call push_back seven more times.
Given this description, consider the following code:

 vector<int> one(kNumInts);
 for(size_t k = 0; k < one.size(); ++k)
 one.push_back(int(k));

 vector<int> two = one;

In the first three lines, we fill one with the first kNumInts integers, and in the last line we create a new
vector called two that's a copy of one. How does C++ know how to correctly copy the data from one into
two? It can't simply copy the pointer to the dynamically-allocated array from one into two, since that
would cause one and two to share the same data and changes to one vector would show up in the other.
Somehow C++ is aware that to copy a vector it needs to dynamically allocate a new array of elements,
then copy the elements from the source to the destination. This is not done by magic, but by two special
functions called the copy constructor and the assignment operator, which control how to copy instances of
a particular class.

Before discussing the particulars of the copy constructor and assignment operator, we first need to dissect
exactly how an object can be copied. In order to copy an object, we first have to answer an important
question – where do we put the copy? Do we store it in a new object, or do we reuse an existing object?
These two options are fundamentally different from one another and C++ makes an explicit distinction
between them. The first option – putting the copy into a new location – creates the copy by initializing the
new object to the value of the object to copy. The second – storing the copy in an existing variable –
creates the copy by assigning the existing object the value of the object to copy. What do these two copy
mechanisms look like in C++? That is, when is an object initialized to a value, and when is it assigned a
new value?

In C++, initialization can occur in three different places:

- 338 - Chapter 11: Resource Management

1. A variable is created as a copy of an existing value. For example, suppose we write the following
code:

 MyClass one;
 MyClass two = one;

Here, since two is told to hold the value of one, C++ will initialize two as a copy of one. Although it
looks like we're assigning a value to two using the = operator, since it is a newly-created object, the
= indicates initialization, not assignment. In fact, the above code is equivalent to the more explicit
initialization code below:

 MyClass one;
 MyClass two(one); // Identical to above.

This syntax makes more clear that two is being created as a copy of one, indicating initialization
rather than assignment.

2. An object is passed by value to a function. Consider the following function:

 void MyFunction(MyClass arg) {
 /* ... */
 }

If we write

 MyClass mc;
 MyFunction(mc);

Then the function MyFunction somehow has to set up the value of arg inside the function to have
the same value as mc outside the function. Since arg is a new variable, C++ will initialize it as a
copy of mc.

3. An object is returned from a function by value. Suppose we have the following function:

 MyClass MyFunction() {
 MyClass mc;
 return mc;
 }

When the statement return mc executes, C++ needs to return the mc object from the function.
However, mc is a local variable inside the MyFunction function, and to communicate its value to
the MyFunction caller C++ needs to create a copy of mc before it is lost. This is done by creating a
temporary MyClass object for the return value, then initializing it to be a copy of mc.

Notice that in all three cases, initialization took place because some new object was created as a copy of an
existing object. In the first case this was a new local variable, in the second a function parameter, and in
the third a temporary object.

Assignment in C++ is much simpler than initialization and only occurs if an existing object is explicitly
assigned a new value. For example, the following code will assign two the value of one, rather than
initializing two to one:

Chapter 11: Resource Management - 339 -

 MyClass one, two;
 two = one;

It can be tricky to differentiate between initialization and assignment because in some cases the syntax is
almost identical. For example, if we rewrite the above code as

 MyClass one;
 MyClass two = one;

two is now initialized to one because it is declared as a new variable. Always remember that the
assignment only occurs when giving an existing object a new value.

Why is it important to differentiate between assignment and initialization? After all, they're quite similar;
in both cases we end up with a new copy of an existing object. However, assignment and initialization are
fundamentally different operations. When initializing a new object as a copy of an existing object, we
simply need to copy the existing object into the new object. When assigning an existing object a new value,
the existing object's value ceases to be and we must make sure to clean up any resources the object may
have allocated before setting it to the new value. In other words, initialization is a straight copy, while
assignment is cleanup followed by a copy. This distinction will become manifest in the code we will write
for the copy functions later in this chapter.

Copy Functions: Copy Constructors and Assignment Operators

Because initialization and assignment are separate tasks, C++ handles them through two different
functions called the copy constructor and the assignment operator. The copy constructor is a special
constructor responsible for initializing new class instances as copies of existing instances of the class. The
assignment operator is a special function called an overloaded operator (see the chapter on operator
overloading for more details) responsible for assigning the receiver object the value of some other
instance of the object. Thus the code

 MyClass one;
 MyClass two = one;

will initialize two to one using the copy constructor, while the code

 MyClass one, two;
 two = one;

will assign one to two using the assignment operator.

Syntactically, the copy constructor is written as a one-argument constructor whose parameter is another
instance of the class accepted by reference-to-const. For example, given the following class:

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 /* ... */
 };

The copy constructor would be declared as follows:

- 340 - Chapter 11: Resource Management

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 MyClass(const MyClass& other); // Copy constructor

 /* ... */
 };

The syntax for the assignment operator is substantially more complex than that of the copy constructor
because it is an overloaded operator; in particular, operator =. For reasons that will become clearer
later in the chapter, the assignment operator should accept as a parameter another instance of the class by
reference-to-const and should return a non-const reference to an object of the class type. For a concrete
example, here's the assignment operator for MyClass:

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 MyClass(const MyClass& other); // Copy constructor
 MyClass& operator = (const MyClass& other); // Assignment operator
 /* ... */
 };

We'll defer discussing exactly why this syntax is correct until later, so for now you should take it on faith.

What C++ Does For You

Unless you specify otherwise, C++ will automatically provide any class you write with a basic copy
constructor and assignment operator that invoke the copy constructors and assignment operators of all
the class's data members. In many cases, this is exactly what you want. For example, consider the
following class:

 class DefaultClass {
 public:
 /* ... */

 private:
 int myInt;
 string myString;
 };

Suppose you have the following code:

 DefaultClass one;
 DefaultClass two = one;

The line DefaultClass two = one will invoke the copy constructor for DefaultClass. Since we
haven't explicitly provided our own copy constructor, C++ will initialize two.myInt to the value of
one.myInt and two.myString to one.myString. Since int is a primitive and string has a well-defined
copy constructor, this code is totally fine.

