
Chapter 11: Resource Management
_________________________________________________________________________________________________________

This chapter is about two things – putting away your toys when you're done with them, and bringing 
enough of your toys for everyone to share.  These are lessons you (hopefully!) learned in kindergarten 
which happen to pop up just about everywhere in life.  We're supposed to clean up our own messes so that 
they don't accumulate and start to interfere with others, and try to avoid hogging things so that others  
don't hurt us by trying to take those nice things away from us.

The focus of this chapter is how to play nice with others when it comes to resources.  In particular, we will 
explore two of C++'s most misunderstood language features,  the  copy constructor and the  assignment  
operator.  By the time you're done reading this chapter, you should have a much better understanding of  
how to manage resources in ways that will keep your programs running and your fellow programmers 
happy.  The material in this chapter is somewhat dense, but fear not!  We'll make sure to go over all of the  
important points neatly and methodically.

Consider the STL vector.  Internally, vector is backed by a dynamically-allocated array whose size grows 
when additional space is needed for more elements.  For example, a ten-element vector might store those 
elements in an array of size sixteen, increasing the array size if we call  push_back seven more times. 
Given this description, consider the following code:

    vector<int> one(kNumInts);
    for(size_t k = 0; k < one.size(); ++k)
        one.push_back(int(k));

    vector<int> two = one;

In the first three lines, we fill  one with the first  kNumInts integers, and in the last line we create a new 
vector called two that's a copy of one.  How does C++ know how to correctly copy the data from one into 
two?  It can't simply copy the pointer to the dynamically-allocated array from  one into  two,  since that 
would cause one and two to share the same data and changes to one vector would show up in the other. 
Somehow C++ is aware that to copy a  vector it needs to dynamically allocate a new array of elements, 
then copy the elements from the source to the destination.  This is not done by magic, but by two special  
functions called the copy constructor and the assignment operator, which control how to copy instances of 
a particular class.

Before discussing the particulars of the copy constructor and assignment operator, we first need to dissect 
exactly how an object can be copied.  In order to copy an object, we first have to answer an important  
question – where do we put the copy?  Do we store it in a new object, or do we reuse an existing object?  
These two options are fundamentally different from one another and C++ makes an explicit distinction 
between them.  The first option – putting the copy into a new location – creates the copy by initializing the 
new object to the value of the object to copy.  The second – storing the copy in an existing variable –  
creates the copy by assigning the existing object the value of the object to copy.  What do these two copy 
mechanisms look like in C++?  That is, when is an object initialized to a value, and when is it assigned a  
new value?

In C++, initialization can occur in three different places:
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1. A variable is created as a copy of an existing value.  For example, suppose we write the following 
code:

    MyClass one;
    MyClass two = one;
 
Here, since two is told to hold the value of one, C++ will initialize two as a copy of one.  Although it 
looks like we're assigning a value to two using the = operator, since it is a newly-created object, the 
= indicates initialization, not assignment.  In fact, the above code is equivalent to the more explicit  
initialization code below:
 
    MyClass one;
    MyClass two(one);   // Identical to above.

This syntax makes more clear that two is being created as a copy of one, indicating initialization 
rather than assignment.

2. An object is passed by value to a function.  Consider the following function:

    void MyFunction(MyClass arg) {
         /* ... */
    } 
 
If we write
 
    MyClass mc;
    MyFunction(mc);

Then the function MyFunction somehow has to set up the value of arg inside the function to have 
the same value as mc outside the function.  Since arg is a new variable, C++ will  initialize it as a 
copy of mc.
 

3. An object is returned from a function by value.  Suppose we have the following function: 

    MyClass MyFunction() {
        MyClass mc;
        return mc;
    }
 
When the statement  return mc executes, C++ needs to return the  mc object from the function. 
However,  mc is a local variable inside the  MyFunction function, and to communicate its value to 
the MyFunction caller C++ needs to create a copy of mc before it is lost.  This is done by creating a 
temporary MyClass object for the return value, then initializing it to be a copy of mc.

Notice that in all three cases, initialization took place because some new object was created as a copy of an  
existing object.  In the first case this was a new local variable, in the second a function parameter, and in  
the third a temporary object.

Assignment in C++ is much simpler than initialization and only occurs if an existing object is explicitly  
assigned a new value.   For example,  the following code will  assign two the value of  one,  rather than 
initializing two to one:
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    MyClass one, two;
    two = one;

It can be tricky to differentiate between initialization and assignment because in some cases the syntax is  
almost identical.  For example, if we rewrite the above code as

    MyClass one;
    MyClass two = one;

two is  now  initialized  to  one because  it  is  declared  as  a  new  variable.   Always  remember  that  the 
assignment only occurs when giving an existing object a new value.

Why is it important to differentiate between assignment and initialization?  After all, they're quite similar; 
in both cases we end up with a new copy of an existing object.  However, assignment and initialization are  
fundamentally different operations.  When  initializing a new object as a copy of an existing object, we 
simply need to copy the existing object into the new object.  When assigning an existing object a new value, 
the existing object's value ceases to be and we must make sure to clean up any resources the object may 
have allocated before setting it to the new value.  In other words, initialization is a straight copy, while  
assignment is cleanup followed by a copy.  This distinction will become manifest in the code we will write  
for the copy functions later in this chapter.

Copy Functions: Copy Constructors and Assignment Operators

Because  initialization  and  assignment  are  separate  tasks,  C++  handles  them  through  two  different 
functions called the  copy constructor and the  assignment operator.   The copy constructor  is  a  special 
constructor responsible for initializing new class instances as copies of existing instances of the class.  The 
assignment  operator  is  a  special  function called an  overloaded operator (see  the  chapter  on operator 
overloading  for  more  details)  responsible  for  assigning  the  receiver  object  the  value  of  some  other  
instance of the object.  Thus the code

    MyClass one;
    MyClass two = one;

will initialize two to one using the copy constructor, while the code

    MyClass one, two;
    two = one;

will assign one to two using the assignment operator.

Syntactically, the copy constructor is written as a one-argument constructor whose parameter is another 
instance of the class accepted by reference-to-const.  For example, given the following class:

    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        /* ... */
    };

The copy constructor would be declared as follows:
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    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        MyClass(const MyClass& other); // Copy constructor
    
        /* ... */
    };
    
The syntax for the assignment operator is substantially more complex than that of the copy constructor 
because it is an overloaded operator; in particular,  operator =.   For reasons that will become clearer 
later in the chapter, the assignment operator should accept as a parameter another instance of the class by  
reference-to-const and should return a non-const reference to an object of the class type.  For a concrete 
example, here's the assignment operator for MyClass:

    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        MyClass(const MyClass& other); // Copy constructor
        MyClass& operator = (const MyClass& other); // Assignment operator
        /* ... */
    };

We'll defer discussing exactly why this syntax is correct until later, so for now you should take it on faith.

