
Chapter 9: Refining Abstractions
_________________________________________________________________________________________________________

In the previous chapter, we explored the class concept and saw how to use classes to model an interface paired with an implementation.  You learned how to realize the idealized versions of abstraction and en-capsulation  using the public and private keywords, as well as how to use constructors to enforce class invariants.  However, our tour of classes has just begun, and there are many nuances of class design we  have yet to address.  For example, since class clients cannot look at the class implementation, how can they tell which parts of the public interface are designed to read the class's state and which parts will write it? How can you more accurately control  how constructors initialize data?  And how can you share data  across all instances of a class?  These questions are all essentially variants on a common theme: how can  we refine our abstractions to make them more precise?This chapter explores some of C++'s language features that allow you as a programmer to more clearly communicate your intentions when designing classes.  The tools you will learn in this chapter will follow you through the rest of your programming career, and appreciating exactly where each is applicable will give you a significant advantage when designing software.
Parameterizing Classes with TemplatesOne of the most important lessons an upstart computer scientist or software engineer can learn is decom-
position or factoring – breaking problems down into smaller and smaller pieces and solving each subprob-lem separately.  At the heart of decomposition is the concept of generality – code should avoid overspecial-izing on a single problem and should be robust enough to adapt to other situations.  Take as an example the STL.  Rather than specializing the STL container classes on a single type, the authors decided to para -meterize the containers over the types they store.  This means that the code written for the vector class can be used to store almost any type, and the map can use arbitrary types as key/value pairs.  Similarly, the STL algorithms were designed to operate on all types of iterators rather than on specific container classes,  making them flexible and adaptable.The STL is an excellent example of how versatile, flexible, and powerful C++ templates can be.  In C++ a  
template is just that – a code pattern that can be instantiated to produce a type or function that works on  an arbitrary type.  Up to this point you've primarily been a client of template code, and now it's time to gear up to write your own templates.  In this section we'll cover the basics of templates and give a quick  tour of how template classes operate under the hood.  We will make extensive use of templates later in this text and especially in the extended examples, and hopefully by the time you've finished reading this book you'll have an appreciation for just how versatile templates can be.
Class TemplatesIn C++, a class template is a class that, like the STL vector or map, is parameterized over some number of types.  In a sense, a class template is a class with a hole in it.  When a client uses a template class, she fills  in these holes to yield a complete type.  You have already seen this with the STL containers: you cannot create  a  variable  of  type  vector or  map,  though  you  can create  a  variable  of  type  vector<int> or 
map<string, string>.Class templates are most commonly used to create types that represent particular data structures.  For ex -ample, the vector class template is an implementation of a linear sequence using a dynamically-allocated array as an implementation.  The operations that maintain the dynamic array are more or less independ-



- 234 -  Chapter 9: Refining Abstractionsent of the type of elements in that array.  By writing  vector as a class template rather than a concrete class, the designers of the STL make it possible to use linear sequences of arbitrary C++ types.Of course, not all classes should be written as class templates.  For example, the FMRadio class from the previous chapter is an unlikely candidate for a class template because it does not hold a collection of data  that could be of arbitrary type.  Although FMRadio does hold multiple pieces of data (notably the radio's presets), those presets are always radio frequencies, which we've encoded with  doubles.  It would not make sense for the FMRadio's presets to be stored as vector<int>s, nor as strings.  As a general rule, most classes don't need to be written as class templates.
Defining a Class TemplateOnce you've decided that the class you're writing is best parameterized over some arbitrary type, you can indicate to C++ that you're defining a template class by using the template keyword and specifying what types the template should be parameterized over.  For example, suppose that we want to define our own  version of the pair struct used by the STL.  If we want to call this struct MyPair and have it be parameter-ized over two types, we can write the following:
    template <typename FirstType, typename SecondType> struct MyPair {
        FirstType first;
        SecondType second;
    };Here, the syntax  template <typename FirstType, typename SecondType> indicates to C++ that what follows is a class template that is parameterized over two types,  one called  FirstType and one called SecondType.  In many ways, type arguments to a class template are similar to regular arguments to  C++ functions.  For example, the actual names of the parameters are unimportant as far as clients are con-cerned, much in the same way that the actual names of parameters to functions are unimportant.  The  above definition is functionally equivalent to this one below:
    template <typename One, typename Two> struct MyPair {
        One first;
        Two second;
    };Within the body of the class template, we can use the names One and Two (or  FirstType and Second-
Type) to refer to the types that the client specifies when she instantiates MyPair, much in the same way that parameters inside a function correspond to the values passed into the function by its caller.In this above example, we used the typename keyword to introduce a type argument to a class template.  If you work on other C++ code bases, you might see the above class template written as follows:
    template <class FirstType, class SecondType> struct MyPair {
        FirstType first;
        SecondType second;
    };In this instance, typename and class are completely equivalent to one another.  However, I find the use of 
class misleading because it incorrectly implies that the parameter must be a class type.  This is not the  case – you can still instantiate templates that are parameterized using class with primitive types like int or double.  From here on out, we will use typename instead of class.** You can only substitute  class for  typename in this instance – it's illegal to declare a regular C++ class using the 

typename keyword.



Chapter 9: Refining Abstractions - 235 -To create an instance of MyPair specialized over some particular types, we specify the name of the class template, followed by the type arguments surrounded by angle brackets.  For example:
    MyPair<int, string> one; // A pair of an int and a string.
    one.first = 137;
    one.second = "Templates are cool!";This syntax should hopefully be familiar from the STL.Classes and structs are closely related to one another, so unsurprisingly the syntax for declaring a tem -plate class is similar to that for a template  struct.  Let's suppose that we want to convert our  MyPair 
struct into a class with full encapsulation (i.e. with accessor methods and constructors instead of ex-posed data members).  Then we would begin by declaring MyPair as
    template <typename FirstType, typename SecondType> class MyPair {
    public:
        /* ... */

    private:
        FirstType first;
        SecondType second;
    };Now, what sorts of functions should we define for our MyPair class?  Ideally, we'd like to have some way of accessing the elements stored in the pair, so we'll define a pair of functions getFirst and setFirst along with an equivalent getSecond and setSecond.  This is shown here:
    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst();
        void setFirst(FirstType newValue);

        SecondType getSecond();
        void setSecond(SecondType newValue);

    private:
        FirstType first;
        SecondType second;
    };Notice that we're using the template arguments FirstType and SecondType to stand for whatever types the client parameterizes MyPair over.  We don't need to indicate that FirstType and SecondType are at all different from other types like  int or  string,  since the C++ compiler already knows that from the 
template declaration.  In fact, with a few minor restrictions, once you've defined a template argument,  you can use it anywhere that an actual type could be used and C++ will understand what you mean.Now that we've declared these functions, we should go about implementing them in the intuitive way.  If  
MyPair were not a template class, we could write the following:
    FirstType MyPair::getFirst() { // Problem: Not legal syntax
        return first;
    }
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    template <typename FirstType, typename SecondType>
        FirstType MyPair<FirstType, SecondType>::getFirst() {
        return first;
    }Here, we've explicitly prefaced the implementation of  getFirst with a template declaration and we've marked that the member function we're implementing is for  MyPair<FirstType, SecondType>.  The template declaration is necessary for C++ to figure out what  FirstType and  SecondType mean here, since without this information the compiler would think that  FirstType and  SecondType were actual types  instead  of  placeholders  for  types.   That  we've  mentioned  this  function  is  available  inside  
MyPair<FirstType, SecondType> instead  of  just  MyPair is  also  mandatory  since  there  is  no  real 
MyPair class – after all, MyPair is a class template, not an actual class.The other member functions can be implemented similarly.  For example, here's an implementation of 
setSecond:
    template <typename FirstType, typename SecondType>
        void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
        second = newValue;
    }When implementing member functions for template classes, you do not need to repeat the template defini-tion if you define the function inside the body of the template class.  Thus the following code is perfectly  legal:
    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst() {
            return first;
        }
        void setFirst(FirstType newValue) {
            first = newValue;
        }
    
        SecondType getSecond() {
            return second;
        }
        void setSecond(SecondType newValue) {
            second = newValue;
        }

    private:
        FirstType first;
        SecondType second;
    };The reason for this is that inside of the class template, the compiler already knows that FirstType and 
SecondType are templates, and it's not necessary to remind it.
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    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst() {
            return first;
        }
        void setFirst(FirstType newValue) {
            first = newValue;
        }
    
        SecondType getSecond() {
            return second;
        }
        void setSecond(SecondType newValue) {
            second = newValue;
        }
    
        void swap(MyPair& other);
    
    private:
        FirstType first;
        SecondType second;
    };Even though MyPair is a template class parameterized over two arguments, inside the body of the MyPair template class definition we can use the name  MyPair without mentioning that it's a  MyPair<First-
Type, SecondType>.  This is perfectly legal C++ and will come up more when we begin discussing copy-ing behavior in a few chapters.  The actual implementation of swap is left as an exercise.
.h and .cpp files for template classesWhen writing a C++ class, you normally partition the class into two files: a .h file containing the declara-tion and a .cpp file containing the implementation.  The C++ compiler can then compile the code contained in the .cpp file and then link it into the rest of the program when needed.  When writing a template class,  however, breaking up the definition like this will cause linker errors.  The reason is that C++ templates are  just that – they're templates for C++ code.  Whenever you write code that instantiates a template class, C++ generates code for the particular instance of the class by replacing all references to the template paramet-ers with the arguments to the template.  For example, with the MyPair class defined above, if we create a 
MyPair<int, string>, the compiler will generate code internally that looks like this:
    class MyPair<int, string> {
    public:
        int getFirst();
        void setFirst(int newValue);
    
        string getSecond();
        void setSecond(string newValue);

    private:
       int first;
       string second;
    }
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    int MyPair<int, string>::getFirst() {
        return first;
    }
    
    void MyPair<int, string>::setFirst(int newValue) {
        first = newValue;
    }
    
    string MyPair<int, string>::getSecond() {
        return second;
    }
    
    void MyPair<int, string>::setSecond(string newValue) {
        second = newValue;
    }At this point, compilation continues as usual.But what would happen if the compiler didn't have access to the implementation of the  MyPair class? That is, let's suppose that we've created a header file, my-pair.h, that contains only the class declaration for MyPair, as shown here:
File: my-pair.h
#ifndef MyPair_Included // Include guard prevents multiple inclusions
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
    FirstType getFirst();
    void setFirst(FirstType newValue);

    SecondType getSecond();
    void setSecond(SecondType newValue);
private:
    FirstType first;
    SecondType second;
};

#endifSuppose that we have a file that  #includes the  my-pair.h file and then tries to use the  MyPair class. Since all that the compiler has seen of MyPair is the above class definition, the compiler will only generate the following code for MyPair:
    class MyPair<int, string> {
    public:
        int getFirst();
        void setFirst(int newValue);
    
        string getSecond();
        void setSecond(string newValue);
    private:
       int first;
       string second;
    }



Chapter 9: Refining Abstractions - 239 -Notice that while all the member functions of MyPair<int, string> have been prototyped, they haven't been implemented because the compiler didn't have access to the implementations of each of these mem-ber functions.  In other words, if a template class is instantiated and the compiler hasn't seen implementa-tions of its member functions, the resulting template class will have no code for its member functions. This means that the program won't link, and our template class is now useless.When writing a template class for use in multiple files, the entire class definition, including implementa-tions of member functions, must be visible in the header file.  One way of doing this is to create a .h file for  the  template  class  that  contains  both  the  class  definition  and  implementation  without  creating  a matching .cpp file.  This is the approach adopted by the C++ standard library; if you open up any of the headers for the STL, you'll find the complete (and cryptic) implementations of all of the functions and classes exported by those headers.To give a concrete example of this approach, here's what the my-pair.h header file might look like if it contained both the class and its implementation:
File: my-pair.h
/* This method of packaging the .h/.cpp pair puts the entire class definition and
 * implementation into the .h file.  There is no .cpp file for this header.
 */

#ifndef MyPair_Included
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
    FirstType getFirst();
    void setFirst(FirstType newValue);

    SecondType getSecond();
    void setSecond(SecondType newValue);
private:
    FirstType first;
    SecondType second;
};

template <typename FirstType, typename SecondType>
    FirstType MyPair<FirstType, SecondType>::getFirst() {
    return first;
}

template <typename FirstType, typename SecondType>
    void MyPair<FirstType, SecondType>::setFirst(FirstType newValue) {
    first = newValue;
}

template <typename FirstType, typename SecondType>
    SecondType MyPair<FirstType, SecondType>::getSecond() {
    return second;
}

template <typename FirstType, typename SecondType>
    void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
    second = newValue;
}