Chapter 11: Resource Management - 341 -

However, in many cases this is not the behavior you want. Let's consider the example of a class Vector
that acts as a wrapper for a dynamic array. Suppose we define Vector as shown here:

 class Vector {
 public:
 Vector();
 ~Vector();
 /* Note: No copy constructor or assignment operator */

 /* ... */

 private:
 int* elems;
 /* ... */
 };

Here, if we rely on C++'s default copy constructor or assignment operator, we'll run into trouble. For
example, consider the following code:

 Vector one;
 Vector two = one;

Because we haven't provided a copy constructor, C++ will initialize two.elems to one.elems. Since
elems is an int*, instead of getting a deep copy of the elements, we'll end up with two pointers to the
same array. Thus changes to one will show up in two and vice-versa. This is dangerous, especially when
the destructors for both one and two try to deallocate the memory for elems. In situations like these,
you'll need to override C++'s default behavior by providing your own copy constructors and assignment
operators.

There are a few circumstances where C++ does not automatically provide default copy constructors and
assignment operators. If your class contains a reference or const variable as a data member, your class
will not automatically get an assignment operator. Similarly, if your class has a data member that doesn't
have a copy constructor or assignment operator (for example, an ifstream), your class won't be copyable.
There is one other case involving inheritance where C++ won't automatically create the copy functions for
you, and in the chapter on inheritance we'll see how to exploit this to disable copying.

The Rule of Three

There's a well-established C++ principle called the “rule of three” that identifies most spots where you'll
need to write your own copy constructor and assignment operator. If this were a math textbook, you'd
probably see the rule of three written out like this:

Theorem (The Rule of Three): If a class has any of the following three member functions:
• Destructor
• Copy Constructor
• Assignment Operator

Then that class should have all three of those functions.

Corollary: If a class has a destructor, it should also have a copy constructor and assignment operator.

The rule of three holds because in almost all situations where you have any of the above functions, C++'s
default behavior won't correctly manage your objects. In the above example with Vector, this is the case
because copying the elems* pointer doesn't actually duplicate the elements array. Similarly, if you have a

- 342 - Chapter 11: Resource Management

class holding an open file handle, making a shallow copy of the object might cause crashes further down
the line as the destructor of one class closed the file handle, corrupting the internal state of all “copies” of
that object.

Both C++ libraries and fellow C++ coders will expect that, barring special circumstances, all objects will
correctly implement the three above functions, either by falling back on C++'s default versions or by
explicitly providing correct implementations. Consequently, you must keep the rule of three in mind when
designing classes or you will end up with insidious or seemingly untraceable bugs as your classes start to
destructively interfere with each other.

Writing Copy Constructors

For the rest of this chapter, we'll discuss copy constructors and assignment operators through a case study
of a Vector class, a generalization of the above Vector which behaves similarly to the STL vector. The
class definition for Vector looks like this:

 template <typename T> class Vector {
 public:
 Vector();
 Vector(const Vector& other); // Copy constructor
 Vector& operator =(const Vector& other); // Assignment operator
 ~Vector();

 typedef T* iterator;
 typedef const T* const_iterator;

 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;

 /* ... other member functions ... */
 private:
 T* array;
 size_t allocatedLength;
 size_t logicalLength;
 static const size kStartSize = 16;
 };

Internally, Vector is implemented as a dynamically-allocated array of elements. Two data members,
allocatedLength and logicalLength, track the allocated size of the array and the number of elements
stored in it, respectively. Vector also has a class constant kStartSize that represents the default size of
the allocated array.

The Vector constructor is defined as

 template <typename T> Vector<T>::Vector() {
 allocatedLength = kStartSize;
 logicalLength = 0;
 array = new T[allocatedLength];
 }

Similarly, the Vector destructor is

Chapter 11: Resource Management - 343 -

 template <typename T> Vector<T>::~Vector() {
 delete [] array;
 }

Now, let's write the copy constructor. We know that we need to match the prototype given in the class
definition, so we'll write that part first:

 template <typename T> Vector<T>::Vector(const Vector& other) {
 /* ... */
 }

Inside the copy constructor, we need to initialize the object so that we're holding a deep copy of the other
Vector. This necessitates making a full deep-copy of the other Vector's array, as well as copying over
information about the size and capacity of the other Vector. This second step is relatively
straightforward, and can be done as follows:

 template <typename T> Vector<T>::Vector(const DebugVector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 /* ... */
 }

Note that this implementation of the copy constructor sets logicalLength to other.logicalLength
and allocatedLength to other.allocatedLength, even though other.logicalLength and
other.allocatedLength explicitly reference private data members of the other object. This is legal
because other is an object of type Vector and the copy constructor is a member function of Vector. A
class can access both its private fields and private fields of other objects of the same type. This is called
sibling access and is true of any member function, not just the copy constructor. If the copy constructor
were not a member of Vector or if other were not a Vector, this code would not be legal.

Now, we'll make a deep copy of the other Vector's elements by allocating a new array that's the same size
as other's and then copying the elements over. The code looks something like this:

 template <typename T> Vector<T>::Vector(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 for(size_t i = 0; i < logicalLength; ++i)
 array[i] = other.array[i];
 }

Interestingly, since Vector is a template, it's unclear what the line array[i] = other.array[i] will
actually do. If we're storing primitive types, then the line will simply copy the values over, but if we're
storing objects, the line invokes the class's assignment operator. Notice that in both cases the object will
be correctly copied over. This is one of driving forces behind defining copy constructors and assignment
operators, since template code can assume that expressions like object1 = object2 will be meaningful.

An alternative means for copying data over from the other object uses the STL copy algorithm. Recall that
copy takes three parameters – two delineating an input range of iterators and one denoting the beginning
of an output range – then copies the specified iterator range to the destination. Although designed to work
on iterators, it is possible to apply STL algorithms directly to ranges defined by raw C++ pointers. Thus we
could rewrite the copy constructor as follows:

- 344 - Chapter 11: Resource Management

 template <typename T> Vector<T>::Vector(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Here, the range spanned by other.begin() and other.end() is the entire contents of the other Vector,
and array is the beginning of the newly-allocated data we've reserved for this Vector. I personally find
this syntax preferable to the explicit for loop, since it increases readability.