What C++ Does For You

Unless  you  specify  otherwise,  C++  will  automatically  provide  any  class  you  write  with  a  basic  copy 
constructor and assignment operator that invoke the copy constructors and assignment operators of all 
the  class's  data  members.   In many cases,  this  is  exactly  what  you want.   For  example,  consider  the 
following class:

    class DefaultClass {
    public:
        /* ... */

    private:
        int myInt;
        string myString;
    };

Suppose you have the following code:

    DefaultClass one;
    DefaultClass two = one;

The line  DefaultClass two = one will  invoke  the copy constructor  for  DefaultClass.   Since  we 
haven't  explicitly  provided  our  own  copy  constructor,  C++  will  initialize  two.myInt to  the  value  of 
one.myInt and two.myString to one.myString.  Since int is a primitive and string has a well-defined 
copy constructor, this code is totally fine.
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However, in many cases this is not the behavior you want.  Let's consider the example of a class Vector 
that acts as a wrapper for a dynamic array.  Suppose we define Vector as shown here:

    class Vector {
    public:
        Vector();
        ~Vector();
        /* Note: No copy constructor or assignment operator */

        /* ... */

    private:
        int* elems;
        /* ... */
    };

Here, if  we rely on C++'s default copy constructor or assignment operator, we'll  run into trouble.  For  
example, consider the following code:

    Vector one;
    Vector two = one;

Because we haven't  provided a  copy constructor,  C++ will  initialize  two.elems to  one.elems.   Since 
elems is an int*, instead of getting a deep copy of the elements, we'll end up with two pointers to the 
same array.  Thus changes to one will show up in two and vice-versa.  This is dangerous, especially when 
the destructors for both  one and  two try to deallocate the memory for  elems.  In situations like these, 
you'll need to override C++'s default behavior by providing your own copy constructors and assignment  
operators.

There are a few circumstances where C++ does not automatically provide default copy constructors and 
assignment operators.  If your class contains a reference or const variable as a data member, your class 
will not automatically get an assignment operator.  Similarly, if your class has a data member that doesn't 
have a copy constructor or assignment operator (for example, an ifstream), your class won't be copyable. 
There is one other case involving inheritance where C++ won't automatically create the copy functions for  
you, and in the chapter on inheritance we'll see how to exploit this to disable copying.

The Rule of Three

There's a well-established C++ principle called the “rule of three” that identifies most spots where you'll 
need to write your own copy constructor and assignment operator.  If this were a math textbook, you'd 
probably see the rule of three written out like this:

Theorem (The Rule of Three): If a class has any of the following three member functions:
• Destructor
• Copy Constructor
• Assignment Operator

Then that class should have all three of those functions.

Corollary: If a class has a destructor, it should also have a copy constructor and assignment operator.

The rule of three holds because in almost all situations where you have any of the above functions, C++'s  
default behavior won't correctly manage your objects.  In the above example with Vector, this is the case 
because copying the elems* pointer doesn't actually duplicate the elements array.  Similarly, if you have a 
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class holding an open file handle, making a shallow copy of the object might cause crashes further down 
the line as the destructor of one class closed the file handle, corrupting the internal state of all “copies” of  
that object.

Both C++ libraries and fellow C++ coders will expect that, barring special circumstances, all objects will  
correctly  implement the three above functions,  either by falling back on C++'s  default  versions or  by 
explicitly providing correct implementations.  Consequently, you must keep the rule of three in mind when 
designing classes or you will end up with insidious or seemingly untraceable bugs as your classes start to  
destructively interfere with each other.

Writing Copy Constructors

For the rest of this chapter, we'll discuss copy constructors and assignment operators through a case study  
of a Vector class, a generalization of the above Vector which behaves similarly to the STL vector.  The 
class definition for Vector looks like this:

    template <typename T> class Vector {
    public:
        Vector();
        Vector(const Vector& other);             // Copy constructor
        Vector& operator =(const Vector& other); // Assignment operator
        ~Vector();

        typedef T* iterator;
        typedef const T* const_iterator;

        iterator begin();
        iterator end();
        const_iterator begin() const;
        const_iterator end() const;

        /* ... other member functions ... */
    private:
        T* array;
        size_t allocatedLength;
        size_t logicalLength;
        static const size kStartSize = 16;
    };

Internally,  Vector is  implemented as a  dynamically-allocated array of  elements.   Two data  members, 
allocatedLength and logicalLength, track the allocated size of the array and the number of elements  
stored in it, respectively.  Vector also has a class constant kStartSize that represents the default size of 
the allocated array.

The Vector constructor is defined as

    template <typename T> Vector<T>::Vector() {
        allocatedLength = kStartSize;
        logicalLength = 0;
        array = new T[allocatedLength];
    }

Similarly, the Vector destructor is
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    template <typename T> Vector<T>::~Vector() {
        delete [] array;
    }

Now, let's write the copy constructor.  We know that we need to match the prototype given in the class  
definition, so we'll write that part first:

    template <typename T> Vector<T>::Vector(const Vector& other) {
        /* ... */
    }

Inside the copy constructor, we need to initialize the object so that we're holding a deep copy of the other  
Vector.  This necessitates making a full deep-copy of the other  Vector's array, as well as copying over 
information  about  the  size  and  capacity  of  the  other  Vector.   This  second  step  is  relatively 
straightforward, and can be done as follows:

    template <typename T> Vector<T>::Vector(const DebugVector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        /* ... */
    }

Note that this implementation of the copy constructor sets  logicalLength to  other.logicalLength 
and  allocatedLength to  other.allocatedLength,  even  though  other.logicalLength and 
other.allocatedLength explicitly reference private data members of the  other object.  This is legal 
because other is an object of type Vector and the copy constructor is a member function of Vector.  A 
class can access both its private fields and private fields of other objects of the same type.  This is called 
sibling access and is true of any member function, not just the copy constructor.  If the copy constructor  
were not a member of Vector or if other were not a Vector, this code would not be legal.

Now, we'll make a deep copy of the other Vector's elements by allocating a new array that's the same size 
as other's and then copying the elements over.  The code looks something like this:

    template <typename T> Vector<T>::Vector(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        for(size_t i = 0; i < logicalLength; ++i)
            array[i] = other.array[i];
    }

Interestingly, since  Vector is a template, it's unclear what the line  array[i] = other.array[i] will 
actually do.  If we're storing primitive types, then the line will simply copy the values over, but if we're  
storing objects, the line invokes the class's assignment operator.  Notice that in both cases the object will 
be correctly copied over.  This is one of driving forces behind defining copy constructors and assignment  
operators, since template code can assume that expressions like object1 = object2 will be meaningful.

