
CS 537: Intro to Operating Systems (Fall 2017)

Worksheet 7 - Thread and Concurrent Data Structures

This worksheet is only for practice and will NOT be graded.

1. Threads vs Processes!

Part I: Assume that the code snippet below compiles successfully, all the APIs like
pthread_create() do not fail, and the values in the malloc’ed memory are all initial-
ized to 0.

void worker(int *balance) {
int *counter = malloc(sizeof(int));
for (int i = 0; i < 1000000; i++) {

(*balance)++;
(*counter)++;

}
printf("balance : val %d, addr %p\n", *balance, balance);
printf("counter : val %d, addr %p\n", *counter, counter);

}

int main() {
int *balance;
balance = malloc(sizeof(int));
pthread_t t[2];
for (int i = 0; i < 2; i++) // Creating new threads

pthread_create(&t[i], NULL, worker, balance);
for (int i = 0; i < 2; i++)

pthread_join(t[i], NULL);
}

a. What are the values of the 2 variables (balance and counter) after the 2
threads (t1 and t2) finish execution? Value here means the contents printed using
the following print statements. If the value of a variable may be different in different
runs of the program, you should write N/A.

printf("%d\n", *balance); printf("%d\n", *counter);

Value t1 t2

balance

counter

b. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 threads (t1 and t2). PA stands for Physical Address.

printf("%p\n", balance); printf("%p\n", counter);

i. VA of balance in t1 == VA of balance in t2? (TRUE / FALSE)

ii. VA of counter in t1 == VA of counter in t2? (TRUE / FALSE)

iii. PA of balance in t1 == PA of balance in t2? (TRUE / FALSE)

iv. PA of counter in t1 == PA of counter in t2? (TRUE / FALSE)

Part II: Now assume that the code given below compiles successfully, all the APIs
like fork() do not fail, and the values in the malloc’ed memory are all initialized
to 0.

void worker(int *balance) {
int *counter = malloc(sizeof(int));
for (int i = 0; i < 1000000; i++) {

(*balance)++;
(*counter)++;

}
printf("balance : val %d, addr %p\n", *balance, balance);
printf("counter : val %d, addr %p\n", *counter, counter);

}

int main() {
int *balance;
balance = malloc(sizeof(int));
for (int i = 0; i < 2; i++) { // Creating new processes

if (fork() == 0) {
worker(balance);
exit(0);

}
}
for (int i = 0; i < 2; i++)

wait(NULL);
}

c. What are the values of the 2 variables (balance and counter) after the 2 pro-
cesses (p1 and p2) created using fork() finish execution? Value here means the
contents printed using the following print statements. If the value of a variable may
be different in different runs of the program, you should write N/A.

printf("%d\n", *balance); printf("%d\n", *counter);

2

Value p1 p2

balance

counter

d. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 processes (p1 and p2). PA stands for Physical Address.

printf("%p\n", balance); printf("%p\n", counter);

i. VA of balance in p1 == VA of balance in p2? (TRUE / FALSE)

ii. VA of counter in p1 == VA of counter in p2? (TRUE / FALSE)

iii. PA of balance in p1 == PA of balance in p2? (TRUE / FALSE)

iv. PA of counter in p1 == PA of counter in p2? (TRUE / FALSE)

3

2. Locked Data Structures

Assume you have the following code for removing the head of a shared linked list.
Assume each line is performed atomically. Assume a list L originally contains nodes
with keys 1, 2, 3 and 4. Now there are two threads T and S that are popping the list
concurrently.

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

typedef struct __list_t {
node_t *head;

} list_t;

int pop(list_t *L) {
if (!L->head) return -1; // line 1
int rkey = L->head->key; // line 2
L->head = L->head->next; // line 3
return rkey; // line 4

}

a. Given the following sequences, fill in the results. The sequence contains Ti and Sj,
designating that the ith line of code was scheduled for thread T and the jth line of code
was scheduled for thread S respectively. For example, a sequence of T1T2T3S1S2
indicates that 3 lines (lines 1, 2, and 3) were run from thread T followed by 2 lines
(lines 1 and 2) from thread S. You should assume that each sequence is executed
independently. In other words, the state of the linked list is the same (with 4 nodes)
at the start of each sequence. The right most column in the table below represents
the value of L->head->key at the end of the sequence.

Sequence rkey from T rkey from S L->head->key

T1T2S1S2S3S4T3T4

T1T2T3S1S2S3S4T4

T1T2S1S2T3T4S3S4

T1S1S2S3T2T3T4S4

b. In the pop() method given above, which line(s) of code form the critical section?
Our goal here is to maximize the concurrency among threads that are trying to
pop from this shared linked list.

4