At this point we have a complete and correct implementation of the copy constructor. The code for this
constructor is not particularly dense, and it's remarkably straightforward. In some cases, however, it can
be a bit trickier to write a copy constructor. We'll see some of these cases later in the chapter.

Writing Assignment Operators

We've now successfully written a copy constructor for our Vector class. Unfortunately, writing an
assignment operator is significantly more involved than writing a copy constructor. C++ is designed to
give you maximum flexibility when designing an assignment operator, and thus won't alert you if you've
written a syntactically legal assignment operator that is completely incorrect. For example, consider this
legal but incorrect assignment operator for an object of type MyClass:

 void MyClass::operator =(const MyClass& other) {
 cout << "I'm sorry, Dave. I'm afraid I can't copy that object." << endl;
 }

Here, if we write code like this:

 MyClass one, two;
 two = one;

Instead of making two a deep copy of one, instead we'll get a message printed to the screen and two will
remain unchanged. This is one of the dangers of a poorly-written assignment operator – code that looks
like it does one thing can instead do something totally different. This section discusses how to correctly
implement an assignment operator by starting with invalid code and progressing towards a correct, final
version.

Let's start off with a simple but incorrect version of the assignment operator for Vector. Intuitively, since
both the copy constructor and the assignment operator make a copy of another object, we might consider
implementing the assignment operator by naively copying the code from the copy constructor into the
assignment operator. This results in the following (incorrect!) version of the assignment operator:

 /* Many major mistakes here. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

This code is based off the copy constructor, which we used to initialize the object as a copy of an existing
object. Unfortunately, this code contains a substantial number of mistakes that we'll need to correct

Chapter 11: Resource Management - 345 -

before we end up with the final version of the function. Perhaps the most serious error here is the line
array = new T[allocatedLength]. When the assignment operator is invoked, this Vector already
holds its own array of elements. This line therefore orphans the old array and leaks memory. To fix this,
before we make this object a copy of the one specified by the parameter, we'll take care of the necessary
deallocations. This is shown here:

If you'll notice, we've already written the necessary cleanup code in the DebugVector destructor. Rather
than rewriting this code, we'll decompose out the generic cleanup code into a clear function, as shown
here:

 /* Many major mistakes here. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 delete [] array;

 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

At this point, we can make a particularly useful observation. If you'll notice, the cleanup code to free the
existing array is identical to the code for the destructor, which has the same task. This is no coincidence.
In general, when writing an assignment operator, the assignment operator will need to free all of the
resources acquired by the object, much in the same way that the destructor must. To avoid unnecessary
code duplication, we can factor out the code to free the Vector's resources into a helper function called
clear(), which is shown here:

 template <typename T> void Vector<T>::clear() {
 delete [] array;
 }

We can then rewrite the destructor as

 template <typename T> Vector<T>::~Vector() {
 clear();
 }

And we can insert this call to clear into our assignment operator as follows:

 /* This code still has errors. Do not use it as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 clear();

 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Along the same lines, you might have noticed that all of the code after the call to clear is exactly the same
code we wrote inside the body of the copy constructor. This isn't a coincidence – in fact, in most cases
you'll have a good deal of overlap between the assignment operator and copy constructor. Since we can't

- 346 - Chapter 11: Resource Management

invoke our own copy constructor directly (or any constructor, for that matter), instead we'll decompose
the copying code into a member function called copyOther as follows:

 template <typename T> void Vector<T>::copyOther(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Now we can rewrite the copy constructor as

 template <typename T> Vector<T>::Vector(const Vector& other) {
 copyOther(other);
 }

And the assignment operator as

 /* Not quite perfect yet. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 clear();
 copyOther(other);
 }

This simplifies the copy constructor and assignment operator and highlights the general pattern of what
the two functions should do. With a copy constructor, you'll simply copy the contents of the other object.
With an assignment operator, you'll clear out the receiver object, then copy over the data from another
object.

However, we're still not done yet. There are two more issues we need to fix with our current
implementation of the assignment operator. The first one has to do with self-assignment. Consider, for
example, the following code:

 MyClass one;
 one = one;

While this code might seem a bit silly, cases like this come up frequently when accessing elements
indirectly through pointers or references. Unfortunately, with our current DebugVector assignment
operator, this code will lead to unusual runtime behavior, possibly including a crash. To see why, let's trace
out the state of our object when its assignment operator is invoked on itself.

At the start of the assignment operator, we call clear to clean out the object for the copy. During this call
to clear, we deallocate the memory associated with the object. We then invoke the copyOther function
to set the current object to be a copy of the receiver object. Unfortunately, things don't go quite as
expected. Because we're assigning the object to itself, the parameter to the assignment operator is the
receiver object itself. This means that when we called clear trying to clean up the resources associated
with the receiver object, we also cleaned up all the resources associated with the parameter to the
assignment operator. In other words, clear destroyed both the data we wanted to clean up and the data
we were meaning to copy. The call to copyOther will therefore copy garbage data into the receiver object,
since the resources it means to copy have already been cleaned up. This is extremely bad, and will almost
certainly cause a program crash.

Chapter 11: Resource Management - 347 -

When writing assignment operators, you must ensure that your code correctly handles self-assignment.
While there are many ways we can do this, perhaps the simplest is to simply check to make sure that the
object to copy isn't the same object pointed at by the this pointer. The code for this logic looks like this:

 /* Not quite perfect yet. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 }

Note that we check if(this != &other). That is, we compare the addresses of the current object and
the parameter. This will determine whether or not the object we're copying is exactly the same object as
the one we're working with. In the practice problems for this chapter, you'll explore what would happen if
you were to write if(*this != other). One detail worth mentioning is that the self-assignment check
is not necessary in the copy constructor, since an object can't be a parameter to its own constructor.

There's one final bug we need to sort out, and it has to do with how we're legally allowed to use the =
operator. Consider, for example, the following code:

 MyClass one, two, three;
 three = two = one;

This code is equivalent to three = (two = one). Since our current assignment operator does not return
a value, (two = one) does not have a value, so the above statement is meaningless and the code will not
compile. We thus need to change our assignment operator so that performing an assignment like two =
one yields a value that can then be assigned to other values. The final version of our assignment operator
is thus

 /* The correct version of the assignment operator. */
 template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 return *this;
 }

One General Pattern

Although each class is different, in many cases the default constructor, copy constructor, assignment
operator, and destructor will share a general pattern. Here is one possible skeleton you can fill in to get
your copy constructor and assignment operator working.