An alternative means for copying data over from the other object uses the STL copy algorithm.  Recall that 
copy takes three parameters – two delineating an input range of iterators and one denoting the beginning 
of an output range – then copies the specified iterator range to the destination.  Although designed to work 
on iterators, it is possible to apply STL algorithms directly to ranges defined by raw C++ pointers.  Thus we 
could rewrite the copy constructor as follows:
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    template <typename T> Vector<T>::Vector(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Here, the range spanned by other.begin() and other.end() is the entire contents of the other Vector, 
and array is the beginning of the newly-allocated data we've reserved for this Vector.  I personally find 
this syntax preferable to the explicit for loop, since it increases readability.

At this point we have a complete and correct implementation of the copy constructor.  The code for this  
constructor is not particularly dense, and it's remarkably straightforward.  In some cases, however, it can  
be a bit trickier to write a copy constructor.  We'll see some of these cases later in the chapter.

Writing Assignment Operators

We've  now  successfully  written  a  copy  constructor  for  our  Vector class.   Unfortunately,  writing  an 
assignment operator is significantly more involved than writing a copy constructor.  C++ is designed to 
give you maximum flexibility when designing an assignment operator, and thus won't alert you if you've 
written a syntactically legal assignment operator that is completely incorrect.  For example, consider this  
legal but incorrect assignment operator for an object of type MyClass:

    void MyClass::operator =(const MyClass& other) {
        cout << "I'm sorry, Dave.  I'm afraid I can't copy that object." << endl;
    }

Here, if we write code like this:

    MyClass one, two;
    two = one;

Instead of making two a deep copy of one, instead we'll get a message printed to the screen and two will 
remain unchanged.  This is one of the dangers of a poorly-written assignment operator – code that looks 
like it does one thing can instead do something totally different.  This section discusses how to correctly 
implement an assignment operator by starting with invalid code and progressing towards a correct, final 
version.

Let's start off with a simple but incorrect version of the assignment operator for Vector.  Intuitively, since 
both the copy constructor and the assignment operator make a copy of another object, we might consider  
implementing the assignment operator by naively copying the code from the copy constructor into the 
assignment operator.  This results in the following (incorrect!) version of the assignment operator:

    /* Many major mistakes here.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

This code is based off the copy constructor, which we used to initialize the object as a copy of an existing  
object.   Unfortunately,  this code contains a  substantial  number of  mistakes that we'll  need to correct 
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before we end up with the final version of the function.  Perhaps the most serious error here is the line  
array = new T[allocatedLength].  When the assignment operator is invoked, this  Vector already 
holds its own array of elements.  This line therefore orphans the old array and leaks memory.  To fix this, 
before we make this object a copy of the one specified by the parameter, we'll take care of the necessary 
deallocations.  This is shown here:

If you'll notice, we've already written the necessary cleanup code in the DebugVector destructor.  Rather 
than rewriting this code, we'll decompose out the generic cleanup code into a clear function, as shown 
here:

    /* Many major mistakes here.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        delete [] array;
 
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

At this point, we can make a particularly useful observation.  If you'll notice, the cleanup code to free the 
existing array is identical to the code for the destructor, which has the same task.  This is no coincidence.  
In general,  when writing an assignment operator,  the assignment operator will  need to free all  of  the 
resources acquired by the object, much in the same way that the destructor must.  To avoid unnecessary 
code duplication, we can factor out the code to free the Vector's resources into a helper function called 
clear(), which is shown here:

    template <typename T> void Vector<T>::clear() {
        delete [] array;
    }

We can then rewrite the destructor as

    template <typename T> Vector<T>::~Vector() {
        clear();
    }

And we can insert this call to clear into our assignment operator as follows:

    /* This code still has errors.  Do not use it as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        clear();

        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;

        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Along the same lines, you might have noticed that all of the code after the call to clear is exactly the same 
code we wrote inside the body of the copy constructor.  This isn't a coincidence – in fact, in most cases  
you'll have a good deal of overlap between the assignment operator and copy constructor.  Since we can't 
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invoke our own copy constructor directly (or  any constructor, for that matter), instead we'll decompose 
the copying code into a member function called copyOther as follows:

    template <typename T> void Vector<T>::copyOther(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;

        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Now we can rewrite the copy constructor as 

    template <typename T> Vector<T>::Vector(const Vector& other) {
        copyOther(other);
    }

And the assignment operator as 

    /* Not quite perfect yet.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        clear();
        copyOther(other);
    }

This simplifies the copy constructor and assignment operator and highlights the general pattern of what 
the two functions should do.  With a copy constructor, you'll simply copy the contents of the other object.  
With an assignment operator, you'll clear out the receiver object, then copy over the data from another 
object.

However,  we're  still  not  done  yet.   There  are  two  more  issues  we  need  to  fix  with  our  current  
implementation of the assignment operator.  The first one has to do with  self-assignment.  Consider, for 
example, the following code:

    MyClass one;
    one = one;

While  this  code  might  seem  a  bit  silly,  cases  like  this  come  up  frequently  when  accessing  elements  
indirectly  through  pointers  or  references.   Unfortunately,  with  our  current  DebugVector assignment 
operator, this code will lead to unusual runtime behavior, possibly including a crash.  To see why, let's trace 
out the state of our object when its assignment operator is invoked on itself.

At the start of the assignment operator, we call clear to clean out the object for the copy.  During this call 
to clear, we deallocate the memory associated with the object.  We then invoke the copyOther function 
to  set  the  current  object  to be  a  copy of  the  receiver  object.   Unfortunately,  things  don't  go  quite  as 
expected.  Because we're assigning the object to itself, the parameter to the assignment operator is the  
receiver object itself.  This means that when we called clear trying to clean up the resources associated 
with  the  receiver  object,  we  also  cleaned up  all  the  resources  associated  with  the  parameter  to  the  
assignment operator.  In other words, clear destroyed both the data we wanted to clean up and the data 
we were meaning to copy.  The call to copyOther will therefore copy garbage data into the receiver object, 
since the resources it means to copy have already been cleaned up.  This is extremely bad, and will almost  
certainly cause a program crash.
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When writing assignment operators, you  must ensure that your code correctly handles self-assignment. 
While there are many ways we can do this, perhaps the simplest is to simply check to make sure that the  
object to copy isn't the same object pointed at by the this pointer.  The code for this logic looks like this:

    /* Not quite perfect yet.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        if(this != &other) {
            clear();
            copyOther(other);
        }
    }

Note that we check if(this != &other).  That is, we compare the addresses of the current object and 
the parameter.  This will determine whether or not the object we're copying is exactly the same object as  
the one we're working with.  In the practice problems for this chapter, you'll explore what would happen if 
you were to write if(*this != other).  One detail worth mentioning is that the self-assignment check 
is not necessary in the copy constructor, since an object can't be a parameter to its own constructor.