#endif
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The Two Meanings of typenameOne of the more unfortunate quirks of the C++ language is the dual meaning of the typename keyword.  As mentioned previously,  when defining a template class,  you can the  typename keyword to declare type parameters for the template class.  However, there is another use of the typename keyword that can easily catch you off guard unless you're on the lookout for it.  Suppose, for example, that we wish to implement a  class akin to the STL stack which represents a LIFO container.  Because the abstract notion of a stack only concerns the ordering of the elements in the container rather than the type or contents of the elements in the container, we should probably consider implementing the stack as a template class.  Here is one pos-sible interface for such a class, which we'll call Stack to differentiate it from the STL stack:
    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();

        size_t size();
        bool empty();
    };There are many ways that we could implement this Stack class: we could use dynamically-allocated ar-rays, or the STL vector or deque containers.  Of these three choices, the vector and deque are certainly simpler than using dynamically-allocated arrays.  Moreover, since all of the additions and deletions from a stack occur at the end of the container, the  deque is probably a more suitable container with which we could implement our Stack.  We'll therefore implement the Stack using a deque, as shown here:
    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
    private:
        deque<T> elems;
    };Notice that we've used the template parameter T to parameterize the deque.  This is perfectly valid, and is quite common when implementing template classes.Given this implementation strategy, we can implement each of the member functions as follows.  Make sure that you can read this code; it's fairly template-dense.
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    template <typename T> void Stack<T>::push(T value) {
        elems.push_front(value);
    }

    template <typename T> T Stack<T>::pop() {
        T result = elems.front();
        elems.pop_front();
        return result;
    }
    
    template <typename T> size_t Stack<T>::size() {
        return elems.size();
    }
    
    template <typename T> bool Stack<T>::empty() {
        return elems.empty();
    }This is a perfectly reasonable implementation of a stack, and in fact the STL stack implementation is very similar to this one.Now, suppose that we're interested in extending the functionality of the Stack so that class clients can it-erate over the elements of the Stack in the order that they will be removed.  For example, if we push the elements 1, 2, 3, 4, 5 onto the stack, the iteration would visit the elements in the order 5, 4, 3, 2, 1.  This  functionality is usually not found on a Stack, but is useful for debugging (e.g. printing out the contents of the stack) or modifying the elements of the  Stack after they've already been inserted.  To do this, we'll need to add  begin() and  end() functions to the  Stack class that return iterators over the underlying 
deque.  Because the internal deque is a deque<T>, these iterators have type deque<T>::iterator.  Con-sequently, you might think that we would update the interface as follows:
    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
        deque<T>::iterator begin(); // Problem: Illegal syntax.
        deque<T>::iterator end();   // Problem: Illegal syntax.
    
    private:
        deque<T> elems;
    };This code is perfectly well-intentioned, but unfortunately is not legal C++ code.  The problem has to do with the fact that deque<T> is a dependent type, a type that “depends” on a template parameter.  Intuit-ively, this is because deque<T> isn't a concrete type – it's a pattern that says “once you give me the type T, I'll give you back a deque of T's”.  Due to a somewhat arcane restriction in the C++ language, if you try to access a type nested inside of a dependent type inside of a template class (for example, trying to use the  
iterator type nested inside  deque<T>), you must preface that type with the  typename keyword.  The correct version of the Stack class is as follows:
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    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
        typename deque<T>::iterator begin(); // Now correct
        typename deque<T>::iterator end();   // Now correct
    
    private:
        deque<T> elems;
    };This syntactic oddity is one of the truly embarrassing parts of C++.  There is no high-level reason why 
typename should be necessary, and its existence is a perpetual source of confusion and frustration among new C++ programmers.  I wholeheartedly wish that I could give you a nice clean explanation as to why 
typename is necessary, but the real answer is highly technical and in many ways unsatisfactory.  Of course,  this doesn't excuse you from having to put the typename keyword in when it's necessary, and you'll have to make sure to use it where appropriate.  The good news is that typename is unnecessary in most circum-stances.  You only need to use the typename keyword when accessing a type nested inside of a dependent type.  From a practical standpoint, this means that if you want to look up a type nested inside of a type that's either a template parameter or is parameterized over a template parameter, you must preface the  type with the  typename keyword.  In the examples used in the upcoming chapters, this will only occur  when looking up iterators inside of STL containers that themselves are parameterized over a template argument, such as a deque<T>::iterator or a vector<T>::iterator.To complete the above example, the implementation of the begin and end functions are shown here:
    template <typename T> typename deque<T>::iterator Stack<T>::begin() {
        return elems.begin();
    }

    template <typename T> typename deque<T>::iterator Stack<T>::end() {
        return elems.end();
    }These functions might  be the densest  pieces of  code you've  encountered so far.   The code  template 
<typename T> declares that the member function implementation is an implementation of a template class's  member  function.   typename deque<T>::iterator is  the  return  type  of  the  function,  and 
Stack<T>::begin() is the name of the member function and the (empty) parameter list.  When writing template classes, code like this is fairly ubiquitous, but with practice you'll be able to read this code much more easily.
Clarifying Interfaces with constAt its core, C++ is a language based on modifying program state.  ints get incremented in for loops; vec-
tors have innumerable calls to clear, resize, and push_back; and console I/O overwrites variables with values read directly from the user.Consider the following function:
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    void LoadFileContents(string filename, vector<string>& out) {
        ifstream input(filename.c_str()); // Open the file
        out.clear();
    
        string line;
        while (getline(input, line))
            out.push_back(line);
    }This function takes in a string containing the name of a file, then reads the contents of the file into a vec-
tor<string> specified as a reference parameter.  Because this function writes the result to an  existing 
vector rather than creating a new vector for output, we say that the function has side effects.  Side ef-fects are extremely common in C++ code, and in fact without side effects C++ programs would be very dif -ficult to write.  However, when working with increasing large software systems, side effects can be danger-ous.  As mentioned last chapter, a single incorrect bit can take down an entire software system.  Con -sequently, you must be very careful when designing functions with side effects so that the scope of what  those side effects can modify is minimized.  To see exactly why this is, let's consider the extreme case.  Sup-pose every function in a program is allowed to modify any piece of data in the program.  That is, whenever a function is called, the values of all variables in all functions might be changed.  What would this mean for programming?  Certainly, it would be much more difficult to reason about how programs operate.  Con -sider, for example, the following loop:
    for (size_t k = 0; k < 100; ++k)
        MyFunction();Here, we iterate over the first one hundred integers, calling some function called MyFunction.  What will this program do?  Certainly it depends on the implementation of MyFunction, but a reasonable program-mer would probably infer that MyFunction will be called exactly one hundred times.  But this is making the reasonable assumption that because MyFunction isn't passed k as a parameter, it has no way of modi-fying the local variable k in the calling function.  However, we're assuming that functions are allowed to modify any data in the program.  Given this assumption, there's no reason that the MyFunction function couldn't change the value of k whenever it's called.  It might, for example, set k to be 0 on every iteration, meaning that the loop will never terminate (see if you can convince yourself why this is).  Similarly, the  function might increment k by one every time it's called, causing the loop to execute half as many times as it should (since k will take on values 0, 2, 4, 8, ... instead of 0, 1, 2, 3, ...).  Without looking at the implement-ation of MyFunction, there would be no way to know exactly what will happen to k.  Trying to infer what the program will do by looking at its complete source code would be substantially more complicated, and building programs more than a few hundred lines of code would quickly become difficult or impossible.Hopefully the above example has convinced you that allowing functions to make arbitrary changes to pro-gram state is not a viable option.  Fortunately, C++ is specifically designed to allow programmers to con -strain where data can be modified.  Many of the programming concepts we've explored so far revolve around this idea.  For example:

• Avoiding global variables.  You have probably been hammered repeatedly with the idea that glob-al variables can be hazardous.  Global variables make programs significantly harder to maintain because globals can be modified by any function, at any time, for any reason.  This means that if a  program encounters an error because a global variable has an incorrect value, it is difficult to track  down exactly where in the program that variable received the incorrect value.  By using local vari-ables instead of globals, it is easier to track down exactly where errors occur by following which functions have access to those variables. 
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• Marking data members  private.   We initially explored encapsulation from a theoretical per-spective as a means for separating implementation from interface.  However, encapsulation also helps control where side effects can occur in a program.  If a class's data members are marked  
private, then any changes to those data members must result from the class's public interface. Verifying that the class's interface is implemented correctly can therefore increase confidence that data members aren't mercilessly clobbered. 

• Decomposing large functions.  Besides making code cleaner, more maintainable, and easier to follow, decomposition minimizes the amount of code that has access to each local variable.  If a task is well-decomposed, then each function will have access only to a small number of variables and thus cannot affect much program state.Each of these programming patterns ensure that data can only be modified in places where a programmer  has explicitly granted particular functions access to that data.  However, C++ provides an even stronger mechanism for preventing unexpected side effects – the const keyword.  You have already seen const in the context of global constants, but the const keyword has many other uses.  This section introduces the mechanics of const (for example, where const can be used and what it means in these contexts) and how to use it properly in C++ code.
const VariablesSo far, you've only seen const in the context of global constants.  For example, given the following global declaration:
    const int MyConstant = 137;Whenever you refer to the value MyConstant in code, the compiler knows that you're talking about the value 137.  If later in your program you were to write MyConstant = 42, the complier would flag the line as an error because code to this effect modifies a value you explicitly indicated should never be modified. However, const is not limited to global constants.  You can also declare local variables const to indicate that their values should never change.  Consider the following code snippet:
    for (set<int>::iterator itr = mySet.lower_bound(42); 
         itr != mySet.upper_bound(137); ++itr) {
        /* ... manipulate *itr ... */
    }This code iterates over all of the values in an STL set whose values are in the range [42, 137].*  However, this code is not nearly as efficient as it could be.  Because C++ evaluates the looping condition of a for loop on each iteration, the program will evaluate the statement itr != mySet.upper_bound(137) once per loop iteration, so the program will recompute mySet.upper_bound(137) multiple times.  Although the STL set is highly optimized and the upper_bound function is particularly fast (on a set with n elements, upper_bound runs in time proportional to log2 n), if there are many elements in the range [42, 137] the overhead of multiple calls to upper_bound may be noticeable.  To fix this, we might consider computing 
mySet.upper_bound exactly once, storing the value somewhere, and then referencing the precomputed value inside the for loop.  Here's one possible implementation:
    set<int>::iterator stop = mySet.upper_bound(137);
    for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
        /* ... manipulate *itr ... */
    }* If you're a bit rusty on the upper_bound and lower_bound functions, refer back to the chapter on STL associative containers.
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    const set<int>::iterator stop = mySet.upper_bound(137);
    for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
        /* ... manipulate *itr ... */
    }This is your first glimpse of a const local variable.  const local variables are similar to global constants: they must be initialized to a value, their values can't change during the course of execution, etc.  In fact, the  only difference between a const local variable and a global constant is scope.  Global constants are glob-ally visible and persist throughout the course of a program, while const local variables are created and destroyed like regular local variables.
const ObjectsThe main idea behind  const is  to  let  programmers communicate  that  the  values of  certain variables should not change during program execution.  When working with primitive types, the meaning of “should not  change”  is  fairly  clear:  an  int changes  if  it  is  incremented,  decremented or  overwritten;  a  bool changes if it flips from true to false; etc.  However, when working with variables of class type, our notion of “should not change” becomes substantially more nuanced.  To give you a sense for why this is, let's con -sider a const string, a C++ string whose contents cannot be modified.  We can declare a const string as we would any other const variable.  For example:
    const string myString = "This is a constant string!";Note that, like all const variables, we are still allowed to assign the string an initial value.Because the string is const, we're not allowed to modify its contents, but we can still perform some ba-sic operations on it.  For example, here's some code that prints out the contents of a const string:
    const string myString = "This is a constant string!";
    for(size_t i = 0; i < myString.length(); ++i)
        cout << myString[i] << endl;To us humans, the above code seems completely fine and indeed it is legal C++ code.  But how does the  compiler know that the length function doesn't modify the contents of the string?  This question may seem silly – of course the length function won't change the length of the string – but this is only obvious because we humans have a gut feeling about how a function called length should behave.  The compiler, on the other hand, knows nothing of natural language, and could care less whether the function were named “length” or “zyzzyzplyx.”  This raises a natural question: given an arbitrary class, how can the compiler tell which member functions might modify the receiver object and which ones cannot?  To an-swer this question, let's look at the prototype for the string member function length:*

* The actual implementation of the  string class looks very different from this because string is a class template rather than an actual class.  For our discussion, though, this simplification is perfectly valid.
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    class string {
    public:
        size_t length() const;