MyClass::MyClass() : /* Fill in initializer list. */ {
 /* Default initialization here. */
}

MyClass::MyClass(const MyClass& other) {
 copyOther(other);
}

- 348 - Chapter 11: Resource Management

MyClass& MyClass::operator =(const MyClass& other) {
 if(this != &other) {
 clear();
 // Note: When we cover inheritance, there's one more step here.
 copyOther(other);
 }
 return *this;
}

MyClass::~MyClass() {
 clear();
}

Semantic Equivalence and copyOther Strategies

Consider the following code snippet:

 Vector<int> one;
 Vector<int> two = one;

Here, we know that two is a copy of one, so the two objects should behave identically to one another. For
example, if we access an element of one, we should get the same value as if we had accessed the
corresponding element of two and vice-versa. However, while one and two are indistinguishable from
each other in terms of functionality, their memory representations are not identical because one and two
point to two different dynamically-allocated arrays. This raises the distinction between semantic
equivalence and bitwise equivalence. Two objects are said to be bitwise equivalent if they have identical
representations in memory. For example, any two ints with the value 137 are bitwise equivalent, and if
we define a pointT struct as a pair of ints, any two pointTs holding the same values will be bitwise
equivalent. Two objects are semantically equivalent if, like one and two, any operations performed on the
objects will yield identical results. When writing a copy constructor and assignment operator, you attempt
to convert an object into a semantically equivalent copy of another object. Consequently, you are free to
pick any copying strategy that creates a semantically equivalent copy of the source object.

In the preceding section, we outlined one possible implementation strategy for a copy constructor and
assignment operator that uses a shared function called copyOther. While in the case of the DebugVector
it was relatively easy to come up with a working copyOther implementation, when working with more
complicated objects, it can be difficult to devise a working copyOther. For example, consider the
following class, which represents a mathematical set implemented as a linked list:

Chapter 11: Resource Management - 349 -

 template <typename T> class ListSet {
 public:
 ListSet();
 ListSet(const ListSet& other);
 ListSet& operator =(const ListSet& other);
 ~ListSet();

 void insert(const T& toAdd);
 bool contains(const T& toFind) const;

 private:
 struct cellT {
 T data;
 cellT* next;
 };
 cellT* list;

 void copyOther(const ListSet& other);
 void clear();
 };

This ListSet class exports two functions, insert and contains, that insert an element into the list and
determine whether the list contains an element, respectively. This class represents a mathematical set, an
unordered collection of elements, so the underlying linked list need not be in any particular order. For
example, the lists {0, 1, 2, 3, 4} and {4, 3, 2, 1, 0} are semantically equivalent because
checking whether a number is an element of the first list yields the same result as checking whether the
number is in the second. In fact, any two lists containing the same elements are semantically equivalent to
one another. This means that there are multiple ways in which we could implement copyOther. Consider
these two:

 /* Version 1: Duplicate the list as it exists in the original ListSet. */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 /* Keep track of what the current linked list cell is. */
 cellT** current = &list;

 /* Iterate over the source list. */
 for(cellT* source = other.list; source != NULL; source = source->next) {
 /* Duplicate the cell. */
 *current = new cellT;
 (*current)->data = source->data;
 (*current)->next = NULL;

 /* Advance to next element. */
 current = &((*current)->next);
 }
 }

 /* Version 2: Duplicate list in reverse order of original ListSet */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 for(cellT* source = other.list; source != NULL; source = source->next) {
 cellT* newNode = new cellT;
 newNode->data = source->data;
 newNode->next = list;
 list = newNode;
 }
 }

- 350 - Chapter 11: Resource Management

As you can see, the second version of this function is much, much cleaner than the first. There are no
address-of operators floating around, so everything is expressed in terms of simpler pointer operations.
But while the second version is cleaner than the first, it duplicates the list in reverse order. This may
initially seem problematic but is actually perfectly safe. As the original object and the duplicate object
contain the same elements in some order, they will be semantically equivalent, and from the class interface
we would be unable to distinguish the original object and its copy.

There is one implementation of copyOther that is considerably more elegant than either of the two
versions listed above:

 /* Version 3: Duplicate list using the insert function */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 for(cellT* source = other.list; source != NULL; source = source->next)
 insert(source->data);
 }

Notice that this implementation uses the ListSet's public interface to insert the elements from the source
ListSet into the receiver object. This version of copyOther is unquestionably the cleanest. If you'll
notice, it doesn't matter exactly how insert adds elements into the list (indeed, insert could insert the
elements at random positions), but we're guaranteed that at the end of the copyOther call, the receiver
object will be semantically equivalent to the parameter.

Conversion Assignment Operators

When working with copy constructors, we needed to define an additional function, the assignment
operator, to handle all the cases in which an object can be copied or assigned. However, in the chapter on
conversion constructors, we provided a conversion constructor without a matching “conversion
assignment operator.” It turns out that this is not a problem because of how the assignment operator is
invoked. Suppose that we have a CString class that has a defined copy constructor, assignment operator,
and conversion constructor that converts raw C++ char * pointers into CString objects. Now, suppose
we write the following code:

 CString myCString;
 myCString = "This is a C string!";

Here, in the second line, we assign an existing CString a new value equal to a raw C string. Despite the
fact that we haven't defined a special assignment operator to handle this case, the above is perfectly legal
code. When we write the line

 myCString = "This is a C string!";

C++ converts it into the equivalent code

 myCString.operator= ("This is a C string!");

This syntax may look entirely foreign, but is simply a direct call to the assignment operator. Recall that the
assignment operator is a function named operator =, so this code passes the C string "This is a C
string!" as a parameter to operator =. Because operator = accepts a CString object rather than a
raw C string, C++ will invoke the CString conversion constructor to initialize the parameter to operator
=. Thus this code is equivalent to

 myCString.operator =(CString("This is a C string!"));

Chapter 11: Resource Management - 351 -

In other words, the conversion constructor converts the raw C string into a CString object, then the
assignment operator sets the receiver object equal to this temporary CString.