There's one final bug we need to sort out, and it has to do with how we're legally allowed to use the  = 
operator.  Consider, for example, the following code:

    MyClass one, two, three;
    three = two = one;

This code is equivalent to three = (two = one).  Since our current assignment operator does not return 
a value, (two = one) does not have a value, so the above statement is meaningless and the code will not  
compile.  We thus need to change our assignment operator so that performing an assignment like two = 
one yields a value that can then be assigned to other values.  The final version of our assignment operator 
is thus

    /* The correct version of the assignment operator. */
    template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other) {
        if(this != &other) {
            clear();
            copyOther(other);
        }
        return *this;
    }

One General Pattern

Although  each  class  is  different,  in  many  cases  the  default  constructor,  copy  constructor,  assignment 
operator, and destructor will share a general pattern.  Here is one possible skeleton you can fill in to get  
your copy constructor and assignment operator working.

MyClass::MyClass() : /* Fill in initializer list. */ {
    /* Default initialization here. */
}

MyClass::MyClass(const MyClass& other) {
    copyOther(other);
}
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MyClass& MyClass::operator =(const MyClass& other) {
    if(this != &other) {
        clear();
        // Note: When we cover inheritance, there's one more step here.
        copyOther(other);
    }
    return *this;
}

MyClass::~MyClass() {
    clear();
}

Semantic Equivalence and copyOther Strategies

Consider the following code snippet:

    Vector<int> one;
    Vector<int> two = one;

Here, we know that two is a copy of one, so the two objects should behave identically to one another.  For 
example,  if  we  access  an  element  of  one,  we  should  get  the  same  value  as  if  we  had  accessed  the 
corresponding element of  two and vice-versa.  However, while  one and  two are indistinguishable from 
each other in terms of functionality, their memory representations are not identical because one and two 
point  to  two  different  dynamically-allocated  arrays.   This  raises  the  distinction  between  semantic  
equivalence and bitwise equivalence.  Two objects are said to be  bitwise equivalent if they have identical 
representations in memory.  For example, any two ints with the value 137 are bitwise equivalent, and if 
we define a  pointT struct as a pair of ints, any two  pointTs holding the same values will be bitwise 
equivalent.  Two objects are semantically equivalent if, like one and two, any operations performed on the 
objects will yield identical results.  When writing a copy constructor and assignment operator, you attempt 
to convert an object into a semantically equivalent copy of another object.  Consequently, you are free to 
pick any copying strategy that creates a semantically equivalent copy of the source object.

In the preceding section, we outlined one possible implementation strategy for a copy constructor and 
assignment operator that uses a shared function called copyOther.  While in the case of the DebugVector 
it was relatively easy to come up with a working copyOther implementation, when working with more 
complicated  objects,  it  can  be  difficult  to  devise  a  working  copyOther.   For  example,  consider  the 
following class, which represents a mathematical set implemented as a linked list:
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    template <typename T> class ListSet {
    public:
        ListSet();
        ListSet(const ListSet& other);
        ListSet& operator =(const ListSet& other);
        ~ListSet();

        void insert(const T& toAdd);
        bool contains(const T& toFind) const;

    private:
        struct cellT {
            T data;
            cellT* next;
        };
        cellT* list;

        void copyOther(const ListSet& other);
        void clear();
    };

This ListSet class exports two functions, insert and contains, that insert an element into the list and 
determine whether the list contains an element, respectively.  This class represents a mathematical set, an  
unordered collection of elements, so the underlying linked list need not be in any particular order.  For 
example,  the  lists  {0, 1, 2, 3, 4} and  {4, 3, 2, 1, 0} are  semantically  equivalent  because 
checking whether a number is an element of the first list yields the same result as checking whether the 
number is in the second.  In fact, any two lists containing the same elements are semantically equivalent to  
one another.  This means that there are multiple ways in which we could implement copyOther.  Consider 
these two:

    /* Version 1: Duplicate the list as it exists in the original ListSet. */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        /* Keep track of what the current linked list cell is. */
        cellT** current = &list;
    
        /* Iterate over the source list. */
        for(cellT* source = other.list; source != NULL; source = source->next) {
            /* Duplicate the cell. */
            *current = new cellT;
            (*current)->data = source->data;
            (*current)->next = NULL;
    
            /* Advance to next element. */
            current = &((*current)->next);
        }
    } 

    /* Version 2: Duplicate list in reverse order of original ListSet */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        for(cellT* source = other.list; source != NULL; source = source->next) {
            cellT* newNode = new cellT;
            newNode->data = source->data;
            newNode->next = list;
            list = newNode;
        }
    }
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As you can see, the second version of this function is much,  much cleaner than the first.  There are no 
address-of operators floating around, so everything is expressed in terms of simpler pointer operations.  
But while the second version is cleaner than the first, it duplicates the list in reverse order.  This may 
initially seem problematic but is actually perfectly safe.  As the original object and the duplicate object  
contain the same elements in some order, they will be semantically equivalent, and from the class interface 
we would be unable to distinguish the original object and its copy.

There is  one implementation of  copyOther that  is  considerably more elegant  than either  of  the  two 
versions listed above:

    /* Version 3: Duplicate list using the insert function */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        for(cellT* source = other.list; source != NULL; source = source->next)
            insert(source->data);
    }

Notice that this implementation uses the ListSet's public interface to insert the elements from the source 
ListSet into the receiver object.  This version of  copyOther is unquestionably the cleanest.  If you'll 
notice, it doesn't matter exactly how insert adds elements into the list (indeed, insert could insert the 
elements at random positions), but we're guaranteed that at the end of the copyOther call, the receiver 
object will be semantically equivalent to the parameter.

Conversion Assignment Operators

When  working  with  copy  constructors,  we  needed  to  define  an  additional  function,  the  assignment 
operator, to handle all the cases in which an object can be copied or assigned.  However, in the chapter on  
conversion  constructors,  we  provided  a  conversion  constructor  without  a  matching  “conversion 
assignment operator.”  It turns out that this is not a problem because of how the assignment operator is  
invoked.  Suppose that we have a CString class that has a defined copy constructor, assignment operator, 
and conversion constructor that converts raw C++ char * pointers into CString objects.  Now, suppose 
we write the following code:

    CString myCString;
    myCString = "This is a C string!";

Here, in the second line, we assign an existing CString a new value equal to a raw C string.  Despite the 
fact that we haven't defined a special assignment operator to handle this case, the above is perfectly legal 
code.  When we write the line

    myCString = "This is a C string!";

C++ converts it into the equivalent code

    myCString.operator= ("This is a C string!");

This syntax may look entirely foreign, but is simply a direct call to the assignment operator.  Recall that the 
assignment operator is a function named operator =, so this code passes the C string  "This is a C 
string!" as a parameter to operator =.  Because operator = accepts a CString object rather than a 
raw C string, C++ will invoke the CString conversion constructor to initialize the parameter to operator 
=.  Thus this code is equivalent to 

    myCString.operator =(CString("This is a C string!"));
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In other words,  the conversion constructor converts the raw C string into a  CString object,  then the 
assignment operator sets the receiver object equal to this temporary CString.