        /* ... etc. ... */
    };Note that  there  is  a  const after  the  member function declaration.   This  is  another  use  of  the  const keyword that indicates that the member function does not modify any of the class's instance variables. That  is,  when  calling  a  const member  function,  you're  guaranteed that  the  object's  contents  cannot change. (This isn't technically true, as you'll see later, but it's a perfectly valid way of thinking about const functions).When working with const objects, you are only allowed to call member functions on that object that have been explicitly marked const.  That is, even if you have a function that doesn't modify the object, unless you tell the compiler that the member function is const, the compiler will treat it as a non-const function. This may seem like a nuisance, but has the advantage that it forces you to decide whether or not a member  function should be const before you begin implementing it.  That is, the constness of a member function is an interface design decision, not an implementation design decision.To see how  const member functions work in practice, let's consider a simple  Point class that stores a point in two-dimensional space.  Using the getter/setter paradigm, we end up with this class definition:
    class Point {
    public:
        Point(double x, double y);

        double getX();
        double getY();

        void setX(double newX);
        void setY(double newY);

    private:
        double x, y;
    };Let's take a minute to think about which of these functions should be  const and which should not be. Clearly, the  setX and  setY functions should not be  const,  since these operations by their very nature modify the receiver object.  But what about getX and getY?  Neither of these functions should modify the receiver object, since they're designed to let clients query the object's internal state.  We should therefore mark these functions  const to indicate that they cannot modify the object.  This gives us the following definition of Point:
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    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        double getY() const;

        void setX(double newX);
        void setY(double newY);

    private:
        double x, y;
    };There's only one function we've ignored so far – the Point constructor.  However, in C++ it's illegal to mark a constructor  const,  since the typical operation of a constructor runs contrary to the notion of  const. Take a minute to think about why this is; you'll be a better C++ coder for it!Now that we've marked the getX and getY functions const, we can think about how we might go about implementing these functions.  You might think that we would implement them just as we would regular member functions, and you would almost be right.  However, the fact that the function is const is part of that function's signature, and so in the implementation of the getX and getY functions we will need to ex-plicitly indicate that those member functions are  const.  Here is one possible implementation of  getX; similar code can be written for getY. 
    double Point::getX() const {
         return x;
    }Forgetting to add this  const can be a source of much frustration because the C++ treats  getX() and 
getX() const as two different functions.  We will discuss why this is later in this chapter.In a const member function, all the class's instance variables are treated as const.  You can read their val-ues, but must not modify them.  Similarly, inside a  const member function, you cannot call other non-
const member functions.  The reason for this is straightforward: because non-const member functions can modify the receiver object, if a const member function could invoke a non-const function, then the 
const function might indirectly modify the receiver object.  But beyond these restrictions, const member functions can do anything that regular member functions can.  Suppose, for example, that we wish to up-date the Point class to support a member function called distanceToOrigin which returns the distance between the receiver object and the point (0, 0).  Because this function shouldn't modify the receiver ob-ject, we'll mark it const, as shown here:
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    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        double getY() const;

        void setX(double newX);
        void setY(double newY);

        double distanceToOrigin() const;

    private:
        double x, y;
    };Mathematically, the distance between a point and the origin is defined as  x2 y2 .  Using the sqrt func-tion from the <cmath> header file, we can implement the distanceToOrigin function as follows:
void Point::distanceToOrigin() const {
     double dx = getX();   // Legal!  getX is const.
     double dy = y;        // Legal!  Reading an instance variable.
     dx *= dx;             // Legal!  We're modifying dx, which isn't an
                           //         instance variable.
     dy *= dy;             // Legal!  Same reason as above.
     return sqrt(dx + dy); // Legal!  sqrt is a free function that can't
                           //         modify the current object.
}

Although this function is marked const, we have substantial leeway with what we can do in the implementa-
tion.  We can call the getX function, since it too is marked const.  We can also read the value of y and store it 
in another variable because this doesn't change its value.  Additionally, we can change the values of the local 
variables  dx and  dy,  since doing so doesn't  change any of the receiver object's data members.  Remember,  
const member functions guarantee that the receiver object doesn't change, not that the function doesn't change 
the values of any variables.  Finally, we can call free functions, since those functions don't have access to the 
class's data members and therefore cannot modify the receiver.

const ReferencesThroughout this text we've used pass-by-reference by default when passing heavy objects like  vectors and maps as parameters to functions.  This improves program efficiency by avoiding expensive copy opera-tions.  Unfortunately, though, using pass-by-reference in this way makes it more difficult to reason about a  function's behavior.  For example, suppose you see the following function prototype:
    void DoSomething(vector<int>& vec);You  know  that  this  function  accepts  a  vector<int> by  reference,  but  it's  not  clear  why.   Does 
DoSomething modify the contents of the vector<int>, or is it just accepting by reference to avoid mak-ing a deep copy of the  vector?  Without knowing which of the two meanings of pass-by-reference the function writer intended, you should be wary about passing any important data into this function.  Other-wise, you might end up losing important data as the function destructively modifies the parameter.We are in an interesting situation.  If we don't use pass-by-reference on functions that take large objects as  parameters, our programs will pay substantial runtime costs unnecessarily.  On the other hand, if we do pass large objects by reference, we make it more difficult to reason about exactly what the functions in our  



Chapter 9: Refining Abstractions - 249 -program are trying to do.  In other words, we can make a tradeoff between efficiency and clarity.  In many cases, this tradeoff is necessary.  Clean, straightforward algorithms are often fast and efficient, but more of-ten than not they are slower than their more intricate counterparts.  But in this particular arena, there is an easy way to gain the efficiency of pass-by-reference without the associated ambiguity:  const refer-
ences.A const reference is, in many ways, like a normal reference.  const references refer to objects and vari-ables declared elsewhere in the program, and any operations performed on the reference are instead per -formed on the object being referred to.  However, unlike regular references, const references treat the ob-ject they alias as though it were const.  In other words, const references capture the notion of looking at an object without being able to modify it.To see how const references work in practice, let's consider an example.  Suppose that we want to write a  function which prints out the contents of a vector<int>.  Such a function clearly should not modify the 
vector, and so we can prototype this function as follows:
    void PrintVector(const vector<int>& vec);Notice that this function takes in a const vector<int>&.  This is a const reference (also called a refer-
ence-to-const).  Inside the PrintVector function, the vec parameter is treated as though it were const, and so we cannot make any changes to it.  Thus the following implementation of PrintVector is perfectly legal:
    void PrintVector(const vector<int>& vec) {
        for (size_t k = 0; k < vec.size(); ++k)
            cout << vec[k] << endl;
    }Although the PrintVector function takes in a reference to a const vector<int>, it is perfectly legal to pass both const and non-const vector<int>s to PrintVector.  Whether or not the original vector is 
const, inside the  PrintVector function C++ treats the vector as though it were  const.  Thus it's legal (and encouraged) to write code like this:
    void PrintVector(const vector<int>& vec) {
        for (size_t k = 0; k < vec.size(); ++k)
            cout << vec[k] << endl;
    }

    int main() {
        vector<int> myVector(NUM_INTS);

        PrintVector(myVector);   // Legal!  myVector treated const in PrintVector

        myVector.push_back(137); // Legal!  myVector isn't const out here.
    }You might be a bit uneasy with the idea of passing a non-const variable into a function that takes a refer-ence-to-const.  After all, something of type Type isn't the same as something of type const Type.  We can't assign values to const objects, nor can we invoke their non-const member functions.  However, it is perfectly safe to treat a non-const object as though it were const because the legal operations on a const object are a subset of the legal operations on a non-const object.  That is, every object's public interface can be split into two parts, a const interface of non-mutating operations and a non-const interface of op-erations which change the object's state.  This is shown below:
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interfaceIn this picture, the object's internal state is represented by the fuzzy cloud, with the const and non-const interfaces each having access to the internals.  When an object is non-const, it has both interfaces; when 

const it has only the const interface.  Using this mental model, let's think about what happens when we pass  an  object  by  reference-to-const into  a  function.   Because  the  called  function  takes  in  a  refer-ence-to-const,  we can treat the function as though it  expects only the  const interface for an object. Graphically:
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What does this idea mean for you as a programmer?  In particular, when writing functions that need to be  able to look at data but not modify it,  you should strongly consider using pass-by-reference-to-const. This gives you the benefits of  pass-by-reference (higher efficiency) with the added guarantee that the parameter won't be destructively modified.  Of course, while it's legal to pass non-const objects to func-tions accepting const references, you cannot pass const objects into functions accepting non-const ref-erences.  The reason for this is simple: if an object is marked  const,  its value cannot be changed.  If a 
const object could be passed into a function by non-const reference, that function could modify the ori-ginal object, subverting constness.  You can think of const as a universal accepter and of non-const as the universal donor – you can convert both const and non-const data to const data, but you can't con-vert const data to non-const data.  Thinking about this using our two-interface analogy, if you have ac-cess to a class's non-const interface, you can always ignore it and just use the const interface.  However, if you only have access to the const interface, you can't suddenly give yourself access to the non-const in-terface.



Chapter 9: Refining Abstractions - 251 -Although const references behave for the most part like regular references, there is one particularly im-portant behavioral aspect where they diverge.  Suppose we are given the following prototype for a func-tion called DoSomething, which takes in a reference to an int:
    void DoSomething(int& x);

Given this prototype, each of the following calls to DoSomething is illegal:

    DoSomething(137);      // Problem: Cannot pass literal by reference
    DoSomething(2.71828);  // Problem: Cannot pass literal by reference
    double myDouble;
    DoSomething(myDouble); // Problem: int& cannot bind to doubleLet's examine exactly why each of these three calls fail.  In the first case, we tried to pass the integer literal  into the DoSomething function.  This will cause problems if DoSomething tries to modify its parameter. Suppose, for example, that DoSomething is implemented as follows:
    void DoSomething(int& x) {
        x = 0;
    }If we pass 137 directly into DoSomething, the the line x = 0 would try to store the value 0 into the in-teger literal 137.  This is clearly nonsensical, and so the compiler disallows it.  The second erroneous call  to  DoSomething (where we pass in 2.71828) fails for the same reason.  However, what of the third call, 
DoSomething(myDouble)?  This fails because myDouble is a double, not an int, and although it's pos-sible to typecast a double to an int the C++ language explicitly says that this is not acceptable.  This may seem harsh, but it allows C++ programs to run extremely efficiently because the compiler can assume that  the parameter x is bound to an actual int, not something implicitly convertible to an int.*However, suppose we change the prototype of DoSomething to accept its parameter by const reference, as shown here:
    void DoSomething(const int& x);Then all of the following calls to DoSomething are perfectly legal:
    DoSomething(137);      // Legal
    DoSomething(2.71828);  // Legal

    double myDouble;
    DoSomething(myDouble);  // Legal!Why the difference?  Think about why all of the above examples caused problems when mixed with non-
const references.  In the first case, we might accidentally assign a new value to an integer literal; the second case ran into similar problems.  In the third case, due to hardware restrictions, we cannot bind an 
int& to a  double because writing a value to that  int& would result in incorrect behavior.  All of these 
* I know that this explanation might seem a bit fuzzy, primarily because the main reason is technical and has to do  with how ints and doubles are represented in the machine.  If you try to execute the machine code instructions to  store an integer value into a variable that's declared as a double, the double will take on a completely meaningless value that has nothing to do with the integer that we intended to store in it.  If you're interested in learning more  about why this is, consider taking a compilers course or studying an assembly language (MIPS or x86).  If you still  don't understand why int&s can't be bound to doubles, send me an email and I can try to explain things in more detail.