In general, you need not provide a “conversion assignment operator” to pair with a conversion
constructor. As long as you've provided well-defined copy behavior, C++ will link the conversion
constructor and assignment operator together to perform the assignment.

Disabling Copying

In CS106B/X we provide you the DISALLOW_COPYING macro, which causes a compile error if you try to
assign or copy objects of the specified type. DISALLOW_COPYING, however, is not a standard C++ feature.
Without using the CS106B/X library, how can we replicate the functionality? We can't prevent object
copying by simply not defining a copy constructor and assignment operator. All this will do is have C++
provide its own default version of these two functions, which is not at all what we want. To solve this
problem, instead we'll provide an assignment operator and copy constructor, but declare them private so
that class clients can't access them. For example:

 class CannotBeCopied {
 public:
 CannotBeCopied();
 /* Other member functions. */

 private:
 CannotBeCopied(const CannotBeCopied& other);
 CannotBeCopied& operator = (const CannotBeCopied& other);
 };

Now, if we write code like this:

 CannotBeCopied one;
 CannotBeCopied two = one;

We'll get a compile-time error on the second line because we're trying to invoke the copy constructor,
which has been declared private. We'll get similar behavior when trying to use the assignment operator.

This trick is almost one hundred percent correct, but does have one edge case: what if we try to invoke the
copy constructor or assignment operator inside a member function of the class? The copy functions might
be private, but that doesn't mean that they don't exist, and if we call them inside a member function might
accidentally create a copy of an otherwise uncopyable object. To prevent this from happening, we'll use a
cute trick. Although we'll prototype the copy functions inside the private section of the class, we won't
implement them. This means that if we accidentally do manage to call either function, we will get a linker
error because the compiler can't find code for either function. This is admittedly a bit hackish, so in C+
+0x, the next revision of C++, there will be a way to explicitly indicate that a class is uncopyable. In the
meantime, though, the above approach is perhaps your best option. We'll see another way to do this later
when we cover inheritance.

Extended Example: SmartPointer

In C++ parlance, a raw pointer like an int* or a char* is sometimes called a dumb pointer because the
pointer has no “knowledge” of the resource it owns. If an int* goes out of scope, it doesn't inform the
object it's pointing at and makes no attempt whatsoever to clean it up. The int* doesn't own its resource,
and assigning one int* to another doesn't make a deep copy of the resource or inform the other int* that
another pointer now references its pointee.

- 352 - Chapter 11: Resource Management

Because raw pointers are so problematic, many C++ programmers prefer to use smart pointers, objects
that mimic raw pointers but which perform functions beyond merely pointing at a resource. For example,
the C++ standard library class auto_ptr, which we'll cover in the chapter on exception handling, acts like
a regular pointer except that it automatically calls delete on the resource it owns when it goes out of
scope. Other smart pointers are custom-tuned for specific applications and might perform functions like
logging access, synchronizing multithreaded applications, or preventing accidental null pointer
dereferences. Thanks to operator overloading, smart pointers can be built to look very similar to regular
C++ pointers. We can provide an implementation of operator * to support dereferences like *myPtr,
and can define operator -> to let clients write code to the effect of myPtr->clear(). Similarly, we can
write copy constructors and assignment operators for smart pointers that do more than just transfer a
resource.

Reference Counting

Memory management in C++ is tricky. You must be careful to balance every new with exactly one delete, and
must make sure that no other pointers to the resource exist after delete-ing it to ensure that later on you don't
access invalid memory. If you delete memory too many times you run into undefined behavior, and if you
delete it too few you have a memory leak. Is there a better way to manage memory? In many cases, yes, and
in this extended example we'll see one way to accomplish this using a technique called reference counting. In
particular, we'll design a smart pointer class called SmartPointer which acts like a regular C++ pointer, except
that it uses reference counting to prevent resource leaks.

To motivate reference counting, let's suppose that we have a smart pointer class that stores a pointer to a
resource. The destructor for this smart pointer class can then delete the resource automatically, so
clients of the smart pointer never need to explicitly clean up any resources. This system is fine in
restricted circumstances, but runs into trouble as soon as we have several smart pointers pointing to the
same resource. Consider the scenario below:

Smart
Pointer

Resource

Smart
Pointer

Both of these pointers can access the stored resource, but unfortunately neither smart pointer knows of
the other's existence. Here we hit a snag. If one smart pointer cleans up the resource while the other
still points to it, then the other smart pointer will point to invalid memory. If both of the pointers try to
reclaim the dynamically-allocated memory, we will encounter a runtime error from double-delete-ing a
resource. Finally, if neither pointer tries to clean up the memory, we'll get a memory leak.

To resolve this problem, we'll use a system called reference counting where we will explicitly keep track of
the number of pointers to a dynamically-allocated resource. While there are several ways to make such a
system work, perhaps the simplest is to use an intermediary object. This can be seen visually:

Chapter 11: Resource Management - 353 -

Smart
Pointer

Resource

Intermediary

1

Now, the smart pointer stores a pointer to an intermediary object rather than a pointer directly to the
resource. This intermediary object has a counter (called a reference counter) that tracks the number of
smart pointers accessing the resource, as well as a pointer to the managed resource. This intermediary
object lets the smart pointers tell whether or not they are the only pointer to the stored resource; if the
reference count is anything other than one, some other pointer shares the resource. Provided that we
accurately track the reference count, each pointer can tell if it's the last pointer that knows about the
resource and can determine whether to deallocate it.

To see how reference counting works, let's walk through an example. Given the above system, suppose
that we want to share the resource with another smart pointer. We simply make this new smart pointer
point to the same intermediary object as our original pointer, then update the reference count. The
resulting scenario looks like this:

Smart
Pointer

Resource
Intermediary

2

Smart
Pointer

Although in this diagram we only have two objects pointing to the intermediary, the reference-counting
system allows for any number of smart pointers to share a single resource.