In  general,  you  need  not  provide  a  “conversion  assignment  operator”  to  pair  with  a  conversion 
constructor.   As  long  as  you've  provided  well-defined  copy  behavior,  C++  will  link  the  conversion 
constructor and assignment operator together to perform the assignment.

Disabling Copying

In CS106B/X we provide you the DISALLOW_COPYING macro, which causes a compile error if you try to 
assign or copy objects of the specified type.  DISALLOW_COPYING, however, is not a standard C++ feature. 
Without using the CS106B/X library,  how can we replicate the functionality?  We can't prevent object 
copying by simply not defining a copy constructor and assignment operator.  All this will do is have C++  
provide its own default version of these two functions, which is not at all what we want.  To solve this  
problem, instead we'll provide an assignment operator and copy constructor, but declare them private so 
that class clients can't access them.  For example:

    class CannotBeCopied {
    public:
        CannotBeCopied();
        /* Other member functions. */

    private:
        CannotBeCopied(const CannotBeCopied& other);
        CannotBeCopied& operator = (const CannotBeCopied& other);
    };

Now, if we write code like this:

    CannotBeCopied one;
    CannotBeCopied two = one;

We'll get a compile-time error on the second line because we're trying to invoke the copy constructor,  
which has been declared private.  We'll get similar behavior when trying to use the assignment operator.

This trick is almost one hundred percent correct, but does have one edge case: what if we try to invoke the  
copy constructor or assignment operator inside a member function of the class?  The copy functions might 
be private, but that doesn't mean that they don't exist, and if we call them inside a member function might  
accidentally create a copy of an otherwise uncopyable object.  To prevent this from happening, we'll use a  
cute trick.  Although we'll  prototype the copy functions inside the private section of the class, we won't 
implement them.  This means that if we accidentally do manage to call either function, we will get a linker 
error because the compiler can't find code for either function.  This is admittedly a bit hackish, so in C+
+0x, the next revision of C++, there will be a way to explicitly indicate that a class is uncopyable.  In the  
meantime, though, the above approach is perhaps your best option.  We'll see another way to do this later  
when we cover inheritance.

Extended Example: SmartPointer

In C++ parlance, a raw pointer like an int* or a  char* is sometimes called a  dumb pointer because the 
pointer has no “knowledge” of the resource it owns.  If an  int* goes out of scope, it doesn't inform the 
object it's pointing at and makes no attempt whatsoever to clean it up.  The int* doesn't own its resource, 
and assigning one int* to another doesn't make a deep copy of the resource or inform the other int* that 
another pointer now references its pointee.
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Because raw pointers are so problematic, many C++ programmers prefer to use  smart pointers, objects 
that mimic raw pointers but which perform functions beyond merely pointing at a resource.  For example,  
the C++ standard library class auto_ptr, which we'll cover in the chapter on exception handling, acts like 
a regular pointer except that it automatically calls  delete on the resource it owns when it goes out of 
scope.  Other smart pointers are custom-tuned for specific applications and might perform functions like 
logging  access,  synchronizing  multithreaded  applications,  or  preventing  accidental  null  pointer 
dereferences.  Thanks to operator overloading, smart pointers can be built to look very similar to regular  
C++ pointers.  We can provide an implementation of  operator * to support dereferences like  *myPtr, 
and can define operator -> to let clients write code to the effect of myPtr->clear().  Similarly, we can 
write copy constructors and assignment operators for smart pointers that do more than just transfer a 
resource.

Reference Counting

Memory management in C++ is tricky.  You must be careful to balance every new with exactly one delete, and 
must make sure that no other pointers to the resource exist after delete-ing it to ensure that later on you don't 
access invalid memory.  If you  delete memory too many times you run into undefined behavior, and if you 
delete it too few you have a memory leak.  Is there a better way to manage memory?  In many cases, yes, and 
in this extended example we'll see one way to accomplish this using a technique called reference counting.  In 
particular, we'll design a smart pointer class called SmartPointer which acts like a regular C++ pointer, except 
that it uses reference counting to prevent resource leaks.

To motivate reference counting, let's suppose that we have a smart pointer class that stores a pointer to a  
resource.   The destructor for this smart pointer class can then  delete the resource automatically,  so 
clients  of  the  smart  pointer  never  need  to  explicitly  clean  up  any  resources.   This  system  is  fine  in 
restricted circumstances, but runs into trouble as soon as we have several smart pointers pointing to the 
same resource.  Consider the scenario below:

Smart 
Pointer

Resource

Smart 
Pointer

Both of these pointers can access the stored resource, but unfortunately neither smart pointer knows of 
the      other's existence.  Here we hit a snag.  If one smart pointer cleans up the resource while the other  
still points to it, then the other smart pointer will point to invalid memory.  If both of the pointers try to  
reclaim the dynamically-allocated memory, we will encounter a runtime error from double-delete-ing a 
resource.  Finally, if neither pointer tries to clean up the memory, we'll get a memory leak.

To resolve this problem, we'll use a system called reference counting where we will explicitly keep track of 
the number of pointers to a dynamically-allocated resource.  While there are several ways to make such a 
system work, perhaps the simplest is to use an intermediary object.  This can be seen visually:
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Smart 
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Now, the smart pointer stores a pointer to an intermediary object rather than a pointer directly to the  
resource.  This intermediary object has a counter (called a  reference counter) that tracks the number of 
smart pointers accessing the resource, as well as a pointer to the managed resource.  This intermediary 
object lets the smart pointers tell whether or not they are the only pointer to the stored resource; if the 
reference count is anything other than one, some other pointer shares the resource.  Provided that we 
accurately track the reference count,  each pointer can tell  if  it's the last pointer that knows about the  
resource and can determine whether to deallocate it.

To see how reference counting works, let's walk through an example.  Given the above system, suppose 
that we want to share the resource with another smart pointer.  We simply make this new smart pointer 
point  to the  same intermediary object  as  our  original  pointer,  then update  the  reference count.   The 
resulting scenario looks like this:

Smart 
Pointer

Resource
Intermediary

2

Smart 
Pointer

Although in this diagram we only have two objects pointing to the intermediary, the reference-counting 
system allows for any number of smart pointers to share a single resource.