- 252 -  Chapter 9: Refining Abstractionscases have to do with the fact that the reference can be used to modify the object it's bound to.  But when  working with const references, none of these problems are possible because the referenced value can't be changed through the reference.Because normal restrictions on references do not apply to const references, you can treat pass-by-refer-ence-to-const as a smarter version of pass-by-value.  Any value that could be passed by value can be  passed by reference-to-const, but when using reference-to-const objects won't be copied in most cases. We will address this later in this chapter.  For now, treating pass-by-reference-to-const as a more efficient pass-by-reference will be wise.
const and PointersThe const keyword is useful, but has its share of quirks.  Perhaps the most persistent source of confusion when working with const arises when mixing const and pointers.  For example, suppose that you want to declare a C string as a global constant.  Since to declare a global C++ string constant you use the syntax
    const string kGlobalCppString = "This is a string!";You might assume that to make a global C string constant, the syntax would be:
    const char* kGlobalStr = "This is a string!"; // Problem: Legal but incorrectThis syntax is partially correct.  If you were ever to write kGlobalString[0] = 'X', rather than getting segmentation faults at runtime (see the C strings chapter for more info), you'd instead get a compiler error that would direct you to the line where you tried to modify the global constant.  But unfortunately this variable declaration contains a subtle but crucial mistake.  Suppose, for example, that we write the follow -ing code:
    kGlobalString = "Reassigned!";Here, we reassign kGlobalString to point to the string literal “Reassigned!”  Note that we didn't modify the contents of the character sequence kGlobalString points to – instead we changed what character se-
quence  kGlobalString points to.   In other words, we modified the  pointer, not the  pointee, and so the above line will compile correctly and other code that references kGlobalString will suddenly begin us-ing the string “Reassigned!” instead of “This is a string!” as we would hope.C++ distinguishes between two similar-sounding entities:  a  pointer-to-const and a  const pointer.  A pointer-to-const is a pointer like  kGlobalString that points to data that cannot be modified.  While you're free to reassign pointers-to-const, you cannot change the value of the elements they point to.  To declare a pointer-to-const, use the syntax  const Type* myPointer, with the  const on the left of the star.  Alternatively, you can declare pointers-to-const by writing Type const* myPointer.A const pointer, on the other hand, is a pointer that cannot be assigned to point to a different value.  Thus with a const pointer, you can modify the pointee but not the pointer.  To declare a const pointer, you use the syntax Type* const myConstPointer, with the const on the right side of the star.  Here, myConst-
Pointer can't be reassigned, but you are free to modify the value it points to.To illustrate by analogy, a pointer-to-const is like a telescope – it can look at other objects, and freely change which objects it looks at, but it cannot apply any changes to those objects.  A const pointer, on the other hand, is like an industrial laser.  The laser can be turned on at high power to cut a sheet of metal, or  at low power to get a sense of what the metal looks like, but the beam is always pointed at the same place.  You wouldn't try to cut a sheet of metal with a telescope, nor would you try to look at an object at a dis -



Chapter 9: Refining Abstractions - 253 -tance by blasting a high-energy laser at it.  Remembering whether you want a pointer-to-const (look but don't touch) or a const pointer (touch, but only touch one thing) will be tricky at first, but will become more natural as you mature as a programmer.Note that the syntax for a pointer-to-const is const Type * ptr while the syntax for a const pointer is 
Type * const ptr.  The only difference is where the const is in relation to the star.  One trick for re-membering which is which is to read the variable declaration from right-to-left.   For example, reading 
const Type * ptr backwards  says  that  “ptr is  a  pointer  to  a  Type that's  const,”  while 
Type * const ptr read backwards is “ptr is a const pointer to a Type.”Returning to the C string example, to make kGlobalString behave as a true C string constant, we'd need to make the pointer both a const pointer and a pointer-to-const.  This may seem strange, but is perfectly legal  C++.  The result is a const pointer-to-const, a pointer that can only refer to one object and that can-not change the value of that object.  Syntactically, this looks as follows:
    const char * const kGlobalString = "This is a string!";Note that there are two consts here – one before the star and one after it.  Here, the first const indicates that you are declaring a pointer-to-const, while the second means that the pointer itself is const.  Using the trick of reading the declaration backwards, here we have “kGlobalString is a  const pointer to a 
char that's const.”  This is the correct way to make the C string completely const, although it is admit-tedly a bit clunky.The following table summarizes what types of pointers you can create with const:
Declaration Syntax Name Can reassign? Can modify pointee?
const Type* myPtr Pointer-to-const Yes No

Type const* myPtr Pointer-to-const Yes No

Type* const myPtr const pointer No Yes
const Type* const myPtr const pointer-to-const No No

Type const* const myPtr const pointer-to-const No NoAs with references and references-to-const, it is legal to set a pointer-to-const to point to a non-const object.  This simply means that the object cannot be modified through the pointer-to-const.
const_iteratorSuppose you have a function that accepts a  vector<string> by reference-to-const and you'd like to print out its contents.  You might want to write code that looks like this:
    void PrintVector(const vector<string>& myVector) {
        for(vector<string>::iterator itr = myVector.begin(); // Problem
            itr != myVector.end(); ++itr)
            cout << *itr << endl;
    }Initially, this code seems perfectly fine, but unfortunately the compiler will give you some positively fero-cious errors if you try to compile this code.  The problem has to do with a subtlety involving STL iterators  and  const.   Notice  that  in  the  first  part  of  the  for loop  we  declare  an  object  of  type 
vector<string>::iterator.  Because the vector is const, somehow the compiler has to know that the 
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    /* Note: This code doesn't compile.  It just shows off what happens if we
     * could get an iterator to a const vector.
     */
    void EvilFunction(const vector<string>& myVector) {
        vector<string>::iterator itr = myVector.begin();

        *itr = 42; // Just modified a const object!
    }In other words, if we could get an iterator to iterate over a const vector, that iterator could be used in fiendish and diabolical ways to modify the contents of the vector, something we promised not to do.  This raises an interesting issue.  Let's reconsider our (currently flawed) implementation of PrintVector:
    void PrintVector(const vector<string>& myVector) {
        for(vector<string>::iterator itr = myVector.begin();  // Problem
            itr != myVector.end(); ++itr)
            cout << *itr << endl;
    }This code doesn't compile because the  for loop tries to get an iterator that traverses the  vector.   As shown above, given an iterator over a const vector, it's possible to modify the contents of that vector and subvert  constness.  But in this function we don't modify the contents of the  vector – we're harm-lessly traversing the  vector elements and printing its contents!  So why does the compiler cryptically complain about our code?  The reason is that constness is conservative.  When the C++ compiler checks your code to ensure that you haven't violated the sanctity of const, its analysis is imprecise.  Rather than determining whether or not your code actually modifies a  const variable, it checks for syntactic struc-tures which violate const – do you assign a a const variable?  Do you invoke a non-const function on a 
const variable?  Do you pass a const variable into a function which takes an argument by non-const ref-erence?  Because of this, it is possible to write code that cannot possibly change the value of a  const vari-able but which is still rejected by the compiler.  For example, consider the following code snippet:
    void SubtleFunction(const vector<string>& myVector) {
        if (myVector.empty())
            myVector.clear(); // Error!  Calls non-const function.
    }This function checks to see if the parameter is the empty vector, and, if so, calls clear on that vector.  Call-ing  clear on the empty  vector does nothing to that  vector, and so technically speaking this function never changes the value of its parameter.  However, the C++ compiler will still reject this code, because you  invoked clear (a non-const member function) on a const vector.Why does the compiler take this approach?  The answer is that it is provably impossible to build a compiler that can actually determine whether or not a C++ function will change the value of a particular variable.  You read that correctly – no compiler, no matter how sophisticated or clever, can correctly determine in all cases whether a C++ program will read or write a particular variable.  Because of this, C++'s rules for con-
stness have a margin of error.  Some programs that will never change the value of a certain variable will cause compiler errors, but any program that correctly obeys const will ensure that const variables are never overwritten.  This explains why, in our simple PrintVector example, the compiler complained.  Al-though we never actually overwrite the elements of the vector using our iterator, the fact that someone with an iterator could overwrite the elements of the vector is enough to cause the compiler to panic.



Chapter 9: Refining Abstractions - 255 -Because raw iterators don't play nicely with  const containers, we're going to need to change our code. One idea you may have had would be to mark the iterator const to prevent it from overwriting the ele-ments of the vector.  While well-intentioned, this approach won't work.  A const iterator is like a const pointer – it can't change what element it iterates over, but it can change the value of the elements it iter-ates over.  This is the reverse of what we want – we want an iterator that can't change the values it looks at  but can change which elements it iterates over.  For this, we can use const_iterators.  Each STL contain-er that defines an iterator also defines a const_iterator that can read the values from the container but not write them.  Using a  const_iterator, we can rewrite our implementation of  PrintVector as fol-lows:
    void PrintVector(const vector<string>& myVector) {
         for(vector<string>::const_iterator itr = myVector.begin(); // Correct!
             itr != myVector.end(); ++itr)
             cout << *itr << endl;
    }To maintain constness, you cannot use const_iterators in functions like insert or erase that modify containers.   You  can,  however,  define  iterator  ranges  using  const_iterators  for  algorithms  like 
binary_search that don't modify the ranges they apply to.There is one subtle point we have glossed over in this discussion – how does the  vector know that it should hand back a const_iterator when marked const and a regular iterator otherwise?  That is, how do the vector's begin and end functions hand back objects of two different types based on whether or not the vector is const?  The answer may surprise you.  Here is a (slightly simplified) version of the vec-
tor interface which showcases the begin and end functions:
    template <typename T> class vector {
    public:
        iterator begin();
        iterator end();

        const_iterator begin() const;
        const_iterator end() const;

        /* ... etc. ... */
    };Notice that there are two begin functions – one of which is non-const and returns a regular iterator, and one of which is const and returns a const_iterator.  There are similarly two versions end function. This is a technique known as  const-overloading and allows a function to have two different behaviors based on whether or not an object is const.  When a const-overloaded function is invoked, the version of the function is called that matches the constness of the receiver object.  For example, if you call begin() on a  const vector,  it  will  invoke the  const version of  begin() and return a  const_iterator.   If 
begin() is invoked on a non-const vector, then the non-const version of begin() will be invoked and the function will yield a regular iterator.  We will see some examples of const-overloading in upcoming sections.
Limitations of constAlthough const is a useful programming construct, certain aspects of const are counterintuitive and can lead to subtle violations of constness.  One common problem arises when using pointers in const mem-ber  functions.   Suppose  you  have  the  following  implementation  of  class  Vector,  which  acts  like  a 
vector<int>:
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    class Vector {
    public:
        /* ... other members ...*/
        void constFunction() const;

    private:
        int* elems;
    };Consider the following legal implementation of constFunction:
    Vector::constFunction() const {
        elems[0] = 137;
    }Unfortunately, while this code modifies the value of the object pointed to by elems, it is perfectly legal  C++ code because it doesn't modify the value of elems – instead, it modifies the value of the elements pointed  
at by elems.  In effect, because the member function is declared const, elems acts as a const pointer (the pointer can't change) instead of a pointer-to-const (the pointee can't change).  This raises the issue of the distinction between “bitwise constness” and “semantic constness.”  Bitwise constness, which is the type enforced by C++, means that  const objects are prohibited from making any bitwise changes to them-selves.  In the above example, since the value of the elems pointer didn't change, C++ considers the con-
stFunction implementation const-correct.  However, from the viewpoint of semantic constness, const classes should be prohibited from modifying anything that would make the object appear somehow differ-ent.  With regards to the above scenario with elems, the class isn't semantically const because the object, while const, was able to modify its data.When working with const it's important to remember that while C++ will enforce bitwise constness, you must take care to ensure that your program is semantically const.  From your perspective as a program-mer, if you invoke a const member function on an object, you would expect the receiver to be unchanged.  If the function isn't semantically  const, however, this won't be the case, and a  const member function might make significant changes to the object's state.To demonstrate the difference between bitwise and semantically const code, let's consider another mem-ber function of the Vector class that simply returns the internally stored string:
    int* Vector::rawElems() const {
        return elems;
    }Initially, this code looks correct.  Since returning theString doesn't modify the receiver object, the func-tion is bitwise const.  But this code entirely bypasses constness.  Consider, for example, this code:
    void ProcessRawElements(const Vector& v) {
        int* elems = v.rawElems();
        for (size_t i = 1; i < v.size(); ++i) // Problem: Subverts const!
            elems[i – 1] = elems[i];
    }Here, we use the pointer obtained from rawElems to indirectly move around the elements of the array.  Al-though v is marked const in this example, we somehow have changed its contents.  This entirely defeats the purpose of  const and should convey why maintaining semantic  constness is a crucial part of good programming practice.



Chapter 9: Refining Abstractions - 257 -The above implementation of  rawElems is fatally flawed and allows clients to subvert the  constness of the receiver object.  How can we modify rawElems so that the above code no longer works?  One particu-larly elegant solution is to modify the signature of rawElems so that it returns a const int* instead of a raw int*.  For example:
    const int* Vector::rawElems() const {
        return elems;
    }Because the returned array has been marked const, clients cannot modify any of the characters in the re-turned sequence.  As a general rule of thumb, avoid returning non-const pointers from member functions that are marked const.  There are exceptions to this rule, of course, but in most cases  const functions should return pointers-to-const.
mutableBecause C++ enforces bitwise  constness rather than semantic  constness, you might find yourself in a situation where a member function changes an object's bitwise representation while still being semantic -ally const.  At first this might seem unusual – how could we possibly leave the object in the same logical  state if we change its binary representation? – but such situations can arise in practice.  For example, sup -pose that we want to write a class that represents a grocery list.  The class definition is provided here:
    class GroceryList {
    public:
        GroceryList(const string& filename); // Load from a file.