Now, suppose one of these smart pointers needs to stop pointing to the resource – maybe it's being
assigned to a different resource, or perhaps it's going out of scope. That pointer decrements the reference
count of the intermediary variable and notices that the reference count is nonzero. This means that at
least one smart pointer still references the resource, so the smart pointer simply leaves the resource as it
is. Memory now looks like this:

- 354 - Chapter 11: Resource Management

Smart
Pointer

Resource

Intermediary

1

Finally, suppose this last smart pointer needs to stop pointing to this resource. It decrements the
reference count, but this time notices that the reference count is zero. This means that no other smart
pointers reference this resource, and the smart pointer knows that it needs to deallocate the resource and
the intermediary object, as shown here:

The resource has now been deallocated and no other pointers reference the memory. We've safely and
effectively cleaned up our resources. Moreover, this process is completely automatic – the user never
needs to explicitly deallocate any memory.

The following summarizes the reference-counting scheme described above:

• When creating a smart pointer to manage newly-allocated memory, first create an intermediary
object and make the intermediary point to the resource. Then, attach the smart pointer to the
intermediary and set the reference count to one.

• To make a new smart pointer point to the same resource as an existing one, make the new smart
pointer point to the old smart pointer's intermediary object and increment the intermediary's
reference count.

• To remove a smart pointer from a resource (either because the pointer goes out of scope or
because it's being reassigned), decrement the intermediary object's reference count. If the count
reaches zero, deallocate the resource and the intermediary object.

While reference counting is an excellent system for managing memory automatically, it does have its
limitations. In particular, reference counting can sometimes fail to clean up memory in “reference cycles,”
situations where multiple reference-counted pointers hold references to one another. If this happens,
none of the reference counters can ever drop to zero, since the cyclically-linked elements always refer to
one another. But barring this sort of setup, reference counting is an excellent way to automatically manage
memory. In this extended example, we'll see how to implement a reference-counted pointer, which we'll

Smart
Pointer

Resource

Intermediary

0

Chapter 11: Resource Management - 355 -

call SmartPointer, and will explore how the correct cocktail of C++ constructs can make the resulting
class slick and efficient.

Designing SmartPointer

The above section details the implementation the SmartPointer class, but we have not talked about its
interface. What functions should we provide? We'll try to make SmartPointer resemble a raw C++
pointer as closely as possible, meaning that it should support operator * and operator -> so that the
client can dereference the SmartPointer. Here is one possible interface for the SmartPointer class:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;
 };

Here is a breakdown of what each of these functions should do:

explicit SmartPointer(T* memory);

Constructs a new SmartPointer that manages the resource specified as the parameter. The reference
count is initially set to one. We will assume that the provided pointer came from a call to new. This
function is marked explicit so that we cannot accidentally convert a regular C++ pointer to a
SmartPointer. At first this might seem like a strange design decision, but it prevents a wide range of
subtle bugs. For example, suppose that this constructor is not explicit and consider the following
function:

void PrintString(const SmartPointer<string>& ptr) {
 cout << *ptr << endl;
}

This function accepts a SmartPointer by reference-to-const, then prints out the stored string. Now,
what happens if we write the following code?

string* ptr = new string("Yay!");
PrintString(ptr);
delete ptr;

The first line dynamically-allocates a string, passes it to PrintString, and finally deallocates it.
Unfortunately, this code will almost certainly cause a runtime crash. The problem is that PrintString
expects a SmartPointer<string> as a parameter, but we've provided a string*. C++ notices that the
SmartPointer<string> has a conversion constructor that accepts a string*, and makes a temporary
SmartPointer<string> using the pointer we passed as a parameter. This new SmartPointer starts
tracking the pointer with a reference count of one. After the function returns, the parameter is cleaned
up and its destructor invokes. This decrements the reference count to zero, and then deallocates the
pointer stored in the SmartPointer. The above code then tries to delete ptr a second time, causing a
runtime crash. To prevent this problem, we'll mark the constructor explicit, which makes the implicit
conversion illegal and prevents this buggy code from compiling.

- 356 - Chapter 11: Resource Management

SmartPointer(const SmartPointer& other);

Constructs a new SmartPointer that shares the resource contained in another SmartPointer, updating
the reference count appropriately.

SmartPointer& operator=(const SmartPointer& other);

Causes this SmartPointer to stop pointing to the resource it's currently managing and to share the
resource held by another SmartPointer. If the smart pointer was the last pointer to its resource, it
deletes it.

~SmartPointer();

Detaches the SmartPointer from the resource it's sharing, freeing the associated memory if necessary.

T& operator* () const;

“Dereferences” the pointer and returns a reference to the object being pointed at. Note that operator* is
const; see the last chapter for more information why.

T* operator-> () const;

Returns the object that the arrow operator should really be applied to if the arrow is used on the
SmartPointer. Again, see the last chapter for more information on this.

Given this public interface for SmartPointer, we can now begin implementing the class. We first need to
decide on how we should represent the reference-counting information. One simple method is to define a
private struct inside SmartPointer that represents the reference-counting intermediary. This looks as
follows:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;
 };

Here, the resource field of the Intermediary is the actual pointer to the stored resource and refCount
is the reference count. Notice that we did not declare the reference count as a direct data member of the
SmartPointer, but rather in the Intermediary object. This is because the reference count of a resource
is not owned by any one SmartPointer, but rather is shared across all SmartPointers that point to a
particular resource. This way, any changes to the reference count by one SmartPointer will become
visible in all of the other SmartPointers referencing the resource. You might ask – could we have made
the refCount a static data member? This would indeed make the reference count visible across

Chapter 11: Resource Management - 357 -

multiple SmartPointers, but unfortunately it won't work out correctly. In particular, if we use
SmartPointer to manage multiple resources, each one needs to have its own refCount or changes to the
refCount for a particular resource will show up in the refCount for other resources.

Given this setup, we can implement the SmartPointer constructor by creating a new Intermediary that
points to the specified resource and has an initial reference count of one:

 template <typename T> SmartPointer<T>::SmartPointer(T* res) {
 data = new Intermediary;
 data->resource = res;
 data->refCount = 1;
 }

It's very important that we allocate the Intermediary object on the heap rather than as a data member.
That way, when the SmartPointer is cleaned up (either by going out of scope or by an explicit call to
delete), if it isn't the last pointer to the shared resource, the intermediary object isn't cleaned up.