Now, suppose one of  these  smart  pointers needs to stop pointing to the resource –  maybe it's  being  
assigned to a different resource, or perhaps it's going out of scope.  That pointer decrements the reference  
count of the intermediary variable and notices that the reference count is nonzero.  This means that at 
least one smart pointer still references the resource, so the smart pointer simply leaves the resource as it  
is.  Memory now looks like this:
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Finally,  suppose  this  last  smart  pointer  needs  to  stop  pointing  to  this  resource.   It  decrements  the  
reference count, but this time notices that the reference count is zero.  This means that no other smart  
pointers reference this resource, and the smart pointer knows that it needs to deallocate the resource and 
the intermediary object, as shown here:

The resource has now been deallocated and no other pointers reference the memory.  We've safely and  
effectively cleaned up our resources.   Moreover,  this process is completely automatic – the user never 
needs to explicitly deallocate any memory.

The following summarizes the reference-counting scheme described above:

• When creating a smart pointer to manage newly-allocated memory, first create an intermediary 
object and make the intermediary point to the resource.  Then, attach the smart pointer to the  
intermediary and set the reference count to one.

• To make a new smart pointer point to the same resource as an existing one, make the new smart  
pointer point to the old smart pointer's  intermediary object and increment the intermediary's 
reference count.

• To remove  a  smart  pointer  from  a  resource (either  because  the  pointer  goes  out  of  scope  or 
because it's being reassigned), decrement the intermediary object's reference count.  If the count  
reaches zero, deallocate the resource and the intermediary object.

While  reference counting  is  an excellent  system for  managing memory automatically,  it  does have its 
limitations.  In particular, reference counting can sometimes fail to clean up memory in “reference cycles,”  
situations where multiple reference-counted pointers hold references to one another.   If  this happens, 
none of the reference counters can ever drop to zero, since the cyclically-linked elements always refer to 
one another.  But barring this sort of setup, reference counting is an excellent way to automatically manage 
memory.  In this extended example, we'll see how to implement a reference-counted pointer, which we'll 

Smart 
Pointer

Resource

Intermediary

0
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call  SmartPointer, and will explore how the correct cocktail of C++ constructs can make the resulting  
class slick and efficient.

Designing SmartPointer

The above section details the implementation the  SmartPointer class, but we have not talked about its 
interface.   What functions should we provide?  We'll  try to make  SmartPointer resemble a raw C++ 
pointer as closely as possible, meaning that it should support operator * and operator -> so that the 
client can dereference the SmartPointer.  Here is one possible interface for the SmartPointer class:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;
    };

Here is a breakdown of what each of these functions should do:

explicit SmartPointer(T* memory);

Constructs a new SmartPointer that manages the resource specified as the parameter.  The reference 
count is initially set to one.  We will assume that the provided pointer came from a call to  new.   This 
function  is  marked  explicit so  that  we  cannot  accidentally  convert  a  regular  C++  pointer  to  a 
SmartPointer.  At first this might seem like a strange design decision, but it prevents a wide range of 
subtle bugs.  For example,  suppose that this constructor is not  explicit and consider the following 
function:

void PrintString(const SmartPointer<string>& ptr) {
    cout << *ptr << endl;
}

This function accepts a  SmartPointer by reference-to-const, then prints out the stored string.  Now, 
what happens if we write the following code?

string* ptr = new string("Yay!");
PrintString(ptr);
delete ptr;

The  first  line  dynamically-allocates  a  string,  passes  it  to  PrintString,  and  finally  deallocates  it. 
Unfortunately, this code will almost certainly cause a runtime crash.  The problem is that PrintString 
expects a SmartPointer<string> as a parameter, but we've provided a string*.  C++ notices that the 
SmartPointer<string> has a conversion constructor that accepts a string*, and makes a temporary 
SmartPointer<string> using the pointer we passed as a parameter.  This new SmartPointer starts 
tracking the pointer with a reference count of one.  After the function returns, the parameter is cleaned 
up and its destructor invokes.  This decrements the reference count to zero, and then deallocates the  
pointer stored in the SmartPointer.  The above code then tries to delete ptr a second time, causing a 
runtime crash. To prevent this problem, we'll mark the constructor explicit, which makes the implicit 
conversion illegal and prevents this buggy code from compiling.
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SmartPointer(const SmartPointer& other);

Constructs a new SmartPointer that shares the resource contained in another SmartPointer, updating 
the reference count appropriately.

SmartPointer& operator=(const SmartPointer& other);

Causes this  SmartPointer to stop pointing to the resource it's currently managing and to share the 
resource held by another  SmartPointer.   If the smart pointer was the last pointer to its resource, it 
deletes it.

~SmartPointer();

Detaches the SmartPointer from the resource it's sharing, freeing the associated memory if necessary.

T& operator* () const;

“Dereferences” the pointer and returns a reference to the object being pointed at.  Note that  operator* is 
const; see the last chapter for more information why.

T* operator-> () const;

Returns  the  object  that  the  arrow  operator  should  really  be  applied  to  if  the  arrow  is  used  on  the  
SmartPointer.  Again, see the last chapter for more information on this.

Given this public interface for SmartPointer, we can now begin implementing the class.  We first need to 
decide on how we should represent the reference-counting information.  One simple method is to define a 
private struct inside SmartPointer that represents the reference-counting intermediary.  This looks as 
follows:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    };

Here, the resource field of the Intermediary is the actual pointer to the stored resource and refCount 
is the reference count.  Notice that we did not declare the reference count as a direct data member of the  
SmartPointer, but rather in the Intermediary object.  This is because the reference count of a resource 
is not owned by any one  SmartPointer, but rather is shared across all  SmartPointers that point to a 
particular resource.  This way, any changes to the reference count by one  SmartPointer will  become 
visible in all of the other SmartPointers referencing the resource.  You might ask – could we have made 
the  refCount a  static data  member?   This  would  indeed make  the  reference  count  visible  across 
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multiple  SmartPointers,  but  unfortunately  it  won't  work  out  correctly.   In  particular,  if  we  use 
SmartPointer to manage multiple resources, each one needs to have its own refCount or changes to the 
refCount for a particular resource will show up in the refCount for other resources.

Given this setup, we can implement the SmartPointer constructor by creating a new Intermediary that 
points to the specified resource and has an initial reference count of one:

    template <typename T> SmartPointer<T>::SmartPointer(T* res) {
        data = new Intermediary;
        data->resource = res;
        data->refCount = 1;
    }

It's very important that we allocate the Intermediary object on the heap rather than as a data member. 
That way, when the  SmartPointer is cleaned up (either by going out of scope or by an explicit call to  
delete), if it isn't the last pointer to the shared resource, the intermediary object isn't cleaned up.