        /* ... other member functions ... */

        string getItemAt(int index) const;

    private:
        vector<string> data;
    };The GroceryList constructor takes in a filename representing a grocery list (with one element per line),  then allows us to look up items in the list using the member function getItemAt.  Initially, we might want to implement this class as follows:
    GroceryList::GroceryList(const string& filename) {
        /* Read in the entire contents of the file and store in the vector. */
        ifstream input(filename.c_str());
        data.insert(data.begin(), istream_iterator<string>(input),
                                  istream_iterator<string>());
    }

    /* Returns the element at the position specified by index. */
    string GroceryList::getItemAt(int index) const {
        return data[index];
    }Here, the  GroceryList constructor takes in the name of a file and reads the contents of that file into a 
vector<string> called data.  The getItemAt member function then accepts an index and returns the corresponding element from the vector.  While this implementation works correctly, in many cases it is needlessly inefficient.   Consider the case where our grocery list is several million lines long (maybe if we're literally trying to find enough food to feed an army), but where we only need to look at the first few 



- 258 -  Chapter 9: Refining Abstractionselements of the list.  With the current implementation of GroceryList, the GroceryList constructor will read in the entire grocery list file, an operation which undoubtedly will take a long time to finish and  dwarfs the small time necessary to retrieve the stored elements.  How can we resolve this problem?There are several strategies we could use to eliminate this inefficiency.  Perhaps the easiest approach is to have the constructor open the file,  and then to only read in data when it's explicitly requested in the 
getItemAt function.  That way, we don't read any data unless it's absolutely necessary.  Here is one pos -sible implementation:
    class GroceryList {
    public:
        GroceryList(const string& filename);
    
        /* ... other member functions ... */
    
        string getItemAt(int index); // Problem: No longer const
    private:
        vector<string> data;
        ifstream sourceStream;
    };

    GroceryList::GroceryList(const string& filename) {
        sourceStream.open(filename.c_str()); // Open the file.
    }

    string GroceryList::getItemAt(int index) {
        /* Read in enough data to satisfy the request.  If we've already read it 
         * in, this loop will not execute and we won't read any data.
         */
        while(index >= data.length()) {
            string line;
            getline(sourceStream, line);
    
            data.push_back(line);
        }
        return data[index];
    }Unlike our previous implementation, the new  GroceryList constructor opens the file without reading any data.  The new getItemAt function is slightly more complicated.  Because we no longer read all the data in the constructor, when asked for an element, one of two cases will be true.  First, we might have  already read in the data for that line, in which case we simply hand back the value stored in the  data ob-ject.  Second, we may need to read more data from the file.  In this case, we loop reading data until there  are enough elements in the data vector to satisfy the request, then return the appropriate string.Although this new implementation is more efficient,* the  getItemAt function can no longer be marked 
const because it modifies both the data and sourceStream data members.  If you'll notice, though, des-pite the fact that the getItemAt function is not bitwise const, it is semantically const.  GroceryList is supposed to encapsulate an immutable grocery list, and by shifting the file reading from the constructor to  
getItemAt we have only changed the implementation, not the guarantee that getItemAt will not modify the list.  We've reached an impasse: the interface for GroceryList should not depend on its implementa-tion, and so the getItemAt function should be marked const.  However, we have just produced a perfectly 
* The general technique of deferring computations until they are absolutely required is called lazy evaluation and is an excellent way to improve program efficiency.



Chapter 9: Refining Abstractions - 259 -reasonable implementation of GroceryList that is not bitwise const, meaning that the interface needs to change to accommodate the implementation.  Given our two conflicting needs – good interface design and good implementation design – how can we strike a balance?For situations such as these, where a function is semantically const but not bitwise const, C++ provides the  mutable keyword.  mutable is an attribute that can be applied to data members that indicates that those data members can be modified inside member functions that are marked const.  Using mutable, we can rewrite the GroceryList class definition to look like this:
    class GroceryList {
    public:
        GroceryList(const string& filename); // Load from a file.

        /* ... other member functions ... */
    
        string getItemAt(int index) const; // Now marked const

    private:
        /* These data members now mutable. */
        mutable vector<string> data;
        mutable ifstream sourceStream;
    };Because data and sourceStream are both mutable, the new implementation of getItemAt can now be marked const, as shown above.
mutable is a special-purpose keyword that should be used sparingly and with caution.  Mutable data  members are exempt from the type-checking rules normally applied to const and consequently are prone to the same errors as non-const variables.  Also, once data members have been marked  mutable,  any member function can modify them, so be sure to double-check your code for correctness.  Most import-antly, though, do not use mutable to silence compiler warnings and errors unless you're absolutely certain that it's the right thing to do.  If you do, you run the risk of having functions marked const that are neither bitwise nor semantically const, entirely defeating the purpose of the const keyword.
const-Correctness

I still sometimes come across programmers who think const isn't worth the trouble. “Aw, const 
is a pain to write everywhere,” I've heard some complain. “If I use it in one place, I have to use it  
all the time. And anyway, other people skip it, and their programs work fine. Some of the libraries  
that I use aren't const-correct either. Is const worth it?”

We could imagine a similar scene, this time at a rifle range: “Aw, this gun's safety is a pain to set  
all the time. And anyway, some other people don't use it either, and some of them haven't shot  
their own feet off...”

Safety-incorrect riflemen are not long for this world. Nor are const-incorrect programmers, car-
penters who don't have time for hard-hats, and electricians who don't have time to identify the  
live wire. There is no excuse for ignoring the safety mechanisms provided with a product, and  
there is particularly no excuse for programmers too lazy to write const-correct code.– Herb Sutter, author of Exceptional C++ and all-around C++ guru. [Sut98]



- 260 -  Chapter 9: Refining AbstractionsNow that you're familiar with the mechanics of  const, we'll explore how to use const correctly in real-world C++ code.  In the remainder of this section, we will explore  const-correctness, a system for using 
const to indicate the effects of your functions (or lack thereof).  From this point forward, all of the code in this book will be const-correct and you should make a serious effort to const-correct your own code.
What is const-correctness?At a high-level,  const-correct code is code that clearly indicates which variables and functions cannot modify program state.  More concretely,  const-correctness requires that  const be applied consistently and pervasively.  In particular, const-correct code tends to use const as follows:

• Objects are never passed by value.  Any object that would be passed by value is instead passed by reference-to-const or pointer-to-const.
• Member functions which do not change state are marked const.  Similarly, a function that is not marked const should mutate state somehow.
• Variables which are set but never modified are marked const.  Again, a variable not marked 

const should have its value changed at some point.Let us take some time to explore the ramifications of each of these items individually.
Objects are never passed by valueC++ has three parameter-passing mechanisms – pass-by-value,  pass-by-reference,  and pass-by-pointer. The first of these requires C++ to make a full copy of the parameter being passed in, while the latter two  initialize the parameter by copying a pointer to the object instead of the full object. *  When passing primit-ive types (int,  double,  char*, etc.) as parameters to a function, the cost of a deep copy is usually negli -gible, but passing a heavy object like a string, vector, or map can at times be as expensive as the body of the function using the copy.  Moreover, when passing objects by value to a function, those objects also need to be cleaned up by their destructors once that function returns.  The cost of passing an object by value is  thus at least the cost of a call to the class's copy constructor (discussed in a later chapter) and a call to the  destructor, whereas passing that same object by reference or by pointer simply costs a single pointer copy.To avoid incurring the overhead of a full object deep-copy, you should avoid passing objects by value into  functions and should instead opt to pass either by reference or by pointer.  To be const-correct, moreover, you should consider passing the object by reference-to-const or by pointer-to-const if you don't plan on mutating the object inside the function.  In fact,  you can treat pass-by-reference-to-const or  pass-by-pointer-to-const as the smarter, faster way of passing an object by value.  With both pass-by-value and pass-by-reference-to-const, the caller is guaranteed that the object will not change value inside the func-tion call.There is one difference between pass-by-reference-to-const and pass-by-value, though, and that's when using pass-by-value the function gets a fresh object that it is free to destructively modify.  When using pass-by-reference-to-const, the function cannot mutate the parameter.  At times this might be a bit vexing. For example,  consider  the  ConvertToLowerCase function we wrote  in the earlier  chapter on STL al-gorithms:
    

* References are commonly implemented behind-the-scenes in a manner similar to pointers, so passing an object  by reference is at least as efficient as passing an object by pointer.
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    string ConvertToLowerCase(string toConvert) {
        transform(toConvert.begin(), toConvert.end(), 
                  toConvert.begin(),
                  ::tolower);
        return toConvert;
    }Here,  if  we  simply  change  the  parameter  from  being  passed-by-value  to  being  passed-by-refer-ence-to-const,  the code won't compile because we modify the  toConvert variable.   In situations like these, it is sometimes preferable to use pass-by-value, but alternatively we can rewrite the function as fol -lows:
    string ConvertToLowerCase(const string& toConvert) {
        string result = toConvert;
        transform(result.begin(), result.end(), result.begin(), ::tolower);
        return result;
    }Here, we simply create a new variable called result, initialize it to the parameter toConvert, then pro-ceed as in the above function.
Member functions which do not change state are constIf  you'll  recall  from our earlier discussion of  const member functions,  when working with  const in-stances of a class, C++ only allows you to invoke member functions which are explicitly marked const.  No matter how innocuous a function is, if it isn't explicitly marked const, you cannot invoke it on a const in-stance of an object.  This means that when designing classes, you should take great care to mark const every member function that does not change the state of the object.  Is this a lot of work?  Absolutely! Does it pay off?  Of course!As an extreme example of why you should always mark nonmutating member functions const, suppose you try to pass a CS106B/X Vector to a function by reference-to-const.  Since the Vector is marked as 
const, you can only call Vector member functions that themselves are const.  Unfortunately, none of the 
Vector's member functions are  const,  so you can't call  any member functions of a  const Vector.   A 
const CS106B/X Vector is effectively a digital brick.  As fun as bricks are, from a functional standpoint  they're pretty much useless, so do make sure to constify your member functions.If you take care to const correct all member functions that don't modify state, then your code will have an additional, stronger property: member functions which are  not marked  const are guaranteed to make some sort of change to the receiver's internal state.  From an interface perspective this is wonderful – if  you want to call a particular function that isn't marked const, you can almost guarantee that it's going to make some form of modification to the receiver object.  Thus when you're getting accustomed to a new code base, you can quickly determine what operations on an object modify that object and which just re-turn some sort of internal state.
Variables which are set but never changed are constVariables vary.  That's why they're called variables.  Constants, on the other hand, do not.  Semantically, there is a huge difference between the sorts of operations you can perform on constants and the opera-tions you can perform on variables, and using one where you meant to use the other can cause all sorts of  debugging headaches.  Using  const,  we can make explicit the distinction between constant values and true variables, which can make debugging and code maintenance much easier.  If a variable is const, you cannot inadvertently pass it by reference or by pointer to a function which subtly modifies it, nor can you  



- 262 -  Chapter 9: Refining Abstractionsaccidentally overwrite it with = when you meant to check for equality with ==.  Many years after you've marked a variable  const, programmers trying to decipher your code will let out a sigh of relief as they realize that they don't need to watch out for subtle operations which overwrite or change its value.Without getting carried away, you should try to mark as many local variables const as possible.  The addi-tional compile-time safety checks and readability will more than compensate for the extra time you spent  typing those extra five characters.
Example: CS106B/X MapAs an example of what const-correctness looks like in practice, we'll consider how to take a variant of the CS106B/X Map class and modify it so that it is const-correct.  The initial interface looks like this:
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();

        int size();
        bool isEmpty();

        void put(string key, ValueType value);
        void remove(string key);
        bool containsKey(string key);

        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(string key);
        ValueType& operator[](string key);

        void clear();
    
        void mapAll(void fn(string key, ValueType val));

        template <typename ClientDataType>
        void mapAll(void fn(string key, ValueType val, ClientDataType& data),
                    ClientDataType& data);

        Iterator iterator();

    private:
        /* ... Implementation specific ... */
    };The operator[] function shown here is what's called an overloaded operator and is the function that lets us write code to the effect of myMap["Key"] = value and value = myMap["Key"].  We will cover over-loaded operators in a later chapter,  but for now you can think of it simply as a function that is called  whenever the Map has the element-selection brackets applied to it.The first set of changes we should make to the Map is to mark all of the public member functions which don't modify state const.  This results in the following interface:
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    /* Note: Still more changes to make.  Do not use this code as a reference! */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();
    
        int size() const;
        bool isEmpty() const;
    
        void put(string key, ValueType value);
        void remove(string key);
        bool containsKey(string key) const;
    
        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(string key) const;
        ValueType& operator[](string key);
    
        void clear();
    
        void mapAll(void fn(string key, ValueType val)) const;
        template <typename ClientDataType>
        void mapAll(void fn(string key, ValueType val, ClientDataType& data),
                    ClientDataType& data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };The size,  isEmpty, and containsKey functions are all const because they simply query object proper-ties without changing the Map.  get is also const since accessing a key/value pair in the Map does not ac-tually modify the underlying state, but operator[] should definitely not be marked const because it may update the container if the specified key does not exist.The trickier functions to  const-correct are  mapAll and  iterator.  Unlike the STL iterators, CS106B/X iterators are read-only and can't modify the underlying container.  Handing back an iterator to the  Map contents therefore cannot change the Map's contents, so we have marked iterator const.  In addition, since mapAll passes its arguments to the callback function by value, there is no way for the callback func-tion to modify the underlying container.  It should therefore be marked const.Now that the interface has its member functions const-ified, we should make a second pass over the Map and replace all instances of pass-by-value with pass-by-reference-to-const.   In general,  objects should never be passed by value and should always be passed either by pointer or reference with the appropriate  
constness.  This eliminates unnecessary copying and can make programs perform asymptotically better. The resulting class looks like this:
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    /* Note: Still more changes to make.  Do not use this code as a reference! */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();
    
        int size() const;
        bool isEmpty() const;
    
        void put(const string& key, const ValueType& value);
        void remove(const string& key);
        bool containsKey(const string& key) const;
    