We can similarly implement the destructor by decrementing the reference count, then cleaning up
memory if appropriate. Note that if the reference count hits zero, we need to delete both the resource and
the intermediary. Forgetting to deallocate either of these leads to memory leaks, the exact problem we
wanted to avoid. The code for this is shown here:

 template <typename T> SmartPointer<T>::~SmartPointer() {
 --data->refCount;
 if(data->refCount == 0) {
 delete data->resource;
 delete data;
 }
 }

This is an interesting destructor in that it isn't guaranteed to actually clean up any memory. Of course, this
is exactly the behavior we want, since the memory might be shared among multiple SmartPointers.

Implementing operator * and operator -> simply requires us to access the pointer stored inside the
SmartPointer. These two functions can be implemented as follows:*

 template <typename T> T& SmartPointer<T>::operator * () const {
 return *data->resource;
 }
 template <typename T> T* SmartPointer<T>::operator -> () const {
 return data->resource;
 }

Now, we need to implement the copy behavior for this SmartPointer. One way to do this is to write
helper functions clear and copyOther which perform deallocation and copying. We will use a similar

* It is common to see operator -> implemented as

RetType* MyClass::operator -> () const
{
 return &**this;
}

&**this is interpreted by the compiler as &(*(*this)), which means “dereference the this pointer to get the receiver
object, then dereference the receiver. Finally, return the address of the referenced object.” At times this may be the
best way to implement operator ->, but I advise against it in general because it's fairly cryptic.

- 358 - Chapter 11: Resource Management

approach here, except using functions named detach and attach to make explicit the operations we're
performing. This leads to the following definition of SmartPointer:
 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

Now, what should these functions do? The first of these, detach, should detach the SmartPointer from
the shared intermediary and clean up the memory if it was the last pointer to the shared resource. In case
this sounds familiar, it's because this is exactly the behavior of the SmartPointer destructor. To avoid
code duplication, we'll move the code from the destructor into detach as shown here:

 template <typename T> void SmartPointer<T>::detach() {
 --data->refCount;
 if(data->refCount == 0) {
 delete data->resource;
 delete data;
 }
 }

We can then implement the destructor as a wrapped call to detach, as seen here:

 template <typename T> SmartPointer<T>::~SmartPointer() {
 detach();
 }

The attach function, on the other hand, makes this SmartPointer begin pointing to the specified Intermediary
and increments the reference count. Here's one possible implementation of attach:

 template <typename T> void SmartPointer<T>::attach(Intermediary* to) {
 data = to;
 ++data->refCount;
 }

Given these two functions, we can implement the copy constructor and assignment operator for
SmartPointer as follows:

Chapter 11: Resource Management - 359 -

 template <typename T> SmartPointer<T>::SmartPointer(const SmartPointer& other){
 attach(other.data);
 }

 template <typename T>
 SmartPointer<T>& SmartPointer<T>::operator= (const SmartPointer& other) {
 if(this != &other) {
 detach();
 attach(other.data);
 }
 return *this;
 }

It is crucial that we check for self-assignment inside the operator= function, since otherwise we might
destroy the data that we're trying to keep track of!

At this point we have a rather slick SmartPointer class. Here's some code demonstrating how a client
might use SmartPointer:

 SmartPointer<string> myPtr(new string);
 *myPtr = "This is a string!";
 cout << *myPtr << endl;

 SmartPointer<string> other = myPtr;
 cout << *other << endl;
 cout << other->length() << endl;

The beauty of this code is that client code using a SmartPointer<string> looks almost identical to code
using a regular C++ pointer. Isn't operator overloading wonderful?

Extending SmartPointer

The SmartPointer defined above is useful but lacks some important functionality. For example, suppose
that we have the following function:

 void DoSomething(string* ptr);

Suppose that we have a SmartPointer<string> managing a resource and that we want to pass the
stored string as a parameter to DoSomething. Despite the fact that SmartPointer<string> mimics a
string*, it technically is not a string* and C++ won't allow us to pass the SmartPointer into
DoSomething. Somehow we need a way to have the SmartPointer hand back the resource it manages.

Notice that the only SmartPointer member functions that give back a pointer or reference to the actual
resource are operator* and operator->. Technically speaking, we could use these functions to pass the
stored string into DoSomething, but the syntax would be messy (in the case of operator*) or
nightmarish (for operator ->). For example:

- 360 - Chapter 11: Resource Management

 SmartPointer<string> myPtr(new string);

 /* To use operator* to get the stored resource, we have to first dereference
 * the SmartPointer, then use the address-of operator to convert the returned
 * reference into a pointer.
 */
 DoSomething(&*myPtr);

 /* To use operator-> to get the stored resource, we have to explicitly call the
 * operator-> function. Yikes!
 */
 DoSomething(myPtr.operator-> ());

Something is clearly amiss and we cannot reasonably expect clients to write code like this routinely. We'll
need to extend the SmartPointer class to provide a way to return the stored pointer directly. This
necessitates the creation of a new member function, which we'll call get, to do just that. Given a function
like this, we could then invoke DoSomething as follows:

DoSomething(myPtr.get());

The updated interface for SmartPointer looks like this:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

The implementation of get is fairly straightforward and is shown here:

 template <typename T> T* SmartPointer<T>::get() const {
 return data->resource;
 }

Further Extensions

There are several more extensions to the SmartPointer class that we might want to consider, of which
this section explores two. The first is rather straightforward. At times, we might want to know exactly
how many SmartPointers share a resource. This might enable us to perform some optimizations, in

Chapter 11: Resource Management - 361 -

particular a technique called copy-on-write. We will not explore this technique here, though you are
encouraged to do so on your own.