We  can  similarly  implement  the  destructor  by  decrementing  the  reference  count,  then  cleaning  up 
memory if appropriate.  Note that if the reference count hits zero, we need to delete both the resource and 
the intermediary.  Forgetting to deallocate either of these leads to memory leaks, the exact problem we 
wanted to avoid.  The code for this is shown here:

    template <typename T> SmartPointer<T>::~SmartPointer() {
        --data->refCount;
        if(data->refCount == 0) {
            delete data->resource;
            delete data;
        }
    }

This is an interesting destructor in that it isn't guaranteed to actually clean up any memory.  Of course, this  
is exactly the behavior we want, since the memory might be shared among multiple SmartPointers.

Implementing operator * and operator -> simply requires us to access the pointer stored inside the 
SmartPointer.  These two functions can be implemented as follows:*

    template <typename T> T& SmartPointer<T>::operator * () const {
        return *data->resource;
    }
    template <typename T> T* SmartPointer<T>::operator -> () const {
        return data->resource;
    }

Now, we need to implement the copy behavior for this  SmartPointer.   One way to do this is to write 
helper functions clear and copyOther which perform deallocation and copying.  We will use a similar 

* It is common to see operator -> implemented as

RetType* MyClass::operator -> () const
{
    return &**this;
}

&**this is interpreted by the compiler as &(*(*this)), which means “dereference the this pointer to get the receiver 
object, then dereference the receiver.  Finally, return the address of the referenced object.”  At times this may be the  
best way to implement operator ->, but I advise against it in general because it's fairly cryptic.
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approach here, except using functions named detach and attach to make explicit the operations we're 
performing.  This leads to the following definition of SmartPointer:
    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;

        void detach();
        void attach(Intermediary* other);
    };

Now, what should these functions do?  The first of these, detach, should detach the SmartPointer from 
the shared intermediary and clean up the memory if it was the last pointer to the shared resource.  In case  
this sounds familiar, it's because this is exactly the behavior of the  SmartPointer destructor.  To avoid 
code duplication, we'll move the code from the destructor into detach as shown here:

    template <typename T> void SmartPointer<T>::detach() {
        --data->refCount;
        if(data->refCount == 0) {
            delete data->resource;
            delete data;
        }
    }

We can then implement the destructor as a wrapped call to detach, as seen here:

    template <typename T> SmartPointer<T>::~SmartPointer() {
        detach();
    }

The attach function, on the other hand, makes this SmartPointer begin pointing to the specified Intermediary 
and increments the reference count.  Here's one possible implementation of attach:

    template <typename T> void SmartPointer<T>::attach(Intermediary* to) {
        data = to;
        ++data->refCount;
    }

Given  these  two  functions,  we  can  implement  the  copy  constructor  and  assignment  operator  for  
SmartPointer as follows:
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    template <typename T> SmartPointer<T>::SmartPointer(const SmartPointer& other){
        attach(other.data);
    }

    template <typename T>
    SmartPointer<T>& SmartPointer<T>::operator= (const SmartPointer& other) {
        if(this != &other) {
            detach();
            attach(other.data);
        }
        return *this;
    }

It is crucial that we check for self-assignment inside the  operator= function, since otherwise we might 
destroy the data that we're trying to keep track of!

At this point we have a rather slick SmartPointer class.  Here's some code demonstrating how a client 
might use SmartPointer:

    SmartPointer<string> myPtr(new string);
    *myPtr = "This is a string!";
    cout << *myPtr << endl;

    SmartPointer<string> other = myPtr;
    cout << *other << endl;
    cout << other->length() << endl;

The beauty of this code is that client code using a SmartPointer<string> looks almost identical to code 
using a regular C++ pointer.  Isn't operator overloading wonderful?

Extending SmartPointer

The SmartPointer defined above is useful but lacks some important functionality.  For example, suppose 
that we have the following function:

    void DoSomething(string* ptr);

Suppose that we have a  SmartPointer<string> managing a resource and that we want to pass the 
stored string as a parameter to  DoSomething.  Despite the fact that  SmartPointer<string> mimics a 
string*,  it  technically  is  not  a  string* and  C++  won't  allow  us  to  pass  the  SmartPointer into 
DoSomething. Somehow we need a way to have the SmartPointer hand back the resource it manages.

Notice that the only SmartPointer member functions that give back a pointer or reference to the actual 
resource are operator* and operator->.  Technically speaking, we could use these functions to pass the 
stored  string into  DoSomething,  but  the  syntax  would  be  messy  (in  the  case  of  operator*)  or 
nightmarish (for operator ->).  For example:
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   SmartPointer<string> myPtr(new string);

    /* To use operator* to get the stored resource, we have to first dereference 
     * the SmartPointer, then use the address-of operator to convert the returned
     * reference into a pointer.
     */
    DoSomething(&*myPtr);

    /* To use operator-> to get the stored resource, we have to explicitly call the
     * operator-> function.  Yikes!
     */
    DoSomething(myPtr.operator-> ());

Something is clearly amiss and we cannot reasonably expect clients to write code like this routinely.  We'll  
need to extend the  SmartPointer class  to provide a way to return the stored pointer  directly.   This 
necessitates the creation of a new member function, which we'll call get, to do just that.  Given a function 
like this, we could then invoke DoSomething as follows:

DoSomething(myPtr.get());

The updated interface for SmartPointer looks like this:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();
    
        T& operator *  () const;
        T* operator -> () const;

        T* get() const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    
        void detach();
        void attach(Intermediary* other);
    };

The implementation of get is fairly straightforward and is shown here:

    template <typename T> T* SmartPointer<T>::get() const {
        return data->resource;
    }

Further Extensions

There are several more extensions to the SmartPointer class that we might want to consider, of which 
this section explores two.  The first is rather straightforward.  At times, we might want to know exactly 
how many  SmartPointers share a resource.  This might enable us to perform some optimizations,  in 
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particular  a  technique called  copy-on-write.   We will  not  explore  this  technique here,  though  you are 
encouraged to do so on your own.