        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(const string& key) const;
        ValueType& operator[](const string& key);
    
        void clear();
    
        void mapAll(void (fn)(const string& key, const ValueType& val)) const;
        template <typename ClientDataType>
        void mapAll(void (fn)(const string& key, const ValueType& val,
                              ClientDataType& data),
                    ClientDataType &data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };The parameters to put, remove, containsKey, get, and operator[] have all been updated to use pass-by-reference-to-const instead of pass-by-value.  The trickier functions to modify are the  mapAll func-tions.  These functions themselves accept function pointers which initially took their values by value.  We have  updated  them  appropriately  so  that  the  function  pointers  accept  their  arguments  by  refer-ence-to-const, since we assume that the class client will also be const-correct.  Note that we did not mark the ClientDataType& parameter to mapAll const, since the Map client may actually want to modify that parameter.There is one last change to make, and it concerns the get function, which currently returns a copy of the value associated with a given key.  At a high-level, there is nothing intuitively wrong with returning a copy  of the stored value, but from an efficiency standpoint we may end up paying a steep runtime cost by re-turning the object by value.  After all, this requires a full object deep copy, plus a call to the object's de-structor once the returned object goes out of scope.  Instead, we'll modify the interface such that this func-tion returns the object by reference-to-const.  This allows the Map client to look at the value and, if they choose, copy it, but prevents clients from intrusively modifying the Map internals through a const func-tion.  The final, correct interface for Map looks like this:
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    /* const-corrected version of the CS106B/X Map. */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();

        int size() const;
        bool isEmpty() const;

        void put(const string& key, const ValueType& value);
        void remove(const string& key);
        bool containsKey(const string& key) const;

        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        const ValueType& get(const string& key) const;
        ValueType& operator[](const string& key);
    
        void clear();
    
        void mapAll(void (fn)(const string& key, const ValueType& val)) const;
        template <typename ClientDataType>
        void mapAll(void (fn)(const string& key, const ValueType& val,
                              ClientDataType& data),
                    ClientDataType &data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };As an interesting intellectual exercise, compare this code to the original version of the Map.  The interface declaration is considerably longer than before because of the additional  consts, but ultimately is more pleasing.  Someone unfamiliar with the interface can understand, for example, that the  Map's  Iterator type  cannot  modify  the  underlying  container  (since  otherwise  the  iterator() function  wouldn't  be 
const), and can also note that mapAll allows only a read-only map operation over the Map.  This makes the code more self-documenting, a great boon to programmers responsible for maintaining this code base  in the long run.
Why be const-correct?As you can see from the example with the CS106B/X Map, making code const-correct can be tricky and time-consuming.  Indeed, typing out all the requisite consts and &s can become tedious after a while.  So why should you want to be const-correct in the first place?There are multiple reasons why code is better off const-correct than non-const-correct.  Here are a few:

• Code correctness.  If nothing else, marking code const whenever possible reduces the possibility for lurking bugs in your code.  Because the compiler can check which regions of the code are and are not mutable, your code is less likely to contain logic errors stemming either from a misuse of  an interface or from a buggy implementation of a member function.
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• Code documentation.  const-correct code is self-documenting and clearly indicates to other pro-grammers what it is and is not capable of doing.  If you are presented an interface for an entirely  foreign class, you may still be able to figure out which methods are safe to call with important data by noting which member functions are const or accept parameters by reference-to-const.
• Library integration.   The C++ standard libraries and most third-party libraries are fully  con-

st-correct and expect that any classes or functions that interface with them to be const-correct as well.  Writing code that is not const-correct can prevent you from fully harnessing the full power of some of these libraries.
Optimizing Construction with Member Initializer ListsWe've just concluded a whirlwind tour of const, and now it's time to change gears and talk about an en-tirely different aspect of class design: the member initializer list.Normally, when you create a class, you'll initialize all of its data members in the body constructor.  How-ever, in some cases you'll need to initialize instance variables before the constructor begins running.  Per-haps you'll have a const instance variable that you cannot assign a value, or maybe you have an object as  an instance variable where you do not want to use the default constructor.  For situations like these,  C++ has a construct called the member initializer list that you can use to fine-tune the way your data members are set up.  This section discusses initializer list syntax, situations where initializer lists are appropriate, and some of the subtleties of initializer lists.
How C++ Constructs ObjectsTo fully understand why initializer lists exist in the first place, you'll need to understand the way that C++ creates and initializes new objects.Let's suppose you have the following class:
    class SimpleClass {
    public:
        SimpleClass();

    private:
        int myInt;
        string myString;
        vector<int> myVector;
    };Let's define the SimpleClass constructor as follows:
    SimpleClass::SimpleClass() {
        myInt = 5;
        myString = "C++!";
        myVector.resize(10);
    }What happens when you create a new instance of the class MyClass?  It turns out that the simple line of code MyClass mc actually causes a cascade of events that goes on behind the scenes.  Let's take a look at what happens, step-by-step.



Chapter 9: Refining Abstractions - 267 -The first step in constructing a C++ object is simply to get enough space to hold all of the object's data members.  The memory is not initialized to any particular value, so initially all of your object's data mem -bers hold garbage values.  In memory, this looks something like this:

As you can see, none of the instance variables have been initialized, so they all contain junk.  At this point,  C++ calls the default constructor of each instance variable.  For primitive types, this leaves the variables unchanged.  After this step, our object looks something like this:

Finally, C++ will invoke the object's constructor so you can perform any additional initialization code.  Us-ing the constructor defined above, the final version of the new object will look like this:
int myInt 137

string myString Length: 4    
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}

int myInt ???

string myString Length: 0    
Text: ""

vector<int> myVector Size: 0
Elements: {}             

int myInt ???

string myString Length: ???  
Text: ???

vector<int> myVector Size: ???
Elements: ???            



- 268 -  Chapter 9: Refining AbstractionsAt this point, our object is fully-constructed and ready to use.However, there's one thing to consider here.  Before we reached the SimpleClass constructor, C++ called the default  constructor  on both  myString and  myVector.  myString was therefore  initialized to the empty string, and  myVector was constructed to hold no elements.  However, in the  SimpleClass con-structor, we immediately assigned myString to hold “C++!” and resized myVector to hold ten elements. This means that we effectively initialized  myString and  myVector twice – once with their default con-structors and once in the SimpleClass constructor.*
To improve efficiency and resolve certain other problems which we'll  explore later,  C++ has a feature called an initializer list.  An initializer list is simply a series of values that C++ will use instead of the default  values to initialize instance variables.  For example, in the above example, you can use an initializer list to  specify that the variable myString should be set to “C++!” before the constructor even begins running.To use an initializer list, you add a colon after the constructor and then list which values to initialize which  variables with.  For example, here's a modified version of the SimpleClass constructor that initializes all the instance variables in an initializer list instead of in the constructor:
    SimpleClass::SimpleClass() : myInt(5), myString("C++!"), myVector(10) {
        // Note: Empty constructor
    }Here, we're telling C++ to initialize the variables myInt and myString to 5 and “C++!,” respectively, before the class constructor is even called.  Also, by writing myVector(10), we're telling C++ to invoke the para-metrized constructor of  myVector passing in the value 10, which creates a  vector with ten elements. This time, when we create a new object of type myVector, the creation steps will look like this:First, as in the previous case, the object is allocated somewhere in memory and all variables have garbage values:

Next, C++ invokes all of the constructors for the object's data members using the values specified in the initializer list.  The object now looks like this:
* Technically speaking, the objects are only initialized once, but the runtime efficiency is as though the objects were  initialized  multiple  times.   We'll  talk  about  the  differences  between  initialization  and  assignment  in  a  later  chapter.

int myInt ???

string myString Length: ???  
Text: ???

vector<int> myVector Size: ???
Elements: ???            
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Finally, C++ invokes the  MyClass constructor, which does nothing.  The final version of the class thus is  identical to the above version.As you can see, the values of the instance variables myInt, myString, and myVector are correctly set be-fore the SimpleClass constructor is invoked.  This is considerably more efficient than the previous ver-sion and will run much faster.Note that while in this example we used initializer lists to initialize all of the object's instance variables, there is no requirement that you do so.  However, in practice it's usually a good idea to set up all variables  in an initializer list to make clear what values you want for each of your data members.
Parameters in Initializer ListsIn the above example, the initializer list we used specified constant values for each of the data members. However, it's both legal and useful to initialize data members with expressions instead of literal constants. For example, consider the following class, which encapsulates a rational number:
    class RationalNumber
    {
    public:
        RationalNumber(int numerator = 0, int denominator = 1);

        /* ... */
    private:
        int numerator, denominator;
    };The following is a perfectly legal constructor that initializes the data members to the values specified as parameters to the function:
    RationalNumber::RationalNumber(int numerator, int denominator) :
        numerator(numerator), denominator(denominator)
    {
        // Empty constructor
    }C++ is smart enough to realize that the syntax numerator(numerator) means to initialize the numerator data member to the value held by the numerator parameter, rather than causing a compile-time error or 

int myInt 137

string myString Length: 4    
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}
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ator and denominator parameters to RationalNumber were equal to zero and one, respectively.  These are default arguments to the constructor and allow us to call the constructor with fewer than two para-meters.  If we don't specify the parameters, C++ will use these values instead.  For example:
    RationalNumber fiveHalves(5, 2);
    RationalNumber three(3); // Calls constructor with arguments (3, 1)
    RationalNumber zero; // Calls constructor with arguments (0, 1)You can use default arguments in any function, provided that if a single parameter has a default argument every parameter after it also has a default.  Thus the following code is illegal:
    void DoSomething(int x = 5, int y); // Problem: y needs a defaultWhile the following is legal:
    void DoSomething(int x, int y = 5); // LegalWhen writing functions that take default arguments, you should only specify the default arguments in the function prototype, not the function definition.  If you don't prototype the function, however, you should specify the defaults in the definition.  C++ is very strict about this and even if you specify the same defaults in both the prototype and definition the compiler will complain.
When Initializer Lists are MandatoryInitializer lists are useful from an efficiency standpoint.  However, there are times where initializer lists are the only syntactically legal way to set up your instance variables.Suppose we'd like to make an object called Counter that supports two functions, increment and decre-
ment,  that adjust an internal counter.  However, we'd like to add the restriction that the  Counter can't drop below 0 or exceed a user-defined limit.  Thus we'll use a parametrized constructor that accepts an 
int representing the maximum value for the  Counter and stores it as an instance variable.  Since the value of the upper limit will never change, we'll mark it const so that we can't accidentally modify it in our code.  The class definition for Counter thus looks something like this:
    class Counter {
    public:
        Counter(int maxValue);

        void increment();
        void decrement();
        int getValue() const;

    private:
        int value;
        const int maximum;
    };Then we'd like the constructor to look like this:
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    Counter::Counter(int maxValue) {
        value = 0;
        maximum = maxValue; // Problem: Writing to a const value!
    }Unfortunately, the above code isn't valid because in the second line we're assigning a value to a variable  marked const.  Even though we're in the constructor, we still cannot violate the sanctity of constness.  To fix this, we'll initialize the value of maximum in the initializer list, so that maximum will be initialized to the value of maxValue, rather than assigned the value maxValue.  This is a subtle distinction, so make sure to think about it before proceeding.The correct version of the constructor is thus
    Counter::Counter(int maxValue) : value(0), maximum(maxValue) {
        // Empty constructor
    }Note that we initialized maximum based on the constructor parameter maxValue.  Interestingly, if we had forgotten to initialize maximum in the initializer list, the compiler would have reported an error.  In C++, it is mandatory to initialize all const primitive-type instance variables in an initializer list.  Otherwise, you'd have constants whose values were total garbage.Another case where initializer lists are mandatory arises when a class contains objects with no legal or  meaningful default constructor.  Suppose, for example, that you have an object that stores a CS106B/X Set of a custom type customT with comparison callback MyCallback.  Since the Set requires you to specify the callback function in the constructor, and since you're always going to use MyCallback as that paramet-er, you might think that the syntax looks like this:
    class SetWrapperClass {
    public:
        SetWrapperClass();

    private:
        Set<customT> mySet(MyCallback); // Problem: Need a comparison function
    };Unfortunately, this isn't legal C++ syntax.  However, you can fix this by rewriting the class as
    class SetWrapperClass {
    public:
        SetWrapperClass();

    private:
        Set<customT> mySet; // Note: no parameters specified
    };And then initializing mySet in the initializer list as
    SetWrapperClass::SetWrapperClass() : mySet(MyCallback) {
        // Yet another empty constructor!
    }Now, when the object is created, mySet will have MyCallback passed to its constructor and everything will work out correctly.
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Multiple ConstructorsIf you write a class with multiple constructors (which, after we discuss of copy constructors, will be most  of your classes), you'll need to make initializer lists for each of your constructors.  That is, an initializer list  for one constructor won't invoke if a different constructor is called.
Sharing Information With staticSuppose that we're developing a windowed operating system and want to write the code that draws win-dows on the screen.  We decide to create a class Window that exports a drawWindow function.  In order to display the window correctly, drawWindow needs access to a Palette object that performs primitive ren-dering operations like drawing lines, arcs, and filled polygons.  Assume that we know that the window will  always be drawn with the same Palette.  Given this description, we might initially design Window so that it has a Palette as a data member, as shown here:
    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();
    private:
        /* ... other data members ... */
        Palette pal;
    };Now, every window has its own palette and can draw itself appropriately. There's nothing fundamentally wrong with this setup, but it contains a small flaw.  Let's suppose that we have three different window objects.  In memory, those objects would look like this:

Since pal is a data member of Window, every Window has its own Palette.  There might be an arbitrary number of windows on screen at any time, but there's only one screen and it doesn't make sense for every window to have its own palette.  After all, each window is likely to use a similar set of colors as those used  by every other window, and it seems more reasonable for every window to share a single palette,  as  shown here:
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How can we model this in code?  Using the techniques so far, we have few options.  First, we could create a global Palette object, then have each Window use this global Palette.  This is a particularly bad choice for two reasons:
• It uses global variables.  Independently of any other strengths and weaknesses of this approach, global variables are a big programming no-no.  Globals can be accessed and modified anywhere in  the program, making debugging difficult should problems arise.  It is also possible to inadvertently reference global variables inside of unrelated functions, leading to subtle bugs that can take down the entire program.
• It lacks encapsulation.  Because the Palette is a global variable, other parts of the program can modify the Window Palette without going through the Window class.  This leads to the same sorts of problems possible with public data members: class invariants breaking unexpectedly, code writ-ten with one version of Window breaking when the Window is updated, etc.Second, we could have each  Window object contain a  pointer to a  Palette object,  then pass a shared 

Palette as a parameter to each instance of Window.  For example, we could design the class like this:
    class Window {
    public:
        Window(Palette* p, /* ... */);
        /* ... other constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();

    private:
        /* ... other data members ... */
        Palette* pal;
    };This allows us to share a single Palette across multiple Windows and looks remarkably like the above dia-gram.  However, this approach has its weaknesses:
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• It complicates Window creation.  Let's think about how we would go about creating Windows with this setup.  Before creating our first Window, we'd need to create a Palette to associate with it, as shown here:
    Palette* p = new Palette;
    Window*  w = new Window(p, /* ... */);If later we want to create more Windows, we'd need to keep track of the original Palette we used so that we can provide it as a parameter to the Window constructor.  This means that any part of the program responsible for Window management needs to know about the shared Palette.

• It violates encapsulation.  Clients of Window shouldn't have to know how Windows are implemen-ted, and by requiring  Window users to explicitly manage the shared Palette we're exposing too much detail about the Window class.  This approach also locks us in to a fixed implementation.  For example, what if we want to switch from Palette to a TurboPalette that draws twice as quickly? With the current approach all Window clients would need to upgrade their code to match the new implementation.
• It complicates resource management.  Who is responsible for cleaning up the Window Palette at the end of the program?  Window clients shouldn't have to, since the Palette really belongs to the  Window class.  But no particular  Window owns the  Palette,  since each instance of  Window shares a single Palette.  There are systems we could use to make cleanup work correctly (see the  later extended example on smart pointers for one possibility), but they increase program complex-ity.Both of these approaches have their individual strengths, but have drawbacks that outweigh their benefits.  Let's review exactly what we're trying to do.  We'd like to have a single Palette that's shared across mul-tiple different Windows.  Moreover, we'd like this Palette to obey all of the rules normally applicable to class design: it should be encapsulated and it should be managed by the class rather than clients.  Using the techniques we've covered so far it is difficult to construct a solution with these properties.  For a clean solution, we'll need to introduce a new language feature: static data members.

Static Data MembersStatic data members are data members associated with a class as a whole rather than a particular instance  of that class.  In the above example with  Window and Palette, the window Palette is associated with 
Windows in general rather than any one specific Window object and is an ideal candidate for a static data member.In many ways static data members behave similarly to regular data members.  For example, if a class has a  private static data member, only member functions of the class can access that variable.  However, static data members behave differently from other data members because there is only one copy of each static data member.  Each instance of a class containing a static data member shares the same version of that  data member.  That is, if a single class instance changes a static data member, the change affects all in-stances of that class.The syntax for declaring static data members is slightly more complicated than for declaring nonstatic data members.  There are two steps: declaration and definition.  For example, if we want to create a static 
Palette object inside of Window, we could declare the variable as shown here:
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    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
    };Here,  sharedPal is declared as a static data member using the  static keyword.  But while we've  de-
clared sharedPal as a static data member, we haven't defined sharedPal yet.  Much in the same way that functions  are  separated  into  prototypes  (declarations)  and  implementations  (definitions),  static  data members have to be both declared inside the class in which they reside and defined inside the .cpp file as -sociated with that class.  For the above example, inside the .cpp file for the Window class, we would write
    Palette Window::sharedPal;There are two important points to note here.  First, when defining the static variable, we must use the fully-qualified name (Window::sharedPal) instead of just its local name (sharedPal).  Second, we do 
not repeat the static keyword during the variable declaration – otherwise, the compiler will think we're doing something completely different (see the “More to Explore” section).  You may have noticed that even though Window::sharedPal is private we're still allowed to use it outside the class.  This is only legal dur-ing definition, and outside of this one context it is illegal to use Window::sharedPal outside of the Win-
dow class.In some circumstances you may want to create a class containing a static data member where the data member needs to take on an initial value.  For example, if we want to create a class containing an int as a static data member, we would probably want to initialize the int to a particular value.  Given the following class declaration:
    class MyClass {
    public:
        void doSomething();

    private:
        static int myStaticData;
    };It is perfectly legal to initialize myStaticData as follows:
    int MyClass::myStaticData = 137;As you'd expect, this means that myStaticData initially holds the value 137.Although the syntax for creating a static data member can be intimidating,  once initialized static data members look just like regular data members.  For example, consider the following member function:
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    void MyClass::doSomething() {
        ++myStaticData; // Modifies myStaticData for all classes    
    }Nothing here seems all that out-of-the-ordinary and this code will work just fine.  Note, however, that  modifications to myStaticData are visible to all other instances of MyClass.Let's consider another example where static data members can be useful.  Suppose that you're debugging the windowing code from before and you're pretty sure that you've forgotten to delete all instances of 
Window that you've allocated with new.  Since C++ won't give you any warnings about this, you'll need to do the instance counting yourself.  The number of active instances of a class is class-specific information that doesn't pertain to any specific instance of the object, and this is the perfect spot to use static data  members.  To handle our instance counting, we'll modify the Window definition as follows:
    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        void drawWindow();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
        static int numInstances;
    };We'll also define the variable outside the class as
    int Window::numInstances = 0;We know that whenever we create a new instance of a class, the class's constructor will be called.  This means that if we increment numInstances inside the Window constructor, we'll correctly track the num-ber of times the a Window has been created.  Thus, we'll rewrite the Window constructor as follows:
    Window::Window(/* ... */) {
        /* ... All older initialization code ... */
        ++numInstances;
    }Similarly, we'll decrement numInstances in the Window destructor.  We'll also have the destructor print out a message if this is the last remaining instance so we can see how many instances are left:
    Window::~Window() {
        /* ... All older cleanup code ... */
        --numInstances;
        if(numInstances == 0)
            cout << "No more Windows!*" << endl;
    }
    
Static Member FunctionsInside of member functions, a special variable called this acts as a pointer to the current object.  Whenev-er you access a class's instance variables inside a member function, you're really accessing the instance variables of the this pointer.  For example, given the following Point class:* This is not meant as a slight to Microsoft.
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    class Point {
    public:
        Point(int xLoc, int yLoc);
        int getX() const;
        int getY() const;

    private:
        int x, y;
    };If we implement the Point constructor as follows:
    Point::Point(int xLoc, int yLoc) {
        x = xLoc;
        y = yLoc;
    }This code is equivalent to
    Point::Point(int xLoc, int yLoc) {
        this->x = xLoc;
        this->y = yLoc;
    }How does C++ know what value this refers to?  The answer is subtle but important.  Suppose that we have a Point object called pt and that we write the following code:
    int x = pt.getX();The C++ compiler converts this into code along the lines of
    int x = Point::getX(&pt);Where Point::getX is prototyped as
    int Point::getX(Point *const this);This is not legal C++ code, but illustrates what's going on behind the scenes whenever you call a member  function.The mechanism behind member function calls should rarely be of interest to you as a programmer.  How-ever, the fact that an N-argument member function is really an (N+1)-argument free function can cause problems in a few places.  For example, suppose that we want to provide a comparison function for Points that looks like this:
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    class Point {
    public:
        Point(int xLoc, int yLoc);
        int getX() const;
        int getY() const;
    
        bool compareTwoPoints(const Point& one, const Point& two) const;

    private:
        int x, y;
    };
    
    bool Point::compareTwoPoints(const Point& one, const Point& two) const {
        if(one.x != two.x)
            return one.x < two.x;
        return one.y < two.y;
    }If you have a vector<Point> that you'd like to pass to the STL sort algorithm, you'll run into trouble if you try to use this syntax:
    sort(myVector.begin(), myVector.end(), &Point::compareTwoPoints); // ProblemThe problem is that sort expects a comparison function that takes two parameters and returns a bool. However,  Point::compareTwoPoints takes  three parameters: two points to compare and an invisible “this” pointer.  Thus the above code will generate an error.If you want to define a comparison or predicate function inside of a class, you'll want that member func-tion to not have an invisible this.  What does this mean from a practical standpoint?  A member function without a this pointer does not have a receiver object, and thus can only operate on its parameters and any static data members of the class it's declared in (since that data is particular to the class rather than any particular instance).  Functions of this sort are called static member functions and can be created using the static keyword.  In the above example with Point, we could create the Point comparison function as a static member function using the following syntax:
    class Point {
    public:
        Point(int xLoc, int yLoc);

        int getX() const;
        int getY() const;
    
        static bool compareTwoPoints(const Point& one, const Point& two);
    private:
        int x, y;
    };

    bool Point::compareTwoPoints(const Point& one, const Point& two) const
    {
        if(one.x != two.x)
            return one.x < two.x;
        return one.y < two.y;
    }
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mainingInstances and implement it as shown here:
    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/
        void drawWindow();
    
        static int getRemainingInstances();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
        static int numInstances;
    };

    Palette Window::sharedPal;
    int Window::numInstances = 0;

    int Window::getRemainingInstances()
    {
        return numInstances;
    }As with static data, note that when defining static member functions, you omit the static keyword.  Only put static inside the class declaration.You can invoke static member functions either using the familiar object.method syntax, or you can use the fully qualified name of the function.  For example, with the above example, we could check how many  remaining instances there were of the MyClass class by calling getRemainingInstances as follows:
    cout << Window::getRemainingInstances() << endl;

const and staticUnfortunately, the const and static keywords do not always interact intuitively.  One of the biggest is-sues to be aware of is that const member functions can modify static data.  For example, consider the following class:
    class ConstStaticClass {
    public:
        void constFn() const;

    private:
        static int staticData;
    };

    int ConstStaticClass::staticData = 0;
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    void ConstStaticClass::constFn() const {
        ++staticData;
    }
    Although the above implementation of  constFn increments a static data member,  the above code will compile and run without any problems.  The reason is that the code doesn't modify the receiver object. Static data members are not associated with a particular class instance, so modifications to static data members do not change the state of any one instance of the class.Additionally, since static member functions don't have a this pointer, they cannot be declared const. In the case of getNumInstances, this means that although the function doesn't modify any class data, we still cannot mark it const.
Integral Class ConstantsThere is one other topic concerning the interaction of  const and  static: class constants.  Suppose we want to make a constant variable accessible only in the context of a class.  What we want is a variable that'-s const, so it's immutable, and static, so that all copies of the class share the data.  It's legal to declare these variables like this:
    class ClassConstantExample {
    public:
        /* Omitted. */

    private:
        static const int MyConstant;
    };

    const int ClassConstantExample::MyConstant = 137;Note the const in the definition of ClassConstantExample::MyConstant.However, since the double declaration/definition can be a bit tedious, C++ has a built-in shorthand you can use when declaring class constants of integral types.  That is, if you have a static const int or a stat-
ic const char, you can condense the definition and declaration into a single statement by writing;
    class ClassConstantExample {
    public:
        /* Omitted. */

    private:
        static const int MyConstant = 137; // Condense into a single line
    };This shorthand is common in professional code.  Be careful when using the shorthand, though, because some older compilers won't correctly interpret it.  Also, be aware that this only works with integral types, so you cannot initialize a static const double or static const float this way.
Integrating Seamlessly with Conversion ConstructorsWhen designing classes, you might find that certain data types can logically be converted into objects of  the type you're creating.  For example, when writing the aforementioned rational number class, you might  note that raw ints could have a defined conversion to  RationalNumber objects.  In these situations, it 
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Implicit ConversionsIn C++, an  implicit conversion is a conversion from one type to another that doesn't require an explicit typecast.  Perhaps the simplest example is the following conversion from an int to a double:
    double myDouble = 137 + 2.71828;Here, even though 137 is an int while 2.71828 is a double, C++ will implicitly convert it to a double so the operation can proceed smoothly.When C++ performs implicit conversions, it does not “magically” figure out how to transform one data  type into another.  Rather, it creates a temporary object of the correct type that's initialized to the value of the implicitly converted object.  Thus the above code is functionally equivalent to
    double temp = double(myInt);
    double myDouble = temp + 2.71828;