Using the same logic as above, we'll define another member function called getShareCount which
returns the number of SmartPointers pointing to the managed resource (including the receiver object).
This results in the following class definition:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;
 size_t getShareCount() const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

And the following implementation:

 template <typename T> size_t SmartPointer<T>::getShareCount() const {
 return data->refCount;
 }

The last piece of functionality we'll consider is the ability to “reset” the SmartPointer to point to a
different resource. When working with a SmartPointer, at times we may just want to drop whatever
resource we're holding and begin managing a new one. As you might have suspected, we'll add yet
another member function called reset which resets the SmartPointer to point to a new resource. The
final interface and code for reset is shown here:

- 362 - Chapter 11: Resource Management

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;
 size_t getShareCount() const;
 void reset(T* newRes);

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

 template <typename T> void SmartPointer<T>::reset(T* newRes) {
 /* We're no longer associated with our current resource, so drop it. */
 detach();

 /* Attach to a new intermediary object. */
 data = new Intermediary;
 data->resource = newRes;
 data->refCount = 1
 }

Practice Problems

The only way to learn copy constructors and assignment operators is to play around with them to gain
experience. Here are some practice problems and thought questions to get you started:

1. When is the copy constructor invoked?

2. When is the assignment operator invoked?

3. What is the signature of the copy constructor?

4. What is the signature of the assignment operator?

5. What is the rule of three? What are the “three” it refers to?

6. What is the behavior of the default-generated copy constructor and assignment operator?

7. Why does the assignment operator have to check for self-assignment but the copy constructor not
need to check for “self-initialization?”

8. What is bitwise equivalence? What is semantic equivalence? Which of the two properties should
be guaranteed by the two copy functions?

Chapter 11: Resource Management - 363 -

9. What is a smart pointer?

10. What is reference-counting?

11. Realizing that the copy constructor and assignment operator for most classes have several
commonalities, you decide to implement a class's copy constructor using the class's assignment
operator. For example, you try implementing the Vector's copy constructor as

 template <typename T> Vector<T>::Vector(const Vector& other) {
 *this = other;
 }

(Since this is a pointer to the receiver object, *this is the receiver object, so *this = other
means to assign the receiver object the value of the parameter other)

This idea, while well-intentioned, has a serious flaw that causes the copy constructor to almost
always cause a crash. Why is this? (Hint: Were any of the Vector data members initialized before
calling the assignment operator? Walk through the assignment operator and see what happens if the
receiver object's data members haven't been initialized.)

12. It is illegal to write a copy constructor that accepts its parameter by value. Why is this? However,
it's perfectly acceptable to have an assignment operator that accepts its parameter by value. Why
is this legal? Why the difference?

13. An alternative implementation of the assignment operator uses a technique called copy-and-swap.
The copy-and-swap approach is broken down into two steps. First, we write a member function
that accepts a reference to another instance of the class, then exchanges the data members of the
receiver object and the parameter. For example, when working with the DebugVector, we might
write a function called swapWith as follows:

 template <typename ElemType> void Vector<ElemType>::swapWith(Vector& other)
 {
 swap(array, other.array);
 swap(logicalLength, other.logicalLength);
 swap(allocatedLength, other.allocatedLength);
 }

Here, we use the STL swap algorithm to exchange data members. Notice that we never actually
make a deep-copy of any of the elements in the array – we simply swap pointers with the other
DebugVector. We can then implement the assignment operator as follows:

 template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other)
 {
 DebugVector temp(other);
 swapWith(temp);
 return *this;
 }

Trace through this implementation of the assignment operator and explain how it sets the receiver
object to be a deep-copy of the parameter. What function actually deep-copies the data? What
function is responsible for cleaning up the old data members?

- 364 - Chapter 11: Resource Management

14. When writing an assignment operator using the pattern covered earlier in the chapter, we had to
explicitly check for self-assignment in the body of the assignment operator. Explain why this is no
longer necessary using the copy-and-swap approach, but why it still might be a good idea to insert
the self-assignment check anyway.

15. A singleton class is a class that can have at most one instance. Typically, a singleton class has its
default constructor and destructor marked private so that clients cannot instantiate the class
directly, and exports a static member function called getInstance() that returns a reference to
the only instance of the class. That one instance is typically a private static data member of the
class. For example:

 class Singleton {
 public:
 static Singleton& getInstance();

 private:
 Singleton(); // Clients cannot call this function; it's private
 ~Singleton(); // ... nor can they call this one

 static Singleton instance; // ... but they can be used here because
 // instance is part of the class.
 };

Singleton Singleton::instance;

Does it make sense for a singleton class to have a copy constructor or assignment operator? If so,
implement them. If not, modify the Singleton interface so that they are disabled.

16. Given this chapter's description about how to disable copying in a class, implement a macro
DISALLOW_COPYING that accepts as a parameter the name of the current class such that if
DISALLOW_COPYING is placed into the private section of a class, that class is uncopyable. Note that
it is legal to create macros that span multiple lines by ending each line with the \ character. For
example, the following is all one macro:

#define CREATE_PRINTER(str) void Print##str() {\
 cout << #str << endl;\
}

17. Consider the following alternative mechanism for disabling copying in a class: instead of marking
those functions private, instead we implement those functions, but have them call abort (a
function from <cstdlib> that immediately terminates the program) after printing out an error
message. For example:

 class PseudoUncopyable {
 public:
 PseudoUncopyable(const PseudoUncopyable& other) {
 abort();
 }
 PseudoUncopyable& operator= (const PseudoUncopyable& other) {
 abort();
 return *this; // Never reached; suppresses compiler warnings
 }
 };

Why is this approach a bad idea?

Chapter 11: Resource Management - 365 -

18. Should you copy static data members in a copy constructor or assignment operator? Why or
why not?

19. In the canonical implementation of the assignment operator we saw earlier in this chapter, we
used the check if (this != &other) to avoid problems with self-assignment. In this exercise,
we'll see what happens if we replace this check with if (*this != other).

1. What is the meaning of if (*this != other)? Will this code compile for any class, or does

that class have to have a special property?

2. Will the check if (*this != other) correctly detect whether an object is being assigned to
itself? Will it detect anything else?

3. Assume that the Vector has an implementation of operator!= that checks whether the
operands have exactly the same size and elements. What is the asymptotic (big-O) complexity
of the check if(*this != other)? How about if (this != &other)? Does this give you
a better sense why the latter is preferable to the former?

20. In a sense, our implementation of the Vector assignment operator is wasteful. It works by
completely discarding the internal array, then constructing a new array to hold the other Vector's
elements. An alternative implementation would work as follows. If the other Vector's elements
can fit in the space currently allocated by the Vector, then the elements from the other Vector
are copied directly into the existing space. Otherwise, new space is allocated as before. Rewrite
the Vector's operator= function using this optimization. Why won't this technique work for the
copy constructor?