Using  the  same  logic  as  above,  we'll  define  another  member  function  called  getShareCount which 
returns the number of SmartPointers pointing to the managed resource (including the receiver object). 
This results in the following class definition:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

        T*  get() const;
        size_t getShareCount() const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    
        void detach();
        void attach(Intermediary* other);
    };

And the following implementation:

    template <typename T> size_t SmartPointer<T>::getShareCount() const {
        return data->refCount;
    }

The last  piece of  functionality  we'll  consider  is the  ability  to “reset”  the  SmartPointer to  point  to a 
different resource.  When working with a  SmartPointer,  at times we may just want to drop whatever 
resource we're  holding  and begin  managing a  new one.   As you might  have suspected,  we'll  add yet  
another member function called reset which resets the SmartPointer to point to a new resource.  The 
final interface and code for reset is shown here:
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    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

        T*     get() const;
        size_t getShareCount() const;
        void   reset(T* newRes);

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;

        void detach();
        void attach(Intermediary* other);
    };

    template <typename T> void SmartPointer<T>::reset(T* newRes) {
        /* We're no longer associated with our current resource, so drop it. */
        detach();

        /* Attach to a new intermediary object. */
        data = new Intermediary;
        data->resource = newRes;
        data->refCount = 1
    }

Practice Problems

The only way to learn copy constructors and assignment operators is to play around with them to gain 
experience.  Here are some practice problems and thought questions to get you started:

1. When is the copy constructor invoked?
 

2. When is the assignment operator invoked?
 

3. What is the signature of the copy constructor?
 

4. What is the signature of the assignment operator?
 

5. What is the rule of three?  What are the “three” it refers to?
 

6. What is the behavior of the default-generated copy constructor and assignment operator?
 

7. Why does the assignment operator have to check for self-assignment but the copy constructor not 
need to check for “self-initialization?”
 

8. What is bitwise equivalence?  What is semantic equivalence?  Which of the two properties should 
be guaranteed by the two copy functions? 
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9. What is a smart pointer?
 

10. What is reference-counting?
 

11. Realizing  that  the  copy  constructor  and  assignment  operator  for  most  classes  have  several  
commonalities, you decide to implement a class's copy constructor using the class's assignment 
operator. For example, you try implementing the Vector's copy constructor as
 
    template <typename T> Vector<T>::Vector(const Vector& other) {
        *this = other;
    }
 
(Since  this is a pointer to the receiver object,  *this is the receiver object, so  *this = other 
means to assign the receiver object the value of the parameter other)
 
This idea, while well-intentioned, has a serious flaw that causes the copy constructor to almost 
always cause a crash.  Why is this? (Hint: Were any of the Vector data members initialized before  
calling the assignment operator?  Walk through the assignment operator and see what happens if the  
receiver object's data members haven't been initialized.)

12. It is illegal to write a copy constructor that accepts its parameter by value.  Why is this?  However,  
it's perfectly acceptable to have an assignment operator that accepts its parameter by value.  Why 
is this legal?  Why the difference?
 

13. An alternative implementation of the assignment operator uses a technique called copy-and-swap. 
The copy-and-swap approach is broken down into two steps.  First, we write a member function  
that accepts a reference to another instance of the class, then exchanges the data members of the  
receiver object and the parameter.  For example, when working with the DebugVector, we might 
write a function called swapWith as follows:
 
  template <typename ElemType> void Vector<ElemType>::swapWith(Vector& other)
  {
      swap(array, other.array);
      swap(logicalLength, other.logicalLength);
      swap(allocatedLength, other.allocatedLength);
  }
 
Here, we use the STL swap algorithm to exchange data members.  Notice that we never actually 
make a deep-copy of any of the elements in the array – we simply swap pointers with the other  
DebugVector.  We can then implement the assignment operator as follows:
  
  template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other)
  {
      DebugVector temp(other);
      swapWith(temp);
      return *this;
  }

Trace through this implementation of the assignment operator and explain how it sets the receiver 
object to be a deep-copy of the parameter.  What function actually deep-copies the data?  What 
function is responsible for cleaning up the old data members?
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14. When writing an assignment operator using the pattern covered earlier in the chapter, we had to 
explicitly check for self-assignment in the body of the assignment operator.  Explain why this is no  
longer necessary using the copy-and-swap approach, but why it still might be a good idea to insert 
the self-assignment check anyway. 
 

15. A singleton class is a class that can have at most one instance.  Typically, a singleton class has its 
default  constructor  and destructor  marked private  so  that  clients  cannot  instantiate  the  class 
directly, and exports a static member function called getInstance() that returns a reference to 
the only instance of the class.  That one instance is typically a private static data member of the 
class.  For example:
 
    class Singleton {
    public:
        static Singleton& getInstance();

    private:
        Singleton();  // Clients cannot call this function; it's private
        ~Singleton(); // ... nor can they call this one

        static Singleton instance; // ... but they can be used here because
                                   // instance is part of the class.
    };
 
Singleton Singleton::instance;
 
Does it make sense for a singleton class to have a copy constructor or assignment operator?  If so,  
implement them.  If not, modify the Singleton interface so that they are disabled.

16. Given  this  chapter's  description  about  how  to  disable  copying  in  a  class,  implement  a  macro 
DISALLOW_COPYING that  accepts  as  a  parameter  the  name  of  the  current  class  such  that  if 
DISALLOW_COPYING is placed into the private section of a class, that class is uncopyable.  Note that  
it is legal to create macros that span multiple lines by ending each line with the \ character.  For 
example, the following is all one macro:
 
#define CREATE_PRINTER(str) void Print##str() {\
    cout << #str << endl;\
}

17. Consider the following alternative mechanism for disabling copying in a class: instead of marking 
those  functions  private,  instead  we  implement  those  functions,  but  have  them  call  abort (a 
function from  <cstdlib> that immediately terminates the program) after printing out an error 
message.  For example:

    class PseudoUncopyable {
    public:
        PseudoUncopyable(const PseudoUncopyable& other) {
            abort();
        }
        PseudoUncopyable& operator= (const PseudoUncopyable& other) {
            abort();
            return *this; // Never reached; suppresses compiler warnings
        }
    };
 
Why is this approach a bad idea?
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18. Should you copy  static data members in a copy constructor or assignment operator?  Why or 
why not?
 

19. In the canonical implementation of the assignment operator we saw earlier in this chapter, we 
used the check if (this != &other) to avoid problems with self-assignment.  In this exercise, 
we'll see what happens if we replace this check with if (*this != other).
 
1. What is the meaning of if (*this != other)?  Will this code compile for any class, or does 

that class have to have a special property?
 

2. Will the check if (*this != other) correctly detect whether an object is being assigned to 
itself? Will it detect anything else? 

3. Assume  that  the  Vector has  an  implementation  of  operator!= that  checks  whether  the 
operands have exactly the same size and elements.  What is the asymptotic (big-O) complexity 
of the check if(*this != other)?  How about if (this != &other)?  Does this give you 
a better sense why the latter is preferable to the former?
 

20. In  a  sense,  our  implementation  of  the  Vector assignment  operator  is  wasteful.   It  works  by 
completely discarding the internal array, then constructing a new array to hold the other Vector's 
elements.  An alternative implementation would work as follows.  If the other Vector's elements 
can fit in the space currently allocated by the Vector, then the elements from the other  Vector 
are copied directly into the existing space.  Otherwise, new space is allocated as before.  Rewrite  
the Vector's operator= function using this optimization.  Why won't this technique work for the 
copy constructor?