As seen here, the compiler created a temporary variable of type double, then initialized it by converting the integer myInt to a double.  When   C++ performs these conversions, it uses a special function called a 
conversion constructor to initialize the new object.  Conversion constructors are simply class constructors that accept a single parameter and initialize the new object to a copy of the parameter.  In the double ex-ample, the newly-created double had the same value as the int parameter.Conversion constructors are surprisingly easy to write, and in fact our RationalNumber class already has a conversion constructor.  I've reprinted this class below:
    class RationalNumber
    {
    public:
        RationalNumber(int numerator = 0, int denominator = 1);

        /* ... */
    private:
        int numerator, denominator;
    };Given just this class, we can write code like the following:
    RationalNumber myNumber = 137;How is this possible?  137 is an int, not a RationalNumber.  The reason is that C++ interprets this code as a call to the RationalNumber constructor, passing in the integer 137.  That is, the code is equivalent to
    RationalNumber myNumber(137);
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    RationalNumber myNumber(137, 1);In general, if you define a class that has a constructor that can be called with one argument, C++ will treat  this constructor as a conversion constructor, and will translate code of the form
    Type variable = value;Into code of the format
    Type variable(value);While conversion constructors are quite useful in a wide number of circumstances, the fact that C++ auto -matically treats all single-parameter constructors as conversion constructors can lead to convoluted or nonsensical code.  One of my favorite examples of “conversion-constructors-gone-wrong” comes from an older version of the CS106B/X ADT class libraries.  Originally, the CS106B/X Vector was defined as
    template <typename ElemType> class Vector
    {
    public:
        Vector(int sizeHint = 10); // Hint about the size of the Vector

        /* ... */
    };
    Nothing seems all that out-of-the-ordinary here – we have a Vector template class that lets you give the class a hint about the number of elements you will be storing in it.  However, because the constructor ac -cepts a single parameter, C++ will interpret it as a conversion constructor and thus will let us implicitly  convert from ints to Vectors.  This can lead to some very strange behavior.  For example, given the above  class definition, consider the following code:
    Vector<int> myVector = 137;This code, while nonsensical, is legal and equivalent to Vector<int> myVector(137).  Fortunately, this probably won't cause any problems at runtime – it just doesn't make sense in code.However, suppose we have the following code:
    void DoSomething(Vector<int>& myVector) {
        myVector = NULL;
    }This code is totally legal even though it makes no logical sense.  Since NULL is #defined to be 0, The above code will create a new Vector<int> initialized with the parameter 0 and then assign it to myVector.  In other words, the above code is equivalent to
    void DoSomething(Vector<int>& myVector) {
        Vector<int> tempVector(0);
        myVector = tempVector;
    }

tempVector is empty when it's created, so when we assign tempVector to myVector, we'll set myVector to  the  empty  vector.   Thus  the  nonsensical  line  myVector = 0 is  effectively  an  obfuscated  call  to 
myVector.clear().
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explicitTo prevent problems like the one described above, C++ provides the explicit keyword to indicate that a constructor must not be interpreted as a conversion constructor.  If a constructor is marked explicit, it indicates that the constructor should not be considered for the purposes of implicit conversions.  For ex-ample, let's look at the current version of the CS106B/X Vector, which has its constructor marked expli-
cit:
    template <typename ElemType> class Vector
    {
    public:
        explicit Vector(int sizeHint = 10); // Hint the size of the Vector

        /* ... */
    };Now, if we write code like
    Vector<int> myVector = 10;We'll get a compile-time error since there's no implicit conversion from int to Vector<int>.  However, we can still write
    Vector<int> myVector(10);Which is what we were trying to accomplish in the first place.  Similarly, we eliminate the myVector = 0 error, and a whole host of other nasty problems.When designing classes, if you have a single-argument constructor that is not intended as a conversion function, you must mark it  explicit to avoid running into the “implicit conversion” trap.  While indeed this is more work for you as an implementer, it will make your code safer and more stable.
Chapter Summary

• Templates can be used to define a family of abstractions that depend on an arbitrary type.
• The typename keyword is used to declare parameters to a template class.
• A template class's interface and implementation should be put into the .h file  and no .cpp file should be created for the class.
• The typename keyword is also used in front of types nested inside of dependent types.
• Marking a variable const prevents its value from being changed after the variable is initialized.
• A const member function cannot modify any of the class's data members.
• const member functions clarify interfaces by indicating which member functions read values and which member functions write values.
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• const can have different meanings when applied to pointers based on where the const occurs.
• C++ enforces bitwise constness; it is up to you to ensure that your classes are semantically const.
• The  mutable keyword allows you to write semantically  const functions which are not bitwise 

const.
• Member initializer lists initialize data members to particular values before the constructor begins running.
• The  static keyword allows you to indicate that certain data is shared across all instances of a class.
• static data members must be declared in the .h file and defined in the .cpp file.
• static member functions are functions associated with a class as a whole, rather than a particular instance of a class.
• static member functions are invoked by writing ClassName::functionName().
• Integral class constants can be initialized in the body of the class and do not need to be separately defined.
• Conversion constructors allow classes to be initialized to values of a different type.
• The explicit keyword prevents accidental implicit conversions from occurring.

Practice Problems

1. How do you declare a class template? 
2. How do you implement member functions for a class template? 
3. Is there a difference between the typename and class keywords when declaring template argu-ments? 
4. When is it necessary to preface a type with the typename keyword in a class template? 
5. The following line of code declares a member function inside a class:

    const char * const MyFunction(const string& input) const;Explain what each const in this statement means.
6. What is const-overloading? 
7. What is the difference between semantic constness and bitwise constness? 
8. What is the difference between a const pointer and a pointer-to-const? 
9. How are const references different from regular references?
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10. What does the mutable keyword do? 
11. What are the steps involved in class construction?  In what order do they execute? 
12. How do you declare an initializer list? 
13. What is static data and how does it differ from regular member data? 
14. What are the two steps required to add static data to a class? 
15. What is a static member function?  How do you call a static member function? 
16. What is a conversion constructor? 
17. Explain what the explicit keyword does.
18. The STL map's bracket operator accepts a key and returns a reference to the value associated with  that key.  If the key is not found, the map will insert a new key/value pair so that the returned refer-ence is valid.  Is this function bitwise const?  Semantically const?
19. When working with pointers to pointers, const can become considerably trickier to read.  For ex-ample, a const int * const * const is a const pointer to a const pointer to a const int, so neither  the  pointer,  its  pointee,  or  its  pointee's  pointee  can  be  changed.   What  is  an 

int * const *?  How about an int ** const **?  
20. The CS106B/X Vector has the following interface:

          template <typename ElemType> class Vector {
          public:
              Vector(int sizeHint = 0);
        
              int size();
              bool isEmpty();
    
              ElemType getAt(int index);
              void setAt(int index, ElemType value);
        
              ElemType& operator[](int index);
        
              void add(ElemType elem);
              void insertAt(int index, ElemType elem);
              void removeAt(int index);
        
              void clear();
    
              void mapAll(void fn(ElemType elem));
              template <typename ClientDataType>
                  void mapAll(void fn(ElemType elem, ClientDataType & data),
                              ClientDataType & data);
    

        Iterator iterator();
    }; Modify this interface so that it is  const-correct.  (Hint: You may need to const-overload some of  
these functions) 
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21. Modify the Snake simulation code from the earlier extended example so that it is const-correct.
22. Explain each of the steps involved in object construction.  Why do they occur in the order they do? Why are each of them necessary?

 
23. Why must a function with a single parameter with default value must have default values specified for each parameter afterwards? 
24. NASA is currently working on Project Constellation, which aims to resume the lunar landings and ultimately to land astronauts on Mars.  The spacecraft under development consists of two parts – an orbital module called Orion and a landing vehicle called Altair.  During a lunar mission, the Ori-on vehicle will orbit the Moon while the Altair vehicle descends to the surface.  The Orion vehicle is  designed such that it does not necessarily have to have an Altair landing module and consequently can be used for low Earth orbit missions in addition to lunar journeys.  You have been hired to de-velop the systems software for the spacecraft.  Because software correctness and safety are critic-ally important, you want to design the system such that the compiler will alert you to as many po-tential software problems as possible. Suppose that we have two classes, one called OrionModule and one called AltairModule.  Since every  Altair  landing  vehicle  is  associated  with  a  single  OrionModule,  you  want  to  define  the 

AltairModule class such that it stores a pointer to its  OrionModule.  The AltairModule class should be allowed to modify the OrionModule it points to (since it needs to be able to dock/un-dock and possibly to borrow CPU power for critical landing maneuvers), but it should under no cir-cumstance be allowed to change which OrionModule it's associated with.  Here is a skeleton im-plementation of the AltairModule class:
    class AltairModule 
    public:
        /* Constructor accepts an OrionModule representing the Orion 
         * spacecraft this Altair is associated with, then sets up 
         * parentModule to point to that OrionModule.
         */
        AltairModule(OrionModule* owner);
 
        /* ... */
    private:
        OrionModule* parentModule;
    }; Given the above description about what the  AltairModule should be able to do with its owner 
OrionModule, appropriately insert const into the definition of the parentModule member vari-able. Then, implement the constructor AltairModule such that the parentModule variable is ini-tialized to point to the owner parameter. 

25. Explain why static member functions cannot be marked const.
 

26. Write a class UniquelyIdentified such that each instance of the class has a unique ID number determined by taking the ID number of the previous instance and adding one.  The first instance should have ID number 1.  Thus the third instance of the class will have ID 3, the ninety-sixth in -stance 96, etc. Also write a const-correct member function getUniqueID that returns the class's unique ID.  Don't worry about reusing older IDs if their objects go out of scope. 
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27. The C header file <cstdlib> exports two functions for random number generation – srand, which seeds the randomizer, and  rand, which generates a pseudorandom  int between 0 and the con-stant  RAND_MAX.  To make the pseudorandom values of  rand appear truly random, you can seed the randomizer using the value returned by the time function exported from <ctime>.  The syntax is  srand((unsigned int)time(NULL)).  Write a class  RandomGenerator that exports a func-tion next that returns a random double in the range [0, 1).  When created, the RandomGenerator class should seed the randomizer with  srand only if a previous instance of  RandomGenerator hasn't already seeded it.  
28. Does it make sense to initialize static data members in a member initializer list?  Explain why or why not. 
29. Should you ever mark static data members mutable?  Why or why not?These practice problems concern a RationalNumber class that encapsulates a rational number (that is, a number expressible as the quotient of two integers).  RationalNumber is declared as follows:

    class RationalNumber
    {
    public:
        RationalNumber(int num = 0, int denom = 1) :
            numerator(num), denominator(denom) {}
    
        double getValue() const {
            return static_cast<double>(numerator) / denominator;
        }

        void setNumerator(int value) {
            numerator = value;
        }
        void setDenominator(int value) {
            denominator = value;
        }

    private:
        int numerator, denominator;
    };The constructor to RationalNumber accepts two parameters that have default values.  This means that if you omit one or more of the parameters to RationalNumber, they'll be filled in using the defaults.  Thus all three of the following lines of code are legal:
    RationalNumber zero; // Value is 0 / 1 = 0
    RationalNumber five(5); // Value is 5 / 1 = 5
    RationalNumber piApprox(355, 113); // Value is 355/113 = 3.1415929203...

30. Explain why the RationalNumber constructor is a conversion constructor.
31. Write a RealNumber class that encapsulates a real number (any number on the number line).  It should have a conversion constructor that accepts a double and a default constructor that sets the value to zero. (Note: You only need to write one constructor.  Use RationalNumber as an example)

32. Write a conversion constructor that converts RationalNumbers into RealNumbers.



- 288 -  Chapter 9: Refining Abstractions

33. If a constructor has two or more arguments and no default values, can it be a conversion construct-or?
34. C++ will apply at most one implicit type conversion at a time.  That is, if you define three types A, B, and C such that A is implicitly convertible to B and B is implicitly convertible to C, C++ will not auto-matically convert objects of type A to objects of type C.  Give an reason for why this might be. (Hint:  

Add another implicit conversion between these types)
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